
Comparative Study of Concurrency Control Techniques in Distributed Databases

Anand Mhatre
Department of Computer Engineering

Ramrao Adik Institute of Technology, Nerul
Navi Mumbai, India

anand9304@gmail.com

Rajashree Shedge
Department of Computer Engineering

Ramrao Adik Institute of Technology, Nerul
 Navi Mumbai, India

rajashree.shedge@rait.ac.in

Abstract— In today’s world many of researches have been done
on distributed databases. The main issue in distributed databases
is to maintain consistency in databases. To maintain consistency
in database, correctness criteria must be met. Many of the
concurrency control methods are presented earlier, but they have
problems about delay, performance, waiting time and number of
message exchanges while maintaining correctness. Our paper
presents comparison of the recent concurrency control methods
considering the above mentioned parameters.

 Keywords- Distributed Database; Concurrency control;

I. INTRODUCTION

In distributed databases, there are multiple sites involved
on which the data is stored. Hence concurrency control is
necessary to ensure reliability and consistency of transactions
on these databases [1]. Database is inconsistent when
transactions are in deadlock. Therefore concurrency control is
needed to maintain database in consistent state. For
concurrency control serializability is the most important
criterion. The serializability ensures the correctness of the
database by converting conflict equivalent schedule to a serial
schedule [1].

The basic concurrency control methods in distributed
system are: two phase locking (2PL), where transaction obtain
lock on data item when they read and convert this lock to write
when they need to update it. In wound wait (WW) rather than
waiting for the information from all sites deadlocks are
prevented by use of timestamps. The third method is Basic
Timestamp Ordering. Like WW it employ transaction startup
timestamp but use it differently. Distributed certification is
operated by exchanging certification information. In all above
methods there is some point of deadlock situation formed
between the executions of operations.

Hence some advance concurrency control methods are
proposed like Speculative locking [2], Validation Queue [3],
Stamp based [4]. In validation queue transactions are validated
on client side and also on server side. In Stamp based,
validation is done by matching stamp values. In speculative
locking, validation is based on status of preceding transaction.
But these methods vary in terms of performance, delay,
waiting time and number of message exchanges.

 Rest of the paper is organized as follows section II
describes related work; Section III shows promises of
distributed databases; section IV describes distributed

concurrency control algorithms; section V gives comparative
analysis; finally conclusion is done in section VI.

II. RELATED WORK

There are many techniques proposed for controlling
the concurrent transactions in distributed databases apart from
the basic techniques.
In [2] Mohit Goyal, T. Ragunathan and P. Krishna Reddy
proposed the Speculative locking protocols for distributed
environment. Fahren Bukhari and Santosh Shrivastava [3]
proposed ROCC (Read Commit Order Concurrency Control)
scheme. There are two validation queues, one CVQ (Cache
validation queue) which is located at the client side and
maintained by local cache manager and another is SVQ
(Server validation queue) located at server and maintained by
scheduler component. In [4], priority protocol is explained by
implementing a timestamp where another value of flag is
added and this value doesn’t change unless transaction update
has been successfully committed. Atul Adya, Robert Gruber
Barbara, Liskov Umesh Maheshwari [5] describes an efficient
optimistic concurrency control scheme for use in distributed
database systems in which objects are cached and manipulated
at client machines while persistent storage and transactional
support are provided by servers. The scheme provides both
serializability and external consistency for committed
transactions; it uses loosely synchronized clocks to achieve
global serialization. In [6] T. Ragunathan, P. Krishna Reddy
have given semantics-based high performance asynchronous
speculation based protocol to improve parallelism among
Update transactions and read only transactions. In [7] the
approach reduces waiting time for read only transactions and
improves its performance. Speculation based locking along
with synchronous approach is suggested in [8]. In [9] T.
Ragunathan, P. Krishna Reddy, and Mohit Goyal propose
semantics- based high performance asynchronous speculation
based protocol to improve parallelism among Update
transactions and read only transactions. In [10] general
concurrency control algorithms in the distributed environment
is proposed. These includes the locking algorithms, time stamp
algorithm and optimistic algorithm. Arun Kumar Yadav and
Ajay Agarwal also proposed the transaction processing in
distributed environment. Kamal Solaiman, Graham Morgan
[11] suggested optimistic algorithm for transactions resides on
resource constraint system.

