
GAMM-Mitt. 27, No. 2, 174 – 188 (2004)

Topics in the numerical linear algebra of Toeplitz and
Hankel matrices
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This is an introduction to some aspects of the numerical linear algebra of large matrices
with Toeplitz, Hankel, and Toeplitz-plus-Hankel structures. The concrete topics we have
selected are determined by our preferences and by work we have participated in. We give
an introduction to the symbol calculus, we touch exact and asymptotic formulas for inverses,
including the notion of a Bezoutian, we consider eigenvalues, pseudospectra, eigenvectors,
and condition numbers, and we embark on the fast solution of Toeplitz systems.
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1 Introduction

Square Toeplitz and Hankel matrices are matrices of the form

Tn = (aj−k)n
j,k=1 =

⎛
⎜⎜⎜⎝

a0 a−1 . . . a−(n−1)

a1 a0 . . . a−(n−2)

...
...

...
an−1 an−2 . . . a0

⎞
⎟⎟⎟⎠ , (1)

Hn = (aj+k−1)n
j,k=1 =

⎛
⎜⎜⎜⎝

a1 a2 . . . an

a2 a3 . . . an+1

...
...

...
an an+1 . . . a2n−1

⎞
⎟⎟⎟⎠ , (2)

respectively. Each of these two types of n×nmatrices depends on 2n− 1 parameters, which
are usually complex numbers. Such matrices are currently emerging in plenty of applications.
People are in particular interested in the spectral properties (for example, in the eigenvalues
and eigenvectors), in the structure of the inverse, in several kinds of factorizations, and in
efficiently solving linear systems with such coefficient matrices. These questions can all be
tackled without difficulty if n is of moderate size, but they become challenging if n is large.
The purpose of this article is to present some exemplary results on large Toeplitz and Hankel
matrices which may serve as modest illustrations of an actually very big business.
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2 Symbol calculus

When working with large matrices, it is sometimes no bad idea to pass to infinite matrices.
The infinite versions of matrices (1) and (2) are

T = (aj−k)∞j,k=1 =

⎛
⎜⎜⎝

a0 a−1 a−2 . . .
a1 a0 a−1 . . .
a2 a1 a0 . . .
. . . . . . . . . . . .

⎞
⎟⎟⎠ , (3)

H = (aj+k−1)∞j,k=1 =

⎛
⎜⎜⎝

a1 a2 a3 . . .
a2 a3 a4 . . .
a3 a4 a5 . . .
. . . . . . . . . . . .

⎞
⎟⎟⎠ . (4)

Matrix (3) is determined by a doubly infinite sequence (an)∞n=−∞, while matrix (4) is speci-
fied by a simply infinite sequence (an)∞n=1. Classic results by Toeplitz and Nehari characterize
all sequences (an) for which matrices (3) and (4) induce bounded operators on the usual space
�2. This is in particular the case if

∑ |an| < ∞ (which can also be verified straightforwardly).
The basic properties of an infinite Toeplitz or Hankel matrix are encoded in a certain func-

tion, the so-called symbol of the matrix.
Let a be a complex-valued function in L1 on the complex unit circle T. The Fourier

coefficients are defined by

an =
1
2π

∫ 2π

0

a(eiθ)e−inθdθ, n ∈ Z. (5)

The set of all a ∈ L1(T) for which the sequence of the Fourier coefficients belongs to � 1

is called the Wiener algebra and is denoted by W . In other words, a is in W if and only if∑∞
n=−∞ |an| < ∞. The Fourier series of a function a ∈ W is absolutely convergent, and we

have

a(eiθ) =
∞∑

n=−∞
aneinθ, eiθ ∈ T. (6)

We emphasize that the product of two functions inW is again in W . Wiener’s theorem says
that if a ∈W has no zeros on T, then a−1 is also inW .
Consider now the Toeplitz matrix (3) and suppose

∑∞
n=−∞ |an| < ∞. In this case (6)

defines a function a inW . This function is referred to as the symbol of the matrix (3), and we
denote matrix (3) by T (a). Notice that we can also look at things from the reverse side: we
start with a function a ∈ W , define the sequence (an)∞n=−∞ via (5), and eventually let T (a)
stand for the matrix (3).
For a function a ∈W with Fourier coefficients (5), we define two infinite Hankel matrices

H(a) andH(ã) by

H(a) =

⎛
⎜⎜⎝

a1 a2 a3 . . .
a2 a3 . . .
a3 . . .
. . .

⎞
⎟⎟⎠ , H(ã) =

⎛
⎜⎜⎝

a−1 a−2 a−3 . . .
a−2 a−3 . . .
a−3 . . .
. . .

