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The tensile elastic modulus Et of a rock is different from the compressive elastic modulus Ec, due to

inhomogeneity and microcracks. There is no convenient method to obtain Et except using direct tension

tests. However, the direct tension test for rock materials is difficult to perform, because of stress

concentrations, and the difficulty of preparing specimens. We have developed a new method to

determine Et of rock materials easily and conveniently. Two strain gauges are pasted at the center part of

a Brazilian disc’s two side faces along the direction perpendicular to the line load to record tensile strain,

and a force sensor is used to record the force applied; then the stress–strain curve can be obtained;

finally the Et can be calculated according to those related formulas which are derived on the basis of

elasticity theory. Our experimental results for marble, sandstone, limestone and granite indicate that Et

is less than Ec, and their ratio is generally between 0.6 and 0.9.

& 2008 Elsevier Ltd. All rights reserved.
1. Introduction

In general, rocks are inhomogeneous, and contain numerous
microcracks. Consequently, rocks show different behavior under
tensile and compressive conditions. Accordingly, there are two
kinds of elastic modulus: the compressive elastic modulus Ec and
the tensile elastic modulus Et. Parameters such as Young’s
modulus and Poisson’s ratio are expected to be different under
compressive or tensile stress [1,2]. The data reported by Krech
et al. [3] and Liao et al. [4] indicate such differences for Young’s
modulus and Poisson’s ratio in some rock types (granite, quartzite,
sandstone, limestone, argillite).

The modulus Ec and the compressive strength sc are easy to
measure in the laboratory by uniaxial compression tests. But the
parameter Et and the tensile strength st are difficult to obtain by
direct tension tests, because it is very difficult and complicated to
prepare test specimens, and it is easy to generate stress
concentrations at the ends of the specimen. In order to solve this
problem, the International Society for Rock Mechanics (ISRM)
officially proposed the Brazilian test as a suggested method for
determining the tensile strength st of rock materials [5]; however,
there is no indirect test proposed by the ISRM to determine the
tensile elastic modulus Et. In this study, a convenient and
ll rights reserved.

ianhong).
maneuverable method for determining Et of rock materials with
the Brazilian disc approximately is to be developed.

In the Brazilian test, a disc specimen is compressed with
diametrically opposite and symmetric line loads [6,7]. The
theoretical basis for the Brazilian test is the analytical solutions
that have been obtained by many researches for isotropic or
transverse isotropic materials under concentrated loads, loads
that are distributed over a small arc of the disc’s circumference
[8–11]. Fairhurst [12] discussed the validity of the Brazilian test,
and concluded that failure is expected to initiate at the center of
disc, but actually the failure sometimes initiates at the loading
points. Hudson [13] verified this conclusion with experiments.
Guo et al. [14] developed a simple method to measure the opening
mode (mode-I) fracture toughness KIc with the Brazilian disc.
Wang et al. [15] later made some improvement to Guo’s method
for determining KIc.

Much attention has been placed on the elastic modulus by
researchers. Hondros [8] developed an approach to measure the
elastic modulus E and Poisson’s ratio n with the Brazilian disc. He
also gave a complete stress analytic solution for the case of a
radial load distributed over a finite circular arc of the disc.
However, this kind of loading is very difficult to obtain in the
laboratory. Consequently, there will be some differences between
the actual stress field and the ideal analytical solution. And there
is another problem for the method: the theory of the method is
based on the strain of the center of the disc, but the strain
measured by the strain gauge is the contribution of a line segment
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Fig. 1. (a) is white marble which seem to be homogenous and isotropic and (b) banded marble shows obvious transverse isotropy.
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near the center of the disc. Yu et al. [16] invented a method for
determining E with the Brazilian test proposed by ISRM. They
recorded the force applied and the displacement of loading point
in experiment, and then a force–displacement curve could be
obtained. The slope of the line section of force–displacement
curve was defined as Ed. The elastic modulus E could be
determined by Ed multiplying a correction coefficient k. According
to finite-element analysis (ANSYS) and experiment, using Three
Gorges granite, they concluded that k is about 19.2. This method
was an improvement, but it was just based on linear elastic,
isotropic finite-element analysis and regressing, fitting test data.
Its credibility and reliability may be low for other rock types.
Wang et al. [17–19] developed a similar method for determining
E with flattened Brazilian disc. They gave out an approximate
formula to calculate the relative displacement between the two
ends according to Cauwellaert’s result for a uniformly and
parallelly distributed load applied on a section of a circular arc
[20]. However, You and Su [21] disputed Wang’s method. Because
the loading and geometry between flatted Brazilian disc and
Cauwellaert’s complete disc were completely different, they
concluded that it was incorrect to use Cauwellaert’s results.