2014 Fourth International Conference on Communication Systems and Network Technologies

978-1-4799-3070-8/14 $31.00 © 2014 IEEE

DOI 10.1109/CSNT.2014.81

378

2014 Fourth International Conference on Communication Systems and Network Technologies

978-1-4799-3070-8/14 $31.00 © 2014 IEEE

DOI 10.1109/CSNT.2014.81

378

III. PROMISES OF DDBS
There are many of the advantages of DDBS. These are basic
for achieving concurrency in databases. All of these can be
viewed as promises of DDBS [1]. These are:

A. Transparent Management of relational and distributed
data .
Transparency ranges from higher system semantics to
lower implementation issues. Its advantage is to provide
higher level support in the development of complex
applications.

B. Reliability through distributed transaction.
 DDBS improves reliability of data by the use of data
replication and thereby reducing risk of single point of
failure. In DDBS some of data may be unreachable in this
case with proper care user are permitted to access data from
other part of distributed database.

C. Improved performance.
Distributed databases first fragment conceptual database
thereby enabling data stored in closed proximity to its
point of use.
It has two advantages

 1) Each site handles portion of database and contention for
CPU and I/O services are not severe as for centralized
databases.

 2) Localization reduces remote access delay which
involved in wide are network.

 Most of databases are designed to gain full benefit from
data localization.
This full benefit of reduced contention and communication
network overhead is obtained from proper fragmentation
and distribution of database.

D. Easier system expansion.
 In distributed database it is much easier to accommodate
increasing database size. Expansion can be handled by
adding more processors and storage power to the network.
One of the aspect of the system expansion is economic. It
normally cost much less to put together smaller computers
with equivalent power of single big machine.

IV. DISTRIBUTED CONCURRENCY CONTROL ALGORITHMS

A. Distributed Speculative Locking (DSL): -
There are two protocols 1) Distributed Synchronous
Speculative Locking for Read Only Transactions. 2)
Distributed Asynchronous Speculative Locking for Read Only
Transactions.

1) Distributed Synchronous Speculative Locking for ROT
Execution phase:-
 Read only transaction (ROT) request to update
transaction (UT) for obtaining read lock on data object held by
UT. If read request of ROT is in conflict with UT, ROT has to
wait till UT produces updated value of data object. When UT
produces updated values both original and updated values are

sent as response to home site of ROT. Now ROT carries out
speculative execution by accessing both original and updated
values of data object. Two list are maintained dependent _set
and dependent _list. Dependent _set contains identifiers of
conflicting UT. And dependent _list contains identifiers of
conflicting UT form which ROT access updated value of data
object. Whenever ROT obtains all require locks on completion
it enters into commit phase.

 Commit phase:-
 On complete execution of ROT to select appropriate
speculative execution ROT communicates with UT’s home
site to know commit status of UT as specified in dependent
_set. If status of UT is committed Speculative execution of
ROT which has committed effect of UT is committed by
considering dependent _list [2].

2) Distributed Asynchronous Speculative Locking.

Execution phase:-
 ROT request to UT for obtaining read lock on data
object held by UT. If read request of ROT is in conflict with
UT, ROT doesn’t wait UT to produces updated value of data
object. It starts speculative execution by reading original value
of data object. When UT produces updated value. Updated
value is sent as response to home site of ROT. Now ROT
carries out speculative execution by accessing that updated
value of data object. Two list are maintained dependent _set
and dependent _list. Dependent _set contains identifiers of
conflicting UT. And dependent _list contains identifiers of
conflicting UT form which ROT access updated value of data
object. Whenever ROT obtains all require locks on
completion, it enters into commit phase.