⎞
⎟⎟⎠ .
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Clearly, H(a) and H(ã) are uniquely determined by a. However, if we are given matrix (4)
with

∑∞
n=1 |an| < ∞, then there are infinitely many a ∈ W such that H(a) (orH(ã)) is the

matrix (4). Thus, the symbol of a Hankel matrix is not unique.
We are now in a position to state a formula for the product of two infinite Toeplitz matrices.

We always assume that a, b ∈ W .

Theorem 2.1 We have T (a)T (b) = T (ab)−H(a)H(b̃).
This theorem, which goes back at least to Gohberg and Feldman [16], can be readily ver-

ified by inspection. It tells us that the product of two infinite Toeplitz matrices differs from
an infinite Toeplitz matrix by the product of two infinite Hankel matrices. We remark that if
a, b ∈ W , thenH(a) andH(b̃) are compact operators on �2. Consequently, T (a)T (b) equals
T (ab) modulo compact operators.
We define the operators Pn andWn on �2 by

Pn : (x0, x1, x2, . . .) �→ (x0, . . . , xn−1, 0, . . .),
Wn : (x0, x1, x2, . . .) �→ (xn−1, . . . , x0, 0, . . .),

and we identify the ranges of Pn andWn withCn in the natural manner. Matrix (1) may then
be identified with PnT (a)Pn, the principal n× n truncation of T (a). We denote it by Tn(a).
Clearly, as for fixed n only the Fourier coefficients a−(n−1), . . . , an−1 are specified, there are
infinitely many a ∈ W such that Tn(a) equals (1). Here is the analogue of Theorem 2.1 for
finite matrices.

Theorem 2.2 We have

Tn(a)Tn(b) = Tn(ab)− PnH(a)H (̃b)Pn −WnH(ã)H(b)Wn.

This beautiful formula is due to Widom [50]. Once it has been guessed, it can again be
proved by simply computing and comparing the j, k entries of both sides.

3 Formulas for inverses

Throughout what follows we suppose that a ∈ W . When does the Toeplitz matrix T (a) gen-
erate an invertible operator on �2? This question has a nice answer in terms of the symbol a.
The counter-clockwise orientation ofT induces an orientation of the continuous closed curve
a(T). If a has no zeros on T, then a(T) does not contain the origin and hence has a well-
defined winding number wind a about the origin. The following classic result has emerged
from the work of many authors and was probably first explicitly stated by Gohberg [14].

Theorem 3.1 The matrix T (a) induces an invertible operator on �2 if and only if the
function a has no zeros on T and wind a = 0.
The following formula for the inverse T −1(a) := (T (a))−1 has its root in the so-called

Wiener-Hopf factorization and is in this form due to Mark Krein [39]. We denote by T (ã) the
transpose of T (a),

T (ã) = (ak−j)∞j,k=1 =

⎛
⎜⎜⎝

a0 a1 a2 . . .
a−1 a0 a1 . . .
a−2 a−1 a0 . . .
. . . . . . . . . . . .

⎞
⎟⎟⎠ , (7)
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and by e0 ∈ �2 the sequence (1, 0, 0, . . .).
Theorem 3.2 Let T (a) be invertible. Then the solutions x = (xj)∞j=0 and y = (yj)∞j=0 of

the equations T (a)x = e0 and T (ã)y = e0 belong to �1, we have x0 �= 0, and

T−1(a) =
1
x0

⎛
⎜⎜⎝

x0

x1 x0

x2 x1 x0

. . . . . . . . . . . .

⎞
⎟⎟⎠

⎛
⎜⎜⎝

y0 y1 y2 . . .
y0 y1 . . .

y0 . . .
. . .

⎞
⎟⎟⎠ . (8)

To formulate the analogue of Theorem 3.2 for T −1
n (a) := (Tn(a))−1, we understand by

e0 ∈ Cn the vector (1, 0, . . . , 0) and consider the equations Tn(a)x = e0 and Tn(ã)y = e0.
Here Tn(ã) is the leading principal n × n submatrix of the matrix (7). Equivalently, T n(ã)
is the transpose of Tn(a). The following inversion formula is well known as the Gohberg-
Semencul formula [17].

Theorem 3.3 Suppose Tn(a) is invertible and let x = (xj)n−1
j=0 and y = (yj)n−1

j=0 be the
solutions of the equations Tn(a)x = e0 and Tn(ã)y = e0. Put xn = yn := 0. If x0 �= 0, then

T−1
n (a) =

1
x0

⎛
⎜⎝

x0

...
. . .

xn−1 . . . x0

⎞
⎟⎠

⎛
⎜⎝

y0 . . . yn−1

. . .
...
y0

⎞
⎟⎠

− 1
x0

⎛
⎜⎝

yn

...
. . .

y1 . . . yn

⎞
⎟⎠

⎛
⎜⎝

xn . . . x1

. . .
...
xn

⎞
⎟⎠ . (9)

Notice that x and y in Theorem 3.3 depend stronger on n than notation suggests: actually
we have x = x(n) = (x(n)

j )n
j=0 and y = y(n) = (y(n)

j )n
j=0. One nevertheless has the feeling

that the right-hand side of (9) should in some sense converge to that of (8). This is indeed the
case, which was first proved by Gohberg and Feldman [16].