The elastic modulus E mentioned above is the compressive
elastic modulus. Some attention has also been placed on the
tensile elastic modulus. Li and Yin [22] used pure bending beam to
measure the Ec and Et. Two strain gauges were pasted on the
upper surface (compressive zone) and lower surface (tensile
zone), to record the compressive and tensile strain, respectively.
The strongpoint of this method is that it can obtain Ec and Et at the
same time. Zhang et al. [23] devised a method to calculate the
tensile elastic modulus Et of rock with a cracked Brazilian disc.
A small vertical, straight and through notch was required at the
center of disc. However, the theory of this method is immature at
present, and it is difficult to make the notch required in Brazilian
disc.

As we know, some rock types show non-homogeneity to some
extent, and contain many microcracks. These two factors lead to
some anisotropy for rock materials. Furthermore, the level of
microcracking and the orientation of microcracks also have great
effect on the mechanical properties of rock materials. However, it
is very difficult to study the effect quantitatively at present.
Therefore, for the sake of simplicity, and also adopting the same
model proposed by ISRM for the Brazilian test who treat the rock
material as an equivalent isotropic continuum medium, we also
consider the disc to be an equivalent isotropic continuum
medium. Correspondingly, in fact the elastic modulus and
Poisson’s ratio are the equivalent ones. Of cause, the model
adopted here is not suitable for those rock types that show
anisotropy or transverse isotropy. For example, Fig. 1a is a white
marble, which seems to be homogenous and isotropic. Fig. 1b is a
banded marble, which shows transverse isotropy. Certainly, the
white marble is suitable for the model proposed here, whereas the
banding marble is not suitable.

In this study, a simple and convenient test method is proposed
for determining Et for isotropic rock materials with the Brazilian
disc. The configuration of the test is shown in Fig. 2. The core idea
of the proposed method that two strain gauges are pasted,
respectively, at the center of disc on the both side faces along
the direction perpendicular to the line load P (Fig. 3) to record the
tensile deformation of the center part. Then, according to the
stress obtained through elasticity theory and the recorded strain,
the equivalent tensile elastic modulus Et can be calculated.
Obviously, the loading manner of the test method proposed here
is completely different from that proposed by ISRM. The ISRM
suggests that two concave loading plates can be used to apply load
in order to distribute the load along an arc of the disc. The reasons
that the test configuration shown in Fig. 2 is adopted in this study
are as following. On the one hand, the stress analytic solution
obtained by Hondros [8] for a pair of distributed loads applied
over an arc of the disc oppositely and diametrically (Fig. 4) based
on isotropy is
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where p is the applied pressure, R is the radius of disc, r and y are
the polar coordinates of a point in disc, and a is the half central
angle related to the distributed load applied. From the equation
above, we know that the stress field of the disc subjected to a pair
of distributed load is the function of a. Obviously, the magnitude
of a affects the stress distribution in the disc directly. According to
ISRM’s suggestion [5], if the standard concave loading plates are
used in the Brazilian test, the 2a is about 101 at failure. As far as
we know, the disc would show some plastic properties, rather
than complete elasticity when approaching failure. However, the
parameter of tensile elastic modulus Et is a physical quantity of
the elastic stage in tension of rock materials. Therefore, 2a is
certainly not 101, and there is no way to exactly know the specific
value of 2a when the disc is in the elastic stage. Furthermore, 2a is
a variable in the processing of loading. Additionally, the value of
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Fig. 2. The configuration of the test adopted in this study: (a) the experiment box, (b) the loading plate, (c) the Brazilian disc, (d) steel bar, (e) force sensor and (f) the press

machine.