Commit phase:-
 After complete execution of either one speculation of
ROT. ROT communicates with UT’s home site to know
commit status of UT as specified in dependent _set. If status of
UT is committed, Speculative execution of ROT which has
committed effect of UT, is committed by considering
dependent _list.

B. Validation Queue Approach: -
 Here author proposes validation queue algorithm.
The validation occurs in both side, client side and server
side. Client side is for validating local transaction and
server side is for validation of update transaction. There
are two queues used for both client and server. For client it
is Client Validation Queue (CVQ) and for server it is
Server Validation Queue (SVQ).

1) Client Side Validation:-
 This algorithm is invoked by local cache manager
when it validates the transaction. Its main objective is to
prevent commit of incorrect execution of transaction. Client
Side Validation uses CVQ for storing the execution order of

379379

the elements. In addition to Read, Commit and Validated
elements, CVQ has Local Validated and Update Propagation
elements. An Update Propagation element represents the
execution of a remote update transaction. It contains set of
read and write of update transaction. When the local manager
receives an Update Propagation messages from server side
update propagation elements are inserted in CVQ. Read and
commit elements are inserted in CVQ when local cache
manager receives read or commit request from respective local
transaction [3].

 Transaction succeeds local validation process if it is
read only transaction and all its elements are merged to be
validated elements. Otherwise it is update transaction and
process is as follows:

 1)Local validated elements have merged all elements of
locally validated transaction .

 2)It is checked that no any updates made by update
propagation element in CVQ that conflicts with local
validated elements. If no conflict is there local cache
manager will submit commit request to server otherwise
loca element is discarded and transaction aborts.

 3) If commit message is received from server local
validated element becomes validated element otherwise
abort message is received and local element is discarded.

2) Server Side Validation:-
 Main tasks of the Server Validation Algorithm: to
validate an update transaction at the server, to propagate the
updates to the caches, and to maintain Cache elements. A
Cache element contains the information about the objects
stored at a cache. This algorithm uses SVQ in the same
manner as the client uses CVQ. SVQ may contain Cache,
Commit, or Validated elements. Each cache has its own
version number.
 When fetch request is received, at server side it is
treated as from cache transaction. When server receives fetch
request it creates commit element of cache transaction and put
into the SVQ. Server has to validate that cache transaction. If
validation is successful fetch operation is sent to the object
manager. Otherwise it is removed from SVQ.
 Whenever the server receives a commit request of a
transaction, it compares sequence number carried by commit
request message and sequence number recorded on its cache
transaction at the server if it is not match the commit request is
sent back to its originated cache manager for verification; if it
is match the server creates two elements. These are a Read
element and a Commit element. The Read element contains
the list of object identifiers that have been read by the update
transaction. The Read element will not be executed; it is
needed for the validation purposes only. Commit element
contains the list of object identifiers that the update transaction
wants to update. The Read element is inserted into SVQ at the
position right after the position of the Cache element of the
associated cache transaction in SVQ.
 If the validation succeeds, the server sends a commit
message as acknowledgement to the originating cache
manager, executes the updates of the transaction, and refreshes

other caches by sending Update Propagation messages, with
new sequence numbers(cache version no.) [3]. If the validation
is failed, the server removes the commit element from SVQ
and sends an abort message to the originated cache manager.

C. Stamp Based Approach: -
 This algorithm is based on stamp value. Stamp is
assigned to each data object. When client side transaction send
request to server for data object, Server assign stamp value to
that data object and send response back to the client
transaction. At time of validation whenever client side
transaction send its commit request to server, on server side
server validate value of data object by comparing stamp value
in commit request with stored in its database. If match is found
success flag will be generated and sent to the client side else it
indicates that value of accessed data objects are modified by
another transaction and all data objects are return to the client.
It inform client to restart the transaction. If match found stamp
value of data object is stored in server database and it is
incremented by one every time a successful update is held on a
data object [4]. Basically user receive data and stamp value
and wait for few cycle before the commit process. DBMS will
be able to determine if data received from server is update
meanwhile execution of the procedure or not. This stamp
value is initially set to zero and incremented when successful
update is held on record.