Theorem 3.4 If T (a) is invertible, then there is an n0 such that Tn(a) is invertible for all
n ≥ n0 and such that the first component x

(n)
0 of the solution of Tn(a)x(n) = e0 is nonzero

for all n ≥ n0. Moreover, the operators T−1
n (a)Pn converge strongly (= pointwise ) to the

operator T−1(a) on �2.

This theorem tells us that we may replace the infinite system T (a)f = g by the (large but
finite) systems Tn(a)f (n) = Png, which is a projection method. If T (a) is invertible, then
f (n) converges in �2 to f .
Theorem 3.4 implies in particular that x

(n)
0 → x0 as n → ∞ if only the operator T (a)

is invertible. By Cramer’s rule, x
(n)
0 is the quotient of two Toeplitz determinants: x

(n)
0 =

detTn−1(a)/detTn(a). On the other hand, one can show that x0 = 1/ exp(log a)0, where
(log a)0 is the 0th Fourier coefficient of log a and log a is a logarithm of a inW (which exists
by Theorem 3.1). Thus, Theorem 3.4 contains as a special case the formula

lim
n→∞

detTn(a)
detTn−1(a)

= exp(log a)0,

which is the first Szegö limit theorem (see, for example, [10] and [16] for more details).
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Theorem 3.4 is at the heart of the asymptotic analysis of large Toeplitz matrices. When
proving something about Tn(a) as n → ∞, one will often sooner or later be forced to have
recourse to this theorem. Nowadays there are many different proofs of this key result. These
proofs also yield representations for T −1

n (a) that are completely different from (9). We will
see in the following how (9) can be used to design fast algorithms for solving the system
Tn(a)f = g. For asymptotic problems, however, formula (9) is frequently inconvenient. In
this connection a better representation is, for instance,

T−1
n (a) = Tn(a−1) + PnK(a)Pn + WnK(ã)Wn + Cn,

where ‖Cn‖ → 0 and the compact operatorsK(a) andK(ã) are given by

K(a) = T−1(a)− T (a−1) = H(a−1)H(ã)T−1(a),
K(ã) = T−1(ã)− T (ã−1) = H(ã−1)H(a)T−1(ã).

We refer to the text [10] for more on this topic.

4 Eigenvalues and pseudospectra

We denote by sp A the spectrum of a matrix or an operator, that is, the set of all λ ∈ C for
which A − λI is not invertible. Notice that for Toeplitz matrices the equalities T (a)− λI =
T (a− λ) and Tn(a)− λIn = Tn(a− λ) hold. By Theorem 3.1,

sp T (a) = a(T) ∪ {λ ∈ C \ a(T) : wind (a, λ) �= 0},

wherewind (a, λ) is the winding number of the curve a(T) about the point λ. It turns out that
in the n → ∞ limit the spectra (= sets of eigenvalues) spTn(a) are in general in no obvious
way related to spT (a). Figure 1 shows an example.
In the case of banded Toeplitz matrices, the limit of the spectra sp Tn(a) was completely

identified by Schmidt and Spitzer [48]. Thus, let us assume that a is a Laurent polynomial,

a(eiθ) =
s∑

k=−r

akeikθ.

In this case T (a) is banded with bandwidth r + s + 1. We define

Λ(a) =
⋂
�>0

sp T (a�) where a�(eiθ) =
s∑

k=−r

ak�keikθ.

Here is the result of Schmidt and Spitzer.

Theorem 4.1 The spectra sp Tn(a) converge to Λ(a) in the Hausdorff metric as n → ∞.
The set Λ(a) is a finite union of analytic arcs.
For dense Toeplitz matrices T (a), the identification of spTn(a) for large n remains a true

challenge. The set Λ(a) := lim sup spTn(a) always exists. It is defined as the set of all
λ ∈ C for which there are n1 < n2 < n3 < . . . and λk ∈ spTnk(a) such that λk → λ. Let
HC denote the metric space of all compact subsets of C with the Hausdorff metric. In [6] it
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is shown that the map C(T) → HC, a �→ Λ(a) is discontinuous. Thus, small changes in the
entries of a large dense Toeplitz matrix may drastically change the spectrum.
In contrast to spectra, pseudospectra of Toeplitz matrices behave as nicely as one could

ever expect. For ε > 0, the ε-pseudospectrum of a matrix or an operatorA is defined by

spεA = {λ ∈ C : ‖(A− λI)−1‖ ≥ 1/ε}, (10)

with the convention that ‖(A − λI)−1‖ = +∞ if λ ∈ sp A. Throughout this article, ‖ · ‖ is
the operator norm on �2 or onCn with the �2 norm. We should mention that spεA admits the
alternative description

spεA =
⋃

‖E‖≤ε

sp (A + E). (11)

Formula (11) implies that we can get an idea of spεA by superposing the spectra sp(A + Ek)
for sufficiently many randomly chosen E1, . . . , EN with ‖Ek‖ ≤ ε. Figure 2 is an example.
For more on pseudospectra we refer the reader to the forthcoming book [49].