Fig. 3. Two extra strain gauges are pasted, respectively, at the center part of

Brazilian disc on both side faces.
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Fig. 4. A pair of distributed load applies over an arc of the disc oppositely and

diametrically on the disc.
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2a would vary despite using the same concave loading plates and
under the same loading, due to the type of rock, component and
size of mineral, brittleness and stiffness. In short, these factors
make it very difficult to know and calculate the value of 2a when
the disc is in its elastic stage. Accordingly, it is also very difficult
for us to calculate exactly the stress field in the disc subjected to
distributed loads over an arc when the disc is in elastic stage. This
brings difficulty to determine the tensile elastic modulus Et

through the strain measurement due to the uncertainty of the
stress field in disc of elastic stage. On the other hand, in the test
configuration proposed here showed in Fig. 2, two steel bars are
used to provide loads. Because the diameter of the steel bars is
much smaller than the diameter of the disc, the area of contact
between the steel bars and the disc is very small. Correspondingly,
the loads applied by the two steel bars can be considered as two
concentrated loads applied to the disc oppositely and diametri-
cally along the diameter. This type of loading can effectively avoid
the problem of the uncertainty of the stress field in disc subjected
to distributed load over an arc due to the difficulty in knowing 2a.

The analytical solution for a pair of diametrically opposite,
symmetric and compressive line loads applying on a disc of
isotropic rock materials (Fig. 5) has been given by Muskhelishvili
[9]. Therefore, the distribution of the stress at the center part
of disc is completely known. As long as the tensile strain is
recorded by strain gauges in the experiment, the tensile elastic
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Fig. 5. A Brazilian disc subject to line load P.
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modulus Et of isotropic rock materials can be calculated from
the slope of the line section of stress–strain curve, the Poisson
ratio n, the diameter of disc D and the half length of strain gauge L

(see formula (12)).
Some experiments have been performed on four rock types to

support this method and related theory, including the uniaxial
compression tests and the Brazilian tests. The experimental
results indicate that the ratio between Et and Ec for the same
rock type is generally about 0.6–0.9, which is consistent with the
data reported in Ref. [22]. It proves to some extent that the
method proposed is flexible and reliable.
2. Analytic solution for a pair of diametrically opposed,
symmetric and compressive line loads applied on an isotropic
Brazilian disc (Fig. 5)

The solution for an isotropic Brazilian disc subjected to
concentrated loads is [9]
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where P is the line load applied, whose units are (N/m), l is
the thickness of the disc, D is the diameter of the disc. y1, y2 are
positive when the point E is at the right of load P, and they are
negative when E is at the left of load P. r1 and r2 are the distances
from the point E to the loading points C and F (Fig. 5). There are
following relations in the triangle CEF:
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Using the relation formula above, expression (2) can be
written as
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Creating a rectangular coordinate system O–x–y at the center of
disc by taking the point O for the origin (Fig. 5), the relationship
between the rectangular coordinates (x,y) and the polar coordi-
nates (r1,y1) of point E is
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Substituting (5) into Eq. (4), we get
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Fig. 6 shows the distributions of sx, sy, txy in the disc.
From formula (6) and Fig. 6, it is obvious that the points C and F

are singular points in the stress field, and there is stress
concentration phenomenon at the region near C and F. However,
the phenomenon disappear at the region far away the force acting
point. The sections on which the strain gauges are pasted are the
center part of the disc, which is far away from the points C and F.
Therefore, the validity of the method presented in this paper is
certainly not affected.
3. Estimation of tensile elastic modulus of rock

3.1. The method and theory

The stress field of the Brazilian disc based on elasticity
mechanics for isotropic rock materials has been known comple-
tely according to formula (6). It is the theoretical foundation for
measuring the tensile elastic modulus of rock through the strain
measurement.