V. COMPARATIVE ANALYSIS

 TABLE 1. COMPARATIVE ANALYSIS OF CONCURRENCY

 CONTROL METHODS

Technologies

Parameters
 DSL

 VQA

SBA

DSSLR DASLR

Waiting time More
Less as

compare to
DSSLR

Very less Little
waiting

Validation Based on
commit
status of
UT

Based on
commit
status of

UT

Based on
conditions

.

Based on
matching
of stamp

flag.

Performance Less than
DASLR

Better than
DSSLR

Moderate Faster

Delay More
Slight less

than
DSSLR

More Less

No. of message
exchanges

Message
exchanges
4

Message
exchanges

5

Message
exchanges

9

Message
exchanges

2

TABLE 1 shows comparison of the techniques with following
parameters.

 1) Waiting time: - Time required for the transaction to access
data object when it is already accessed by other
transaction.

380380

• In DSSLR, ROT has to wait for UT until it produces
updated value to access data items. Because ROT
operates synchronously that is ROT has Commit
dependency on UT. In DASLR there is less waiting
for ROT because there is no dependency of ROT on
UT.

• In validation queue approach, there is very less
waiting of transactions because ROT are validated on
client side and UT are validated on server side and
waiting is among ROT and UT.

• In stamp based approach, there is little waiting
because they don’t wait on each other and simply
access object from server but waiting is at the commit
time of the transaction and it is less than validation
approach.

2) Validation: - Checking for Consistency of database.

• In DSSLR and DASLR, validation of ROT is based
on commit status of UT.

• In VQ validation is based on two conditions.
1) If there is no any element of other transaction Tj
 in between read and commit element of

transaction Ti, then transaction Ti is successfully
committed.

2) First read element of transaction Ti is in conflict
with validated element Tj during the execution of
Ti but commit element of Ti is not in conflict with
validated element of Tj.

• In stamp based approach, validation is based on
matching of stamp flag. If only stamps are match
transaction is validated.

 3) Performance: - Unit of execution in less amount of time.

• DSSLR performs better than DASLR but till the
number of active transactions in system =60 but its
overall performance is less than DASLR. Because of
less waiting than DSSLR and data contention
DASLR performs better.

• VQ algorithm outperforms basic snapshot isolation
schemes. The novel feature is that load for validating
transactions at commit time is divided into client side
and server side there by reducing load on server side.
Thus improving scalability and performance.

• In stamp based approach, performance is faster
because committed or aborted transaction is based on
stamp values. Faster performance requires faster

execution. And execution is faster because
communication between client and server is less.

 4) Delay: - Time required to commit transaction.

• In DSSLR, there are more number of speculative
executions of ROT. After completion of both
speculative executions to select appropriate execution
one round of communication is performed with home
site of UT and ROT is committed by retaining one
execution if it contains effect of commit status of UT
based on commit/abort replies. So delay is more. In
DASLR here are also more number of speculative
executions of ROT. After one of them is completed
one round of communication is performed with home
site of UT and ROT is committed by retaining one
execution if it contains effect of commit status of UT
based on commit/abort replies. So delay is lesser than
DSSLR.

• In validation queue, delay for ROT is less than UT.
Because for commit of UT check is done on both
client and server. So for validation of update
transaction delay is more than ROT.

• In stamp based approach, client side transactions are
committed if their stamp values are matched with
stamp values in server side database. Once this is
done transaction is ready to commit. So delay is less
than other approaches.