Fig. 1 We see the curve a(T) together with
the 100 eigenvalues of T100(a).

Fig. 2 The picture indicates spεTn(a) for
ε = 1/100 and n = 200. It shows the super-
position of the spectra sp (Tn(a) +Ek) for 50
randomly chosen matrices Ek with ‖Ek‖ = ε.

Theorem 4.2 For each ε > 0, the pseudospectra spεTn(a) converge to spεT (a) in the
Hausdorff metric as n →∞.

This theorem goes back to Henry Landau [42] and Reichel and Trefethen [46]. The first
clean proof was given in [3]. This proof is based on (10) and the equality

lim
n→∞ ‖T

−1
n (a− λ)‖ = ‖T−1(a− λ)‖. (12)

Equality (12) was in turn proved by C ∗-algebra techniques (see [4] or [18] for more on this
subject). Take, for example, λ = 0. Then (12) says that ‖T −1

n (a)‖ converges to ‖T−1(a)‖
c© 2004 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
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if T (a) is invertible and to +∞ if T (a) is not invertible. This is a significant refinement of
Gohberg and Feldman’s classic Theorem 3.4, which is essentially equivalent to the statement
that ‖T−1

n (a)‖ remains bounded as n →∞ if and only if T (a) is invertible.
If a is a Laurent polynomial, then the convergence in (12) is exponentially fast. This

implies that spεTn(a) converges to spεT (a) extremely rapidly. On the other hand, for non-
smooth symbols a the convergence of spεTn(a) to spεT (a)may be spectacularly slow, so that
it cannot be convincingly seen numerically [5, 7].
The problems for Hankel matrices are often completely different from those for Toeplitz

matrices. This happens in particular in connection with eigenvalues and pseudospectra. Let
Hn(a) denote the principal n× n truncation of the infinite Hankel matrixH(a). Since H(a)
is compact on �2, it follows easily that sp Hn(a) → spH(a) and spεHn(a) → spεH(a) in
the Hausdorff metric as n→∞.

5 Eigenvectors

Let T (a) be a banded matrix, that is, suppose a is a Laurent polynomial. Fix a point λ ∈ C,
and for the sake of simplicity assume that λ /∈ a(T). Then the winding numberwind (a, λ) of
the curve a(T) about λ is well-defined. Recall that T (a)−λI = T (a−λ) and Tn(a)−λI =
Tn(a− λ). The following theorem, which is essentially due to Gohberg [15] and Mark Krein
[39], provides information about the eigenvectors of infinite Toeplitz matrices.

Theorem 5.1 The point λ is an eigenvalue of the operator T (a) : �2 → �2 if and only if
wind (a, λ) = −m ≤ −1. In that case

KerT (a− λ) = span {x, V x, . . . , V m−1x},
where x = (xj)∞j=0 is the solution of the equation T (a)x = e0 and V is the shift operator
{ξ0, ξ1, . . .} �→ {0, ξ0, ξ1, . . .}.
Now suppose we have eigenvalues λn ∈ sp Tn(a) and λn → λ as n → ∞. Clearly, λ is

necessarily in the limiting set Λ(a). How are the eigenvectors of Tn(a) corresponding to λn

related to the eigenvectors of T (a) for λ? This problem was solved only recently in [9]. First
of all, it turns out that everything is fine in the case where wind (a, λ) = −1.
Theorem 5.2 If wind (a, λ) = −1, then there exist a natural number n0, vectors x(n) =

(x(n)
j )n−1

j=0 ∈ Cn (n ≥ n0), and a sequence x ∈ �2 such that

KerTn(a− λn) = span {x(n)}, x
(n)
0 = 1,

KerT (a− λ) = span {x},
x(n) → x in �2.