The constitutive equation expresses the relation between the
stress and the strain through Young’s modulus and Poisson’s ratio.
Accordingly, as long as the strain and the force applied are
recorded in experiment by strain gauge and force sensor,
the tensile elastic modulus can be determined with the slope of
the line section of stress–strain curve according to the constitutive
equation. Therefore, the most principal problem needed to be
solved is to record the stress–strain curve of elastic stage when
rock is in tensile condition. The method adopted in this paper is
that two strain gauges are pasted, respectively, at the center on
the both side faces of disc along the direction perpendicular to the
line load P to record tensile deformation of the center part, and a
force sensor is used to record the line load P applied. The stress
and strain data are picked by stress–strain acquisition system in
experiment. At last, the tensile elastic modulus can be determined
by using the computer processing system in which the strain used



ARTICLE IN PRESS

-25

-20

-15

-10

-5

0

5

10

15

20

25
25 20 15 10 5 0 -5 -10 -15 -20 -25

-25

-20

-15

-10

-5

0

5

10

15

20

25
25 20 15 10 5 0 -5 -10 -15 -20 -25

-25

-20

-15

-10

-5

0

5

10

15

20

25
25 20 15 10 5 0 -5 -10 -15 -20 -25

�xy�y�x

Fig. 6. The distributions of the stress analytic solution in Brazilian disc (D ¼ 50 mm).
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Fig. 7. The method of measuring tensile elastic modulus with Brazilian disc.

Fig. 8. The distribution of the stress on diameter AB (D ¼ 50 mm).
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in calculating and plotting should be the average value of the two
strain gauges (Fig. 7).

The measuring theory is illustrated in detail in the following.
Assuming y ¼ 0 in formula (6), we obtain the following expression
for the stress state on the diameter AB:

sx ¼
2P

pDl

16D2x2

ð4x2 þ D2
Þ
2
� 1

( )

sy ¼
2P

pDl

4D2

ð4x2 þ D2
Þ
2
� 1

( )

txy ¼ 0

8>>>>>>><
>>>>>>>:

(7)

The distribution of the stress on the diameter AB is showed in
Fig. 8. From Fig. 8 we can know that the compressive stress sy is
two times than the absolute value of the tensile stress sx at the
center part of Brazilian disc. Consequently, the tensile strain
generated by compressive stress sy due to Poisson’s effect cannot
be ignored in estimation of tensile elastic modulus.

The tensile strain at the center part of disc along the diameter
AB in the range the strain gauges are pasted can be calculated with
the following expression:
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where L is the half-length of the strain gauges pasted at the center
part of disc, Et is the tensile elastic modulus of rock, and n is
Poisson’s ratio. The tensile stress is intended to be negative in this
paper, so an extra minus sign is appended to sx in formula (8).
Substituting formula (7) into (8), we obtain
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Table 1
The experimental results of the uniaxial compression test

Rock materials Serial number sc (MPa) n Ec (GPa)

Marble D04 70.32 0.353 77.54

D05 109.34 0.320 75.31

D06 113.44 0.317 77.72

Average value 97.70 0.330 76.86

Sandstone S04 28.84 0.199 7.39

S05 40.1 0.112 11.86

S06 43.4 0.197 10.8

Average value 37.45 0.169 10.02

Limestone H04 68.67 0.222 54.17

H05 71.43 0.268 60.25

H06 72.66 0.202 58.77

Average value 70.92 0.231 57.73

Granite Hu04 125.26 0.226 21.85

Hu05 104.1 0.166 19.45

Hu06 110.42 0.181 19.56

Average value 113.26 0.191 20.29

Table 2
The experimental results of the Brazilian test (L ¼ 5 mm)

Rock

materials

Serial number n D

(mm)

A Es

(GPa)

Et(GPa)

Marble D01 50.0 1.905 33.4 63.6

D02 50.0 32.6 62.1

D03 50.0 39.2 74.7

Average value 0.330 50.0 35.1 66.8

Sandstone S01 50.0 1.439 4.22 6.1

S02 50.0 4.99 7.2

S03 50.0 5.49 7.9

Average value 0.169 50.0 4.9 7.1

Limestone H01 55.5 1.749 22.57 39.5

H02 55.5 24.34 42.6

H03 55.5 27.25 47.7

Average value 0.271 55.5 24.72 43.3

Granite Hu01 50.0 1.502 9.31 14.0

Hu02 50.0 9.25 13.9

Hu03 50.0 9.40 14.1

Average value 0.191 50.0 9.32 14.0

Y. Jianhong et al. / International Journal of Rock Mechanics & Mining Sciences 46 (2009) 568–576574
The two definite integrals in above expression (9) can be
worked out analytically as follows:Z L

0
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If the formula (10) is substituted into (9), the following
expression is obtained:
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Exchanging the et and Et in formula (11), and taking Es ¼ 2P/pDl

et, we obtain
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where Et is the tensile elastic modulus of rock, Es is defined as
splitting elastic modulus which can be determined from the
stress–strain curve recorded in the Brazilian test, n is Poisson’s
ratio. A is a correction coefficient which is related to D, L and n.
From formula (12), we see that after the diameter of Brazilian disc
D and the half-length of strain gauge L are known; Poisson’s ratio
n has been determined with the uniaxial compression test;
and the splitting elastic modulus Es is obtained which is equal
to the slope of line section of the stress–strain curve recorded in
the Brazilian test. Then the tensile elastic modulus Et can be
determined easily and conveniently.

In fact, the stress–strain curve recorded in test sometime
shows the properties of non-linearity. There is no obvious
linear section in the stress–strain curve in the elastic stage.
Accordingly, if there is no obvious linear section in the
stress–strain curve due to a high degree of non-linearity,
the parameter of splitting elastic modulus Es would be determined
by the following formula:

Es ¼
ð1=2Þst

�t
(14)

where st is the maximum stress in test, namely tensile strength.
st/2 is the stress in stress–strain curve which is half of the tensile
strength. et is the strain related to st/2 in the stress–strain curve
(Fig. 9—S01). Actually, this suggestion of determining elastic
modulus is also proposed by some specification in China.

3.2. The experimental results for the measuring method and theory

Four kinds of rock materials are used in the experiment:
marble, limestone, sandstone and granite. These specimens are
comparatively homogenous and fine grained. Therefore, they can
be treated as approximately isotropic. Six specimens are prepared
for each kind of rock and they are all circular cylinders. Three
specimens of the six are used for uniaxial compression test; their
height and diameter are about 100 and 50 mm, respectively.
The other three are used for the Brazilian tests; their height and
diameter are about 25 and 50 mm, respectively. The compressive
strength sc, Poisson’s ratio n, and compressive elastic modulus Ec

can be determined by the uniaxial compression test. The tensile
strength st and splitting elastic modulus Es can be determined by
the Brazilian test. The half-length L of strain gauge used in
experiment is 5 mm. The loading rate for the Brazilian test and the
uniaxial compressive test is 200 and 2000 N/s, respectively. Those
stress–strain curves have been recorded by applying the measur-
ing method stated formerly. Fig. 9 shows the typical stress–strain
curves of the Brazilian test and the uniaxial compressive test
in the laboratory. The experimental results are shown in Tables 1
and 2.

We can see from Tables 1 and 2 that the tensile elastic
modulus Et of the four kinds of rock materials are all less than
their compressive elastic modulus Ec. The average value of the Et,
Ec and their ratio of the four kinds of rock materials are listed in
Table 3.

The experimental results show that the ratio between average
tensile elastic modulus Et and average compressive elastic
modulus Ec of the four kinds of rock materials are 87%, 71%,
75%, and 69%, respectively. The scope of these ratios is about
60–90%. This result is roughly consistent with the conclusion of
Ref. [22].
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Table 3
The average value of Et, Ec and their ratio of the four kind of rock materials

Rock Marble Sandstone Limestone Granite

Et 66.8 7.1 43.3 14.0

Ec 76.86 10.02 57.73 20.29

Ratio (%) 86.9 70.9 75.0 69.0

Table 4
The value of A corresponding to different Poisson’s ratio n (D ¼ 50 mm, L ¼ 5 mm)

n 0.05 0.1 0.15 0.2 0.25 0.3 0.35

A 1.094 1.239 1.384 1.528 1.673 1.818 1.963
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4. Discussion

From formula (6), the compressive stress sy is about two times
than the absolute value of the tensile stress sx at the center part of
the Brazilian disc. Therefore, the tensile strain generated by
compressive stress sy due to Poisson’s effect must be considered,
unless the measuring result is inaccurate. However, the tensile
strain contributed by sy usually accounts for a small proportion of
the total tensile strain, because Poisson’s ratio n usually is a small
value of 0.1–0.3. That is to say, the tensile stress sx contributes the
majority in the total tensile strain.

From formula (12), we know that the determination of the
tensile elastic modulus Et is not only affected by the diameter of
disc D and the half-length of strain gauge L, but also by Poisson’s
ratio n. Furthermore, Poisson’s ratio n is the most important
effective factor whose accuracy directly determines the reliability
of the Et. Table 4 lists the different values of A when Poisson’s ratio
is 0.05, 0.1, 0.15, 0.2, 0.25, 0.3, and 0.35 (D ¼ 50 mm, L ¼ 5 mm).
Table 4 indicates that the A is very sensitive to Poisson’s ratio.
However, frequently, there is uncertainty when measuring
Poisson’s ratio n in the laboratory with uniaxial compressive
tests. Therefore, in order to obtain reliable value of Et, the uniaxial
compressive test must be performed carefully and at least three
specimens are used for each type of rock.

As stated above, it is difficult for us to perform the direct
tension test in laboratory. Consequently, the experimental data of
the direct tension test for the four kinds of rock have not been
acquired. Therefore, there is no way to compare the results
obtained by applying the measuring method proposed in this
paper with the results obtained from direct tension test. It is a
deficiency, and also a research direction later.

Lots of rock types show anisotropy or transverse isotropy. How
to measure or estimate their tensile elastic modulus at all
directions with the Brazilian disc is also worthy of research
further later.
5. Conclusions

The stress analytic solution of rectangular coordinates form for
the Brazilian disc (formula (6)) are given based on the results
obtained by Muskhelishvili for isotropic rock materials. The origin
of coordinates is the center of Brazilian disc. It is the theoretical
foundation for determining the tensile elastic modulus with
Brazilian disc.

The tensile elastic modulus Et is an important parameter,
which characterizes the tensile property of rock materials. But it is
difficult to obtain attributing to the fact that the direct tensile test
is difficult to perform in laboratory. A new measuring method
with the Brazilian disc is proposed in this paper that can
determine the Et easily and conveniently (Fig. 7). The method is
that two strain gauges are pasted, respectively, at the center on
the both side faces of disc along the direction perpendicular to the
line load P (Fig. 3) which are used to record tensile strain of the
center part, and a force sensor is used to record the force applied;
then the splitting elastic modulus Es can be obtained from the
slope of the line section of the stress–strain curve recorded or
according to formula (14); the n are determined by uniaxial
compression test; finally, the Et can be determined according to
formula (12). Additionally, a new experimental set-up is invented
which is used to provide the line concentration loads (Fig. 2).

Our experimental results show that the Et of rock materials are
all less than their Ec, and the ratio between Et and Ec of rock
materials, including marble, sandstone, limestone, and granite is
about 60–90%. These results are basically consistent with the
conclusion of Ref. [22]. Consequently, the flexibility, maneuver-
ability, and the reliability of the measuring method proposed here
are shown to be good.
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