5) Number of message exchanges: - It is number of
messages executed for transaction to commit

• In DSSLR, there are less number of messages
exchanged (i.e. 3) between transactions as compared
to DASLR (i.e. 4) because when conflict between UT
and ROT transactions occurred ROT doesn’t wait on
UT and proceed with its execution. So in DSSLR
ROT access both original and updated values in one
request message where as in DASLR ROT first
received original value and after production of
updated value it is received in another request
message therefore one request message is more in
DASLR.

• In VQ algorithm, total number of message exchanges
are 9.On client side they are 3 and on server side they
are 6.

• In stamp based approach, first client side transaction
send request message for object on server side and
server assign stamp to it and grant the request. This is
one message. After performing its execution, client
side transaction send commit message to server. If
stamp value match, server can send committed or

381381

aborted message to client side successfully. So total
number of messages are 2.

VI. CONCLUSION

Our paper has focused on recent concurrency control
techniques like distributed synchronous speculative locking,
distributed asynchronous speculative locking, validation
queue approach and stamp based approach. Out of them
stamp based approach for validating transaction at server
side is seem to be best in terms of waiting time, delay,
performance, number of message exchanges. Also this
method reduces restart time and enhances efficiency.

REFERENCES

[1] M.T. Ozsu and P. Valduriez,” Principles of Distributed Database
Systems”, Third Edition, DOI 10.1007/978-1-4419-8834-8_11, ©
Springer Science Business Media, LLC 2011.

[2] Mohit Goyal, T. Ragunathan and P. Krishna Reddy, “Extending
Speculation based Protocol for Processing Read Only Transactions
in Distributed Database System” 12th IEEE International
Conference on High Performance Computing and
Communications (HPCC), vol., no.pp.527,532, 1-3 Sept. 2010.

[3] Fahren Bukhari and Santosh Shrivastava, “An Efficient
Distributed Concurrency control Scheme for Transactional System
with client side caching”, Proceedings of the 2012 IEEE 14th
International Conference on High Performance Computing and
Communication & 2012 IEEE 9th International Conference on
Embedded Software and Systems, pp.1074,1081, June 2012.

[4] Obaidah A. Rawashdeh, Hiba A. Muhareb and Nedhal A. Al-sayid,
“An optimistic approach in Distributed Database Concurrency
Control”, 2013 5th International Conference on Computer Science
and Information Technology (CSIT), pp.71-75, March 2013.

[5] Atul Adya Robert Gruber Barbara Liskov Umesh Maheshwari,
“Efficient Optimistic Concurrency Control Using Loosely
Synchronized Clocks”,Proceedings of the ACM SIGMOD
International Conference on Management of Data, San Jose, CA,
May 1995.

[6] T. Ragunathan and P. Krishna Reddy, "Semantics- Based High
Performance Asynchronous Speculative Locking Protocol for
Improving the Performance of Read- only Transactions" 2008.

[7] T. Ragunathan, “Extending Speculation for improving
Performance of Read only Transactions”, 2008.

[8] T. Ragunathan and P. Krishna Reddy, “Exploiting Semantics and
Speculation for Improving the Performance of Read Only
Transactions “, International Conference on Management of Data
COMAD 2008.

[9] T. Ragunathan, P. Krishna Reddy, and Mohit Goyal, "Semantics-
Based Asynchronous Speculative Locking Protocol for Improving
the Performance of Read- only Transactions", SpringSim’ 10, Apr
12-15, 2010, Orlando.

[10] Arun Kumar Yadav and Ajay Agarwal, “An Approach for
Concurrency Control in Distributed Database System”,
International Journal of Computer Science and Communication
vol.1, No1. January-June 2010, pp.137-141.

[11] Kamal Solaiman, Graham Morgan, “Later Validation/Earlier write:
Concurrency Control for Resource Constrained System with Real
time properties” IEEE 30th Symposium on Reliable Distributed
Systems, pp.9- 12, Oct. 2011.

382382