Things are not so perfect forwind (a, λ) �= −1. Let, for example, a(e iθ) = e−iθ−βe−2iθ.
Then Tn(a) has 1 on the first superdiagonal, −β on the second superdiagonal, and zeros
elsewhere. Obviously, sp Tn(a) = {0}. It is readily seen that

KerTn(a) = {(x0, 0, . . . , 0) : x0 ∈ C}. (13)

If β = 1/2, then wind (a, 0) = −1 and

KerT (a) = {(x0, 0, . . .) : x0 ∈ C}. (14)
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Clearly, (13) and (14) fit together according to Theorems 5.1 and 5.2. If β = 2, then
wind (a, 0) = −2, and it is not difficult to verify that

KerT (a) =
{(

x0, x1,
x1

2
,
x1

22
,
x1

23
, . . .

)
: x0, x1 ∈ C

}
. (15)

Thus, the limit of (13) delivers only a proper part of (15).
For general Laurent polynomials a the situation is as follows. If a certain technical condi-

tion is satisfied (which is generically the case), then, for all sufficiently large n, KerTn(a −
λn) = span {x(n)} with vectors x(n) = (x(n)

j )n−1
j=0 ∈ Cn satisfying x

(n)
0 = 1. The limits

xj := limn→∞ x
(n)
j exist for each j ≥ 1. If wind (a, λ) ≤ −1, then (1, x1, x2, . . .) lies in

KerT (a−λ), while ifwind (a, λ) ≥ 0, we haveKerT (a−λ) = {0} and (1, x1, x2, . . .) /∈ �2.

6 Condition numbers

Let a be a Laurent polynomial. If T (a) is invertible, then (12) implies that the (spectral)
condition numbers κ(Tn(a)) := ‖Tn(a)‖ ‖T−1

n (a)‖ converge to ‖T (a)‖ ‖T −1(a)‖ and thus
to a finite limit. However, if T (a) is not invertible, then κ(Tn(a)) grows to infinity. The latter
happens if either a has zeros onT or if a has no zeros onT but nonzero winding number. As
the following result (which can already be found in [46]) shows, the latter case is especially
treacherous.

Theorem 6.1 If wind a �= 0, then the condition numbers κ(Tn(a)) grow at least exponen-
tially to infinity, that is, there are constants C = C(a) > 0 and α = α(a) > 0 such that
Ceαn ≤ κ(Tn(a)) ≤ +∞ for all n ≥ 1.

The condition number κ(Tn(a), x) of Tn(a) at a given nonzero vector x ∈ Cn is defined as
follows. For ε > 0, letMε be the set of all n×nmatrices δAn satisfying ‖δAn‖ ≤ ε‖Tn(a)‖
and denote by Pε the set of all vectors δx ∈ Cn for which there exists a δAn ∈ Mε such that
(Tn(a) + δAn)(x + δx) = Tn(a)x. Then one defines

κ(Tn(a), x) := lim
ε→0

sup
δx∈Pε

‖δx‖
ε‖x‖ . (16)

It is well known that κ(Tn(a), x) does actually not depend on x and is equal to κ(Tn(a)) (see,
for example, [37, 47]).
In practice, we need not consider perturbations of Tn(a) by general matrices. It is rather

reasonable to assume that the perturbing matrix is itself Toeplitz. Thus, replace the M ε in
the previous paragraph by the set of all n × n Toeplitz matrices δAn satisfying ‖δAn‖ ≤
ε‖Tn(a)‖. The limit (16) is then denoted by κToep(Tn(a), x) and is an example of a so-called
structured condition number [37, 47]. In contrast to κ(T n(a), x), the number κToep(Tn(a), x)
may depend on x. One expects that κToep(Tn(a), x) is in general significantly smaller than
κ(Tn(a), x), but, curiously, up to now no convincing example in this direction is known.
Quite on the contrary, the following result shows that in the Toeplitz case structured condition
numbers are rarely better than usual condition numbers and that, moreover, the numerical
search for an exception from this rule seems to be a hopeless venture.
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Theorem 6.2 Let x0, x1, . . . , xn−1 ∈ C be independent random variables whose real and
imaginary parts are subject to the standard normal distribution and put x = (x j)n−1

j=0 . There
are universal constants δ ∈ (0,∞) and n0 ∈ N such that

Probability
(

κToep(Tn(a), x)
κ(Tn(a), x)

≥ δ

n3/2

)
>

99
100

for all Laurent polynomials a and all n ≥ n0.

This theorem was proved in [8] on the basis of a deep recent theorem by Konyagin and
Schlag [38]. Theorems 6.1 and 6.2 reveal that with probability of at least 99 % we have

κToep(Tn(a), x) ≥ δ
κ(Tn(a), x)

n3/2
= δ

κ(Tn(a))
n3/2

≥ Cδ
eαn

n3/2

for all n ≥ n0. Clearly, the “structural improvement” n3/2 in the denominator is absolutely
harmless in comparison with the eαn in the numerator.

7 Superfast algorithms for matrix-vector multiplication

Theorem 3.3 reveals the structure of Toeplitz inverses. After [17], a large number of inversion
formulas for Toeplitz and Hankel matrices have been established. Several such representations
can be derived as follows. Let ∂ Tn(a) denote the (n−1)×(n+1)Toeplitz matrix that results
from Tn(a) by deleting the first row and adding a last column,

∂ Tn(a) = (aj−k)n−1,n
j=1,k=0 =

⎛
⎜⎜⎜⎝

a1 a0 . . . a−(n−1)

a2 a1 . . . a−(n−2)

...
...

...
an−1 an−2 . . . a−1

⎞
⎟⎟⎟⎠ .

If Tn(a) is invertible, then the kernel Ker ∂ Tn(a) ⊂ Cn+1 has the dimension 2. Every basis
{u, v} of Ker∂ Tn(a) is called a fundamental system for Tn(a).
Theorem 7.1 If Tn(a) is invertible and u = (uj)n

j=0, v = (vj)n
j=0 constitute a fundamen-

tal system for Tn(a), then there exists a nonzero constant c such that

T−1
n (a) = c

⎛
⎜⎝

u0

...
. . .

un−1 . . . u0

⎞
⎟⎠

⎛
⎜⎝

vn . . . v1

. . .
...
vn

⎞
⎟⎠

−c

⎛
⎜⎝

v0

...
. . .

vn−1 . . . v0

⎞
⎟⎠

⎛
⎜⎝

un . . . u1

. . .
...
un

⎞
⎟⎠ . (17)

For example, if x and q are the solutions of

Tn(a)x = e0, Tn(a)q = (−a−n − a−n+1 . . . − a−1 )�, (18)

with a−n arbitrarily chosen, then u =
(

x
0

)
and v =

(
q
1

)
form obviously a fundamental system

for Tn(a). The corresponding representation (17) is Heinig’s formula. Here c = 1 (see [22]).
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Beginning with results by Ammar and Gader [1], inversion formulas that involve only
diagonal matrices and discrete Fourier transforms (DFT’s) have received increasing interest
since they speed up matrix-vector multiplication. We confine ourselves to one representation
of T−1

n (a) that allows matrix-vector multiplication with only 6 DFT’s plus O(n) operations.
Let ω0, . . . , ω2n−1 be the 2nth unit roots, ωj = exp(πij/n). Notice that ω0, ω2, . . . , ω2n−2

are the nth roots of 1 and that ω1, ω3, . . . , ω2n−1 are the nth roots of −1. Put

F+ =
1√
n

(
ωk

2j

)n−1

j,k=0
, F− =

1√
n

(
ωk

2j+1

)n−1

j,k=0
.

The matrix F+ is the usual DFT and F− = F+diag (ωj)n−1
j=0 . Both F+ and F− are unitary.

Finally, for b ∈ Cn, define diagonal matricesD±(b) the kth diagonal element of which is just
the kth component of the vector F±b.

Theorem 7.2 Let Tn(a) be invertible and let {u, v} be the fundamental system for Tn(a)
given by (18). Then

T−1
n (a) =

1
2

F ∗−
[
D−(u)F−F ∗+D+(v)−D−(v)F−F ∗+D+(u)

]
F+. (19)

Multiplication of an n × n triangular Toeplitz matrix by a vector can be realized with 2
DFT’s of length 2n, which is approximately 4 DFT’s of length n (see, e.g., [45]). Thus,
employing formulas (9) or (17) one can multiply T −1

n (a) by a vector with 12 DFT’s of length
n plus 8 DFT’s for preprocessing. Formula (19) does this job with 6 DFT’s plus 4 DFT’s for
preprocessing. It results that by using FFT the computational complexity for matrix-vector
multiplication by an inverse Toeplitz matrix isO(n log n), which is the reason for the attribute
“superfast”.
The proof of (19) given in [24] allows important generalizations and is based on the transla-

tion of representation (17) into polynomial language, which shows the structure of the inverses
of Toeplitz (and Hankel) matrices in a new light. It turns out that these are Bezoutians.

8 Bezoutians

The generating function of a matrix A = (a jk)n−1
j,k=0 or a vector b = (bj)n−1

j=0 is defined by

A(t, s) =
n−1∑

j,k=0

ajktjsk, b(t) =
n−1∑
j=0

bjt
j .

An n× n matrixB is called a Toeplitz Bezoutian if there exist vectors u, v ∈ Cn+1 such that
the generating function of B can be represented in the form

B(t, s) =
u(t)(Jn+1v)(s)− v(t)(Jn+1u)(s)

1− ts
,

where Jn is then×n counteridentity (that is, the matrix that turns (z1, . . . , zn) into (zn, . . . , z1)).
In that case B is denoted by Bez(u, v).
The concept of a Bezoutian was originally introduced by Hermite in order to solve root

location problems for polynomials (see, e.g., [40]). As first observed by Lander [43], actually
the following is true.

c© 2004 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
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Theorem 8.1 An invertible matrix is a Toeplitz Bezoutian if and only if it is the inverse of
an invertible Toeplitz matrix.

With the notion of the Toeplitz Bezoutian, formula (17) can simply be written in the form

T−1
n (a) = c Bez(u, v). (20)

Furthermore, representation (9) is nothing but (20) with c = 1/x 0, u =
(

x
0

)
, and v =

(
0

Jny

)
.

Analogously one can consider Hankel Bezoutians. They have t − s instead of 1 − ts in
the denominator and u(t)v(s) − v(t)u(s) in the numerator. A matrix of the form C n =
Tn(a) + Hn(b) is called a Toeplitz-plus-Hankel (T+H) matrix. Surprisingly, the structure of
the inverse of an invertible T+H matrix closely resembles a Bezoutian. An n × n matrix is
referred to as a T+H Bezoutian if there are eight vectors u i, vi ∈ Cn+2 (i = 1, 2, 3, 4) such
that

B(t, s) =
∑

ui(t)vi(s)
(t− s)(1− ts)

. (21)

The following result was established in [23].

Theorem 8.2 An invertible matrix is a T+H Bezoutian if and only if it is the inverse of an
invertible T+H matrix.

Now let Cn be an invertible T+H matrix. Then the generating function of C −1
n is of the

form (21), and the ui and vi can again be found as the solutions of T+H systems with special
right-hand sides or as bases of the kernels of appropriately modified T+H matrices.
Multiplying the matrix given by the right-hand side of (21) from the left and right by

DFT’s, we obtain a Cauchy-like matrix. This matrix can in turn also be represented in terms
of DFT’s. In the end, we get a matrix representation of (21) that involves (besides permutation
and diagonal matrices) only 6DFT’s plus 8DFT’s for preprocessing (see [24]). This improves
the so far best result [2], which has 7 DFT’s plus 10 DFT’s for preprocessing.
When working with real matrices, it is desirable to avoid the complex DFT and thus to

have representation formulas which contain discrete Hartley or sine and cosine transforms.
For more on this subject we refer to [25] and [26].

9 Fast solution of Toeplitz systems

Let Tn(a) be an invertible Toeplitz matrix. We now discuss the problem of solving the linear
system

Tn(a)f = b, (22)

with computational complexity O(n2) (recall that Gaussian elimination has the complexity
O(n3)). Here b = (bj)n−1

j=0 is an arbitrary right-hand side.
A first possibility is to use the results of Sections 3 and 7, which amounts to solving (22) by

the superfast matrix-vector multiplication f = T −1
n (a)b. The question we are left with is how

to compute the parameters in the representations for T −1
n (a). In particular, in order to exploit

representation (9) we have to solve the two systems Tn(a)x(n) = e0 and Tn(ã)y(n) = e0. Let
us instead of these two equations consider the pair Tn(a)x(n) = e0 and Tn(a)z(n) = en−1,
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where en−1 = (0, . . . , 0, 1) ∈ Cn. This change is unessential because JnTn(ã)Jn = Tn(a)
and hence y(n) = Jnz(n). Our first problem is to find x(n) and z(n) with at most O(n2)
multiplications.
Theorem 3.3 is based on the assumption that x(n)

0 �= 0. By Cramer’s rule, this is equivalent
to the invertibility of the matrix Tn−1(a). Our algorithm will be recursive, and therefore we
demand that Tn(a) be strongly nonsingular, which means that the leading principal submatri-
ces T1(a), T2(a), . . . , Tn(a) are all invertible. This is in particular the case if the convex hull
of the set a(T) does not contain the origin [10].
We consider the equations Tk(a)x(k) = e0 and Tk(a)z(k) = ek−1 for k = 1, . . . , n. We

start with the equations T1(a)x(1) = e0, T1(a)z(1) = e0, which are simply the equations

a0x
(1)
0 = 1, a0z

(1)
0 = 1. The following theorem shows how the columns x (k+1), z(k+1) can

be easily computed once the columns x(k), z(k) are available.

Theorem 9.1 Suppose Tn(a) is strongly nonsingular. Put

αk = ( ak ak−1 . . . a1 ) x(k), βk = ( a−1 a−2 . . . a−k ) z(k).

Then 1− αkβk �= 0 and

x(k+1) =
1

1− αkβk

[(
x(k)

0

)
− αk

(
0

z(k)

)]
, (23)

z(k+1) =
1

1− αkβk

[(
0

z(k)

)
− βk

(
x(k)

0

)]
, (24)

for all k = 1, 2, . . . , n− 1.
The recursion (23), (24) is known as the Levinson (or Levinson-Durbin) algorithm. The

computational complexity of the algorithm resulting from Theorem 9.1 can easily be shown
to be O(n2).
The Levinson recursion (23), (24) offers another possibility for solving (22) with compu-

tational complexity O(n2). This time we look for a direct recursion formula for the solu-
tions f (k) = (f (k)

j )k−1
j=0 of the truncated systems Tk(a)f (k) = b(k) (k = 1, 2, . . . , n), where

b(k) = (bj)k−1
j=0 .

Theorem 9.2 Let Tn(a) be strongly nonsingular. For k = 1, 2, . . . , n− 1, put

γk = ( ak ak−1 . . . a1 ) f (k).

Then

f (k+1) =
(

f (k)

0

)
+ ( bk − γk ) z(k+1)

with z(k+1) from (23), (24).

The Levinson recursion is directly related to a UL-factorization of the inverse T −1
n (a),

T−1
n (a) = .
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With this formula the solution f of system (22) can be computed by 2 matrix-vector multipli-
cations with triangular matrices .
A second kind of a recursive procedure is known as the Schur (or Schur-Barreis) algorithm.

It computes recurrently certain residual vectors and is related to an LU-factorization of the
matrix itself,

Tn(a) = .

The solution f is given after solving 2 triangular systems by back substitution.
Of course, one wants to remove the strong nonsingularity from the hypotheses of Theorems

9.1 and 9.2. This can indeed be done by appropriately modifying the algorithms. A modifi-
cation of the Levinson algorithm that works for Toeplitz matrices with arbitrary rank profile
was first provided by Heinig [19] (see also [22]). Fast algorithms for arbitrary invertible T+H
matrices were first designed in [21].
Starting with Delsarte and Genin [11], [12], one has developed algorithms that employ

not only the basic structure of the matrix (the Toeplitz structure, for instance) but also take
advantage of additional symmetries, such as the property of being Hermitian, symmetric,
skewsymmetric, centro-symmetric, or centro-skewsymmetric. Clearly, the main objective of
such algorithms is a further reduction of the computational amount (see e.g. [41, 44, 20, 27]).
First we observe that these symmetries are also reflected in the inversion formulas. As an

example let us consider the case of a centro-symmetric T+H matrix Cn, Cn = JnCnJn. The
inverse of Cn possesses a surprisingly nice structure. It can be represented as the sum of two
special T+H Bezoutians Bi (i = 1, 2) with the generating functions

Bi(t, s) =
ui(t)vi(s)− vi(t)ui(s)

(t− s)(1− ts)
,

where u1, v1 are symmetric and u2, v2 are skewsymmetric vectors given by the solution of 4
pure Toeplitz equations (see [29] and [30]).
Moreover, in this case the Levinson-type or Schur-type algorithms lead in a natural way to

other kinds of factorizations, called WZ- or ZW-factorizations,

C−1
n = , Cn = ,

respectively. The factors in these representations have symmetries which can be exploited
to reduce the number of operations. Such factorizations were also obtained for symmetric,
skewsymmetric or Hermitian Toeplitz matrices (see [13, 28, 34]). For more details concerning
the T+H case we refer to [30, 31].
Recently algorithms have been designed which do both, they work without any restrictions

and take advantage of additional symmetries of the matrices (see [32, 33, 35, 36]).
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[42] H. Landau, On Szegö’s eigenvalue distribution theorem and non-Hermitian kernels, J. Analyse

Math. 28, 335–357 (1975).
[43] F. I. Lander, The Bezoutian and the inversion of Hankel and Toeplitz matrices, Matem. Issled. 9,

69–87 (1974) [Russian].
[44] A. Melman, A two-step even-odd split Levinson algorithm for Toeplitz systems, Linear Algebra

Appl. 338, 219–237 (2001).
[45] V.Y. Pan, Structured Matrices and Polynomials (Birkhäuser, Boston and Springer, New York,

2001).
[46] L. Reichel and L. N. Trefethen, Eigenvalues and pseudo-eigenvalues of Toeplitz matrices, Linear

Algebra Appl. 162/164, 153–185 (1992).
[47] S. M. Rump, Structured perturbations, Part I: Normwise distances, SIAM J. Matrix Anal. Appl.

25, 1–30 (2003).
[48] P. Schmidt and F. Spitzer, The Toeplitz matrices of an arbitrary Laurent polynomial, Math. Scand.

8, 15–38 (1960).
[49] L. N. Trefethen and M. Embree, Spectra and Pseudospectra: The Behavior of Nonnormal Matrices

and Operators (Princeton University Press, to appear).
[50] H.Widom, Asymptotic behavior of block Toeplitz matrices and determinants II, Advances inMath.

21, 1–29 (1976).

c© 2004 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim




