
Computer Standards & Interfaces 35 (2013) 596–604

Contents lists available at SciVerse ScienceDirect

Computer Standards & Interfaces

j ourna l homepage: www.e lsev ie r .com/ locate /cs i
Performance evaluation of the parallel processing producer–distributor–consumer
network architecture

Grzegorz Polaków ⁎, Mieczyslaw Metzger
Department of Automatic Control, Electronics and Computer Science, Silesian University of Technology, ul. Akademicka 16, 44-100 Gliwice, Poland
⁎ Corresponding author. Tel.: +48 32 237 2354; fax:
E-mail addresses: grzegorz.polakow@polsl.pl (G. Pol

mieczyslaw.metzger@polsl.pl (M. Metzger).

0920-5489/$ – see front matter © 2013 Elsevier B.V. All
http://dx.doi.org/10.1016/j.csi.2013.04.004
a b s t r a c t
a r t i c l e i n f o
Article history:
Received 4 August 2009
Received in revised form 29 January 2013
Accepted 12 April 2013
Available online 23 April 2013

Keywords:
Real-time Ethernet
switched Ethernet
producer–distributor–consumer
process automation
The CSMA/CD access method is no longer invoked in switched, full-duplex Ethernet, but the industrial proto-
cols still take the presence of the method into account. The parallel processing producer–distributor–
consumer network architecture (ppPDC) was designed specifically to actively utilize the frame queuing.
The network nodes process frames in parallel, which shortens the time needed to perform a cycle of commu-
nication, especially in cases when frame processing times within the nodes are not uniform. The experiments
show that the achievable cycle times of the ppPDC architecture are an order of magnitude shorter than in the
well-known sequential PDC protocol.

© 2013 Elsevier B.V. All rights reserved.
1. Introduction

In teaching and research on control systems there often is a need
to setup an ad-hoc computer network for process data exchange. In
this application domain, particularly valuable features of the network
are flexibility, compatibility with a broad base of hardware and ease
of configuration. These needs arise from the very dynamic environ-
ments of research and teaching, where tasks, instrumentation and
experimenters change frequently. Quite similar application domain
involving distributed application with multiple participants was con-
sidered for example in [1].

Retail industrial networks and protocols are not suitable in the
case. They are designed in such a way that they require detailed
time consuming configuration process, after which they can operate
unattended reliably over long periods of time. In the considered
domain a network protocol is required, configuration of which is
quick and easy, while long-term reliability is not crucial.

An obvious solution is to use communication channels based on
the well-known TCP or UDP to transmit the data in the binary form.
The situation, however, is not simple, when there are many commu-
nication channels required between multiple devices. This is exactly
the situation in the described application domain involving activities
of many students and researchers with differing tasks and agendas.
However, the task can be accomplished by using a data exchange
architecture designed for retail industrial networks (e.g. producer–
+48 32 237 2127.
aków),

rights reserved.
distributor–consumer, producer–consumer, master–slave, client–server)
in order to organize communicational channels and provide real-time in
an off-the-shelf Ethernet [2] network.

An interesting description of historical background and resulting
solutions supporting RT in Ethernet is presented by Moraes et al. in
[3]; an example of performance analysis is available in [4]. For a cer-
tain period of time, the situation in the industrial Ethernet-based net-
works market recalled the struggle for dominance in the fieldbus
market [5,6]. The products resulting from the race included EtherCAT,
Ethernet Powerlink, Foundation Fieldbus High Speed, Modbus/TCP,
Profinet, and Ethernet/IP. Currently, most of industrial Ethernet defi-
nitions are included in the IEC61784-2 standard (see [7] for a brief
survey) as so called communication profiles. Typical approaches to
industrial Ethernet include encapsulation of pre-existing industrial
protocols in the Ethernet frames (as in Ethernet/IP), use of TDMA
method to provide real-time access (Ethernet Powerlink), and some-
times even breaking compatibility with IEEE802.3 MAC layer (as in
the RT Class 2 traffic of Profinet).

Parallel, further development of Ethernet market rendered the
CSMA/CD obsolete, due to the growing popularity of the switched
Ethernet (IEEE802.1D standard [8]). Huge potential of the switched
Ethernet in industrial applications has been widely recognized, and
multiple studies of performance and constraints were conducted
(for examples see [9–11]). All these publications emphasize the
improved performance and reliability of the switched networks and
focus on determining the dependence of network efficiency on num-
ber of nodes and switching parameters. However, literature does not
indicate that switching technology enables new possibilities in the
field of communicational protocols and data distribution schemes
due to the fact, that Ethernet switches are actually fast computers

http://dx.doi.org/10.1016/j.csi.2013.04.004
mailto:grzegorz.polakow@polsl.pl
mailto:mieczyslaw.metzger@polsl.pl
http://dx.doi.org/10.1016/j.csi.2013.04.004
http://www.sciencedirect.com/science/journal/09205489


597G. Polaków, M. Metzger / Computer Standards & Interfaces 35 (2013) 596–604
built to fulfill one task: reliable queuing and delivering Ethernet
frames. There are no proposals for the use of this low-level queuing
functionality in order to relieve the network nodes of some of
the communication tasks. On the contrary, there are still protocols
in use, in which the use of switching technology disrupts the frame
scheduling and is not recommended [12]. The parallel processing
producer–distributor–consumer (ppPDC) scheduling model proposed
in this paper attempts to fill this gap and create a newnetwork architec-
ture, which is in contrast to the already existing ones (e.g. producer–
distributor–consumer, producer–consumer,master–slave, client–server)
and is designed to actively exploit the capabilities of the underlying
switched network.

The ppPDCmodel is based on thewell-known producer–distributor–
consumer network architecture (PDC), which is used in industrial
communication networks to provide the desired characteristics of cyclic
data exchanges in process control systems. The use of the PDC architec-
ture in real life will be presented here with the FIP protocol. The FIP
protocol (field instrumentation protocol) was developed in the early
1980s. In 1996 it was included, with minor modifications under the
WorldFIP name, in the EN50170 standard, among the P-NET andProfibus
networks. This European standard, in turn,was incorporated into in 2000
into the IEC61158 international standard [13] as Type 7. This description
of the WorldFIP protocol is referred to by the IEC61784 standard [14] as
the CPF-5 profile [13].

The PDC network architecture is based on frames broadcasting.
Contents of messages (e.g. numerical values of variables in case of
process control) produced by the network nodes (i.e. producers) are
broadcasted over the network in response to specific requests broad-
casted by the designated privileged network node, referred to as
a distributor. Nodes of network waiting for a particular unit of data
(i.e. consumers) listen to the network traffic for the occurrence
of two broadcasted messages: request issued by the distributor
(ID_DAT frame) containing identifier of the data unit, and the answer
sent by the producer (RP_DAT frame) containing the requested value
(Fig. 1a). The distributor node broadcasts the requests for the vari-
ables according to a schedule, pre-planned at the stage of network
configuration. The schedule is designed according to specific rules,
resulting from requirements of a given control system (e.g. required
sampling periods of the physical signals), and physical network
Fig. 1. Comparison of the data scheduling in (a) FIP (PDC), (b) Eth
capabilities (e.g. transmission rate). The communication is performed
in sequences, where the main cycle of the schedule is called a
macrocycle, which in order consists of smaller microcycles. For a
more detailed description of the FIP protocol please refer to [13,14].

The PDC network architecture is designed to be used in a simple
network built of a single shared transmission medium. Therefore
the PDC scheduling performs two roles: on one hand it serves as a
medium access control mechanism, which prevents collisions from
occurring, and on the other hand it serves as a method to access a
database distributed in the producer nodes in hard real-time. In
case of modern switched networks, built otherwise than with shared
medium, each of the network nodes has its own collision domain.
Therefore, the functionality of the medium access control is superflu-
ous and may be dropped in order to improve the performance of the
database mechanism.

The proposed modification of the PDC architecture is designed to
work in a switched network, in which there is no need for an addi-
tional medium access control functionality at the application level.
Moreover, presence of the switching queue allows for existence of
multiple frames sent destined to the same network node at the
same moment. As long as the volume of frames does not exceed
the switch queue capacity, frames will be reliably queued and deliv-
ered. Therefore, it is reasonable to depart from the sequential model
of communication employed in the traditional bus topology. The
proposed network architecture stresses the need of time synchroni-
zation of the microcycles, but it allows for the nodes to work in
parallel.

The modified architecture is the result of on-going research; the
first draft of the design was described in [15]. The original idea was
to develop a network protocol in order to support time-determined
and distributed simulation of dynamical systems with the LabVIEW
software development system. The architecture proved to be useful,
and during the last years it was employed in a few applications, for
example as a software agent communication framework [16].

A single cycle of communication according to the modified sched-
ule consists of the following stages:

• The distributor broadcasts a message (BROAD frame) containing
consolidated data units received from the producers in a previous
ernet Powerlink, (c) FTT Ethernet, and (d) proposed ppPDC.



598 G. Polaków, M. Metzger / Computer Standards & Interfaces 35 (2013) 596–604
cycle. This message is received by the consumers, and at the same
time, it is a call for the producers to send new data unit to the
distributor.

• The producers send new data units to the distributor using the
typical point-to-point messages (RP_DAT frames).

Due to the parallelism present in the proposed communication
scheduling (all the producers are requested to send the messages at
the same moment, thus their distributed threads start computing in
parallel) the proposed network architecture was designated as paral-
lel processing producer–distributor–consumer (ppPDC). In Fig. 1 a
comparison is presented between the proposed ppPDC, classical
PDC, and two most similar industrial Ethernet implementations, i.e.
Ethernet Powerlink, and FTT Ethernet.

The main benefit of the ppPDC approach is the previously men-
tioned parallelization of the producer processing threads distributed
among the network nodes. The processing times are the higher the
more complicated protocol stacks of the network nodes are, and
usually the processing times dominate significantly over the physical
transmissions times [9,10,17]. Therefore, it is expected that the
parallelization of the processing times will significantly shorten the
period of time needed to perform all transmissions scheduled for a
cycle. This hypothesis is evaluated theoretically and proved experi-
mentally in the following sections of the paper. In a result, the
ppPDC is proved to be a very efficient protocol, easy to implement,
and provided a performance comparable to retail industrial protocols.
Moreover, the only requirement of the ppPDC is the Ethernet and
UDP support, which makes it compatible with nearly all the instru-
mentation used in the modern automation. Therefore it is a perfect
tool for use in the application domain of multiuser dynamical
systems, but it could also replace currently used cyclical data traffic
mechanisms in some of the retail Ethernet-based industrial protocols
to improve their performance.

2. Materials and methods

The experimental setup consisted of four industrial real-time PLCs
connected to a PC. Three of the controllers were National Instruments
cRIO-9076, and one was cRIO-9074; the PC was Lenovo Thinkpad R61
laptop. The evaluated Ethernet network was built using the cat. 5
cables, which connected the devices with the unmanaged National
Instruments UES-3880 switch. Network interfaces were configured
to auto-negotiate; resulting link parameters were full-duplex mode
at the speed of 100 Mbit/s. The schematic diagram of the experimen-
tal setup is shown in Fig. 2.

2.1. Description of the developed and tested protocols

For the purpose of this performance evaluation, computer soft-
ware was developed with the LabVIEW 2011, which implemented
Fig. 2. The experimental setup for performance evaluation.
simplified protocols working according to PDC and ppPDC architec-
tures. Standard LabVIEW function blocks for theUDP/IP communication
were used, which were extended with the custom application-level
protocols. Suitability of the UDP/IP protocol for encapsulation of indus-
trial data is discussed for example by Vitturi in [18], while working im-
plementation of FIP PDC model over TCP/UDP/IP is investigated in [19].
The protocol design assumes the following:

• IDs of exchanged variables are numeric and have a size of 8 bits —

this means that the maximum number of variables exchanged via
the protocols is limited to 256. The number is big enough for the
performance evaluation, although in the industrial applications
the bit size of numeric ID would certainly need to be increased.

• All variables are of the same type with a length of 16 bits — this
makes processing of frames by the network nodes simpler by min-
imizing the time required for the processing and eliminates the
need for otherwise necessary type/length fields.

• Microcycles are identical to macrocycles — during the performance
evaluation stage, there is no need for the specific scheduling of the
specific variables, because the experiments determine the perfor-
mance of the microcycles only, depending on the contained number
of variables.

Transmitted data are formatted into frames, the format of which re-
sults from the assumptions stated above. In the cyclic communication of
the PDC network architecture there are two types of frames: the frames
(designated as ID_DAT according to the FIP protocol) containing identi-
fiers of variables, and the frames (RP_DAT) containing values of vari-
ables. For the purpose of this performance evaluation, formats of the
frames have been designed to be as simple as possible, with the fixed
number of fields and their sizes (Table 1). Both types of frames, format-
ted according to the specification, are encapsulated in multicast UDP
messages. In the ppPDC network architecture there are also two types
of frames (Table 2): the frames containing the set of all values of vari-
ables (designated as BROAD), and the frames sent from producers to a
distributor containing a single value of a variable (designation RP_DAT
borrowed from the PDC architecture). The length of a BROAD frame
depends on the number of variables exchanged during the microcycle.
For a microcycle containing only one variable, the length is three octets,
for the largest possible microcycle, i.e. the one containing 256 variables,
the length is 513 octets, which still does not exceed the maximal
allowed payload for UDP packets in Ethernet networks. The BROAD
frames are encapsulated in multicast UDP messages, and the RP_DAT
are sent as point-to-point ones.

2.2. The method of time measurements

The studies conducted were intended to determine the minimal
achievable duration of microcycle in the function of used network
architecture, number of variables and number of network nodes. In
order to measure the duration of a microcycle it is necessary to deter-
mine exact moments in time, in which specific frames arrive to their
destinations. To be able to compare these measured moments
between various network nodes, it becomes necessary to develop
an absolute method of synchronizing the nodes, in reference to
which a duration of data exchange may be measured. Typical
approaches to this task include precise synchronization of computers
internal clocks, or introduction of the additional reference channel of
Table 1
The formats of the frames used during the PDC evaluation.

Frame ID_DAT RP_DAT

Content (hex) 01 xx 02 xx xx
Size (octets) 1 1 1 2
Description Frame

identifier
Variable
identifier

Frame
identifier

Value of
variable

image of Fig.�2


Table 2
The formats of the frames used during the ppPDC evaluation.

Frame BROAD RP_DAT

Content (hex) 01 xx xx xx xx … xx xx 02 xx xx xx
Size (octets) 1 2 2 … 2 1 1 2
Description Frame identifier Value of 1st variable Value of 2nd variable … Value of nth variable Frame identifier Variable identifier Value of variable

Fig. 3. Timing diagram of a single exchange according to the PDC model.

599G. Polaków, M. Metzger / Computer Standards & Interfaces 35 (2013) 596–604
communication (as in [12]). Problems of the software execution mea-
surement are described for example in [20]. In the considered case of
PDC and ppPDC network architectures, the task is easier due to the
cyclic nature of protocols and due to the presence of privileged
network supernode. All the data exchanges in the network are
performed in response to requests sent by the distributor node. The
requests are usually synchronized to a predefined scheduling of vari-
ables. Removing the synchronization results in total occupation of the
media, since the microcycles are performed one after another, as
quick as physically possible. In such situation, it is enough to observe
intervals between starts of successive microcycles. Each of the inter-
vals is the duration of the microcycle. This method was used in the
described experiments.

2.3. The experiments planned

The purpose of the experiments was to verify the hypothesis on
better performance of the ppPDC architecture when compared to
the classical PDC architecture. In order to fulfill this task, series
of tests were conducted in which durations of microcycles were
measured for the various numbers of variables in the system. The
durations of microcycles containing 4, 8, 16, 32, 64, 128, and 256
variables were measured. In all the experiments the producers of
the variables were equally distributed among all the PLCs, and the
PC performed the role of the distributor.

It must be noted that, the proposed method of performance eval-
uation, takes the performance of the whole of the operating systems
into account. The application layer was chosen for implementation, be-
cause this level of implementation was already verified in research and
experimentation conducted earlier by authors. Due to the use of UDP/IP
protocols it proved to be compatible with a wide range of software and
hardware environments [15,16,21]. Obviously, implementation of the
ppPDC at the MAC layer level should also be considered; complexity
of such the task made it unattainable for now, but it is a task for the fu-
ture. Still, the performance achieved by ppPDC even at the software
level is comparable with the protocols based on a modified MAC.

3. Theory and calculations

The main feature of the proposed ppPDC network architecture is
parallel processing of network messages in connected nodes which
is the main modification when compared to the PDC architecture
(see Fig. 1). As the literature states [9,10,17], the dominant time com-
ponents of the communication process are the duration of the
message processing in the network protocol stack of an operating
system and the duration of message interpretation in applications. It
would appear that parallelization of these processing times should
exercise a positive influence on durations of microcycles. To deter-
mine the scale of the impact, a detailed analysis of timings of all the
stages of message propagation has to be performed, for both network
architectures. The following analysis is done with the optimistic as-
sumption, that the network operates correctly with no transmission
errors, and that there are no malicious network nodes. Issues of pes-
simistic cases, e.g. when microcycle is not realizable within given
time constraints or when the network performance is reduced due
to the errors in the communication links are complex and go beyond
the intended scope of this work. Additionally, the analysis below
assumes that both the architectures are based on the Ethernet, as
that was the case which was experimentally evaluated. Due to this
assumption, several other assumptions were made, which are valid
only for the case. For other media and other physical layers the calcu-
lations will be very different.

3.1. Analysis of cyclic communication in the PDC architecture

A sequence of transmissions which forms a microcycle in the PDC
architecture consist of an atomic data exchange repeated several
times. The atomic exchange, in which a value of a variable is transmit-
ted to a consumer, consists of broadcasting the identifier of the vari-
able by the distributor, followed by broadcasting the value of the
variable by the producer. A detailed timing analysis of such an atomic
operation has to be performed at first, which can be later used to
assess whole microcycle timings.

The diagram shown in Fig. 3 illustrates sequential stages of a var-
iable exchange. It should be noted that, apart from the distributor and
the involved producer, there are also other nodes (consumers and
producers) connected to the shared medium. However, their role in
the data exchange is strictly passive, as they only monitor the medi-
um activity, so they are not included in Fig. 3. The duration of the
atomic variable exchange consists of the following elements:

• Tprepd – preparation time of the ID_DAT message containing the
identifier of the variable. It is the time, it takes for the distributor
application, to construct the message and pass it down through
the networking protocol stack of the underlying operating system.
The message eventually reaches the network adapter, where it is
formed into the network frame injected into the physical medium.

• Ttr – propagation time of the ID_DAT frame on the network.
• Tapp – processing time at the producer node. It consists of the
postprocessing time of the ID_DAT frame and preprocessing time
of the RP_DAT message. The tasks involved include passing the
ID_DAT frame up through the network protocol stack, interpreting

image of Fig.�3


600 G. Polaków, M. Metzger / Computer Standards & Interfaces 35 (2013) 596–604
the frame and formulating the answer by the producer application,
passing the answer through the network protocol stack and format-
ting the RP_DAT network frame.

• Ttr – propagation time of the RP_DAT frame on the network medi-
um. It is assumed that the time it takes for the RP_DAT frame to
propagate is the same as the propagation time of the ID_DAT
frame, due to the same physical distance of propagation and nearly
no difference in frame length (in case of Ethernet media, small
amounts of data are padded to fit the minimal payload size
anyway). Due to this assumption, both the propagation times of
the ID_DAT and RP_DAT frames are designated the same as Ttr.

• Trecd – receiving time of the RP_DAT frame by the distributor node,
including the postprocessing time of the frame by the network
protocol stack and the time it takes for the distributor application
to interpret the message.

In sum, the total time of the atomic exchange of variable is
expressed as TcPDC = Tprepd + Tapp + Trecd + 2Ttr.

Processing times of the network stacks and applications are
non-determinable and have to be treated as variables of unknown
values. The propagation times, on the other hand, are easily and rela-
tively precisely determinable. The frame propagation time on the
Ethernet link involving a single switching queue consists of stages
illustrated in Fig. 4.

The following stages of the frame propagation in a network can be
distinguished:

• Transmitting the frame in the link between the sender and the
switch, which takes Tprop + Tdur, where Tprop is the propagation
time of the frame on the medium, depending on the length of the
medium; Tdur is the duration time of frame transmission, which de-
pends on the length of the frame and the bitrate of the transmission.

• Processing of the frame in the switching hardware, which takes
Tmux. During this time, the switch analyzes the destination address
of the frame and decides to which port (or multiple ports – in
case of multicasting and broadcasting) the frame should be deliv-
ered, then the frame is forwarded.

• Transmitting the frame in the link between the switch and the
receiving node, which takes Tprop + Tdur. The same designation of
the times as in the first stage is the result of the assumption
taken, that all the physical links between the switch and the
nodes have the same length. The assumption is generally valid, as
in real life, the lengths of links are usually similar.
Fig. 4. Timing diagram of an Ethernet frame transmission through the switched link.
In sum, the transmission time of the frame through the switched
link may be expressed as Ttr = 2(Tprop + Tdur) + Tmux. Values of the
components of the expression can be approximated with some typi-
cal values found in the literature, or resulting from the standard [2].
Assuming that the payload of the ID_DAT and RP_DAT frames is rela-
tively small (below 46 octets), Ethernet frames containing the mes-
sages will be 576 bits long (minimum size of an Ethernet frame,
including a preamble). For the bitrate of the network equal to
100 Mbit/s, it results in Tdur equal to 5.76 μs. The propagation time
Tprop can be assumed to be about 0.1 μs for the wires 20–30 m long
[9]. The reaction time Tmux of a switch is characteristic to the specific
manufacturer and model of the switch (or even to the specific unit),
but Loeser and Haertig [10] provided a comprehensive set of values
of the parameter for several cases. The representative value of the
parameter for popular 100 Mbit/s Ethernet switches can be assumed
to be about 45 μs. In conclusion, the frame transmission time Ttr may
be approximated with the value of about 55–60 μs; for the following
calculations, the worst case value of 60 μs is used.

The microcycle performed according to the PDC model in the
Ethernet network is a simple sequence of atomic variable exchanges.
The duration of the cycle will therefore be equal to the variable
exchange time Tc multiplied by n, where n is the number of variables
exchanged during the cycle:

Tcycle
PDC ¼ n Tprepd þ Tapp þ Trecd þ 2Ttr

� �
: ð1Þ

Taking all the expressions and values found earlier, the same time
may be expressed as TcyclePDC = n(Tap1 + 120 μs), where Tap1 is the sum
of all undeterminable processing times within the applications and
operating systems: Tap1 = Tprepd + Tapp + Trecd (assuming that the
processing times Tapp are equal in all of the network nodes). It is
worth of noticing that, no matter what the ratio of the Tap1 to the Ttr
is, the Tcycle

PDC is the linear function of the number of variables.

3.2. The analysis of cyclic communication timings in the ppPDC architecture

In Fig. 5 stages of a microcycle performed according to the ppPDC
architecture and their durations are shown.

The ppPDC schedule involves the phenomena far more complicat-
ed than the PDC architecture, due to the active exploitation of the
switching queue. Total duration of a microcycle consists of the follow-
ing components:

• Tprepd – preparation time of the content of the BROAD frame. The
preparation involves the distributor application formulating the con-
tent of the frame and passing the message through the networking
protocol stack of the operating system, which results in constructing
the frame and injecting it into the physical media.

• Ttr2 – propagation time of the BROAD frame on the network. This
time is similar to the Ttr time of the PDC architecture, but the length
of the message transmitted differs, so the Tdur component changes.
It has to be assumed that the payload of the BROAD message is rela-
tively large, so the safe assumption regarding the Ethernet frame
containing it, will be that the frame has maximal allowed length,
i.e. 1526 octets (including the preamble). In effect it may be conclud-
ed that Ttr2 = 2(Tprop + Tdur2) + Tmux, where Tdur2 is the time needed
to propagate the 1526 octets over the medium, which equals to
122.08 μs for 100 Mbit/s rate. In effect, the value of Ttr2may be consid-
ered to be about 290 μs.

• Tapp – processing time at the producer node. It consists of processing
time of the BROAD frame and preparation time of the RP_DAT mes-
sage, including the processing times of the messages in the network-
ing protocol stack and computing time of the producer application.

• Tque – delivering time of the RP_DAT frames. The delivery of the
RP_DAT frames consists of the physical transmission of the frame
between the producer and the network switch, processing of the



Fig. 5. Timing diagram of a microcycle according to the ppPDC model.

Fig. 6. Timing diagram of the RP_DAT frames queuing in the ppPDC model.

601G. Polaków, M. Metzger / Computer Standards & Interfaces 35 (2013) 596–604
frame within the switching hardware (forwarding, queuing), physical
transmission between the switching unit and the distributor node,
and processing of the frame at the distributor node.

It should be noted that some of the symbols, which were used
during the analysis of the PDC architecture, are used again to denote
timings of the ppPDC model. The repetition is intentional, because
some of the timings in both the architectures correspond with each
other, and their durations will be the same, regardless of the architec-
ture exploited. The same denotations of these similar durations will
allow to compare the architecture performances later:

• Tprepd – preparation times of the BROAD and ID_DAT frames are
comparable, because both the processes take place in the same net-
work node, i.e. the distributor. The only difference between both
the cases is the content of the messages being prepared, but still,
the varying contents have to be processed by the same networking
protocol stack and the same hardware network adapter of the same
physical network node.

• Tapp – processing times at the producer applications do not change,
because the main principle of producer nodes operation stays the
same. The nodes receive the request (either the ID_DAT or the
BROAD frame), which has to be processed, and the answer has to
prepared, within the same hardware bounds (the protocol stacks
and the hardware are the same).

The queuing and forwarding time is determined by many phe-
nomena and requires separate detailed explanation. The sequence
of events involved in the process is shown in Fig. 6.

To simplify the analysis of phenomena constituting this stage of
the microcycle, it is assumed that the processing times Tapp for all
the producing nodes are the same. This assumption does not affect
the accuracy of the considerations, because these times are in fact
nearly the same due to the symmetry of the star-shaped network. If
the processing times vary significantly, for example due to highly
varying processing power of the nodes, it should be assumed that
the time used for the analysis is the largest one. While the consider-
ations would be pessimistic in this case, the results would still be
valid. The additional assumption is that the wires connecting all the
nodes to the switching unit are of the same length, so the propagation
times on the different network segments are the same.

The following stages of the RP_DAT frames collecting by the
distributor can be distinguished:

• The producer nodes transmit the formulated RP_DAT frames over
the physical links. An assumption that all the RP_DAT frames
reach the switching unit at the same time results from the previous
assumption that the propagation times on the all links are equal.
Nevertheless, the following analysis is also valid for the cases
when frames do not reach the network switch at the samemoment,
but are delivered fast enough to not allow the switch's queue to
empty, i.e. for cases when intervals between successive frames
reaching the switch do not exceed Tprop + Tdur + min(Tmux, Tgap).

• The RP_DAT frames (or the first of the frames, if they are not deliv-
ered simultaneously) propagate on the links between the producers
and the network switch. The process takes Tprop + Tdur.

• The switching unit processes the first received frame, determines
the destination port and forwards the frame. The duration of this
stage is designated as Tmux.

• The first forwarded frame propagates on the link between the
switch and the distributor node, which takes Tprop + Tdur.

• When the distributor node begins to process the received frame
(the processing time denoted as T1recd), the switch sends another
queued frame to the distributor (after waiting for Tgap, which is
the minimal Ethernet inter frame gap).

The whole process finishes after the distributor node processes last
received RP_DAT frame. In summary Tque = 2(Tprop + Tdur) + Tmux +
(n − 1) max((Tgap + Tprop + Tdur), Trecd) + Trecd. The expression can
be significantly simplified when the arguments of the maximum
function are evaluated. The Tgap value is defined by the Ethernet
standard and equals to 0.96 μs for the 100 Mbit/s rate, therefore
the Tgap + Tprop + Tdur expression has value of about 7 μs. The value
of the second argument of themaximum function, i.e. Trecd, is unknown,

image of Fig.�5


602 G. Polaków, M. Metzger / Computer Standards & Interfaces 35 (2013) 596–604
since it is the result of many processes taking place in the network pro-
tocol stack of the operating system of the distributor node. However,
taking into account that the processing times in network node software
are much greater than the physical propagation times [17], it may be
safely assumed that the Trecd processing time is greater than the
Tgap + Tprop + Tdur expression. The validity of the assumption is veri-
fied by the experiments conducted, which showed that a duration of a
microcycle was always at least two orders of magnitude greater than
the mentioned 7 μs. Taking the assumption into account, the Tque may
be reformulated as Tque = 2(Tprop + Tdur) + Tmux + nTrecd.

Using the value of Tque, total duration of a microcycle in the ppPDC
architecture is expressed as TcycleppPDC = Tprepd + Ttr2 + Tapp + 2(Tprop +
Tdur) + Tmux + nTrecd, which can be rewritten as

Tcycle
ppPDC ¼ Tprepd þ Ttr þ Ttr2 þ Tapp þ nTrecd: ð2Þ

Taking all the expressions and values found earlier, the same time
may be expressed as Tcycle

ppPDC = Tap2 + 350 μs + nTrecd, where Tap2 is
the sum of undeterminable processing times: Tap2 = Tprepd + Tapp. It
is worth of noticing that the Tcycle

ppPDC is the linear function of the number
of variables with the non-zero constant term.

To compare the magnitudes of the microcycle duration times
obtained in the two communication scenarios, expression (1) and
expression (2) should be compared. By subtracting (2) from (1) the
following is obtained:

Tcycle
PDC

–Tcycle
ppPDC ¼ n–1ð Þ Tprepd þ Tapp

� �
þ 2n–1ð ÞTtr–Ttr2:

This expression defines the microcycle time gained by replacing
the PDC architecture with the ppPDC one. It is important to note,
that the gain consists in large part of the undeterminable and rela-
tively large processing times. The expression is also a linear function,
so the more variables are contained in the microcycle, the more time
is gained.

In case of a microcycle containing only one variable, the gain
equals to Ttr − Ttr2. Since it was previously shown that Ttr2 is greater
than Ttr, it could be inferred that for the one variable microcycle the
ppPDC architecture is less efficient than the PDC. This is however an
incorrect inference, since it is simply the effect of the safe assumption
taken when evaluating the values of Tdur and Tdur2 (which are the
components of Ttr and Ttr2 respectively). In fact, in case of the one var-
iable microcycle, due to small length of the BROAD frame, the Tdur2
will be equal to the Tdur, so both the architectures are equally efficient
in the case. In all the other cases, the ppPDC microcycles are shorter
than the respective PDC ones. This conclusion was verified by the
conducted experiments.

4. Results/Discussion

A result of a single experiment in which durations of consecutive
microcycles were measured is a set of samples, which can be
presented as a simple graph. An example of such graph is provided
in Fig. 7, which shows the results of the single experiment for the
ppPDC architecture and microcycles containing eight variables.

Attention should be paid to the very specific distribution of the
samples, as they tend to group into clusters. It is clear that the distri-
bution of the data is multimodal. Multiple modes are explained by
the very complex nature of the processes, which are investigated. A
duration of a microcycle depends on many factors, as it involves
processing the messages by complex multilayered protocol stacks of
operating systems. NI cRIO runs VxWorks operating system, which
is a real-time OS, known in automation and robotics. The jitter is
most likely caused by the work mode of network adapters of cRIOs
(i.e. interrupt mode – in contrast to the strict real-time polled
mode), and the OS of the computer (i.e. MS Windows 7) used as the
distributor node. Therefore, the microcycle times contains, among
others, the execution times of applications, services, and cores of op-
erating systems. Since the main property of the ppPDC architecture is
the minimization of the impact of these times on the microcycle time,
they had to be taken into account in the performance evaluation.

Anyhow, the resulting distributions of microcycle times have to be
characterized by some measures, which would allow to compare the
network performances in various cases. Due to multimodality of the
distributions, the most popular measures, such as arithmetic mean,
standard deviation, maximum, and minimum, are not representative
due to their sensitiveness to the multiple modes, skewness of distri-
butions, and sample size. Some robust measures were chosen to
represent the characteristics of data gathered, i.e.: first decile, first
quartile, median, third quartile, and ninth decile. The collection of
the measures calculated is presented in Table 3. The arithmetic
mean is also provided in the table for comparison with the median.

In Fig. 8 the deciles of the gathered data are illustrated, in function
of the number of variables exchanged in the microcycle. In effect, the
figure shows the expected duration time of the microcycle with the
probability of 80%. Similar presentation of the max–min range
would be pointless due to the susceptibility of the range to the sample
size. Consequently, Fig. 9 presents the medians of the gathered data
as functions of the number of variables. Both the figures represent
the robust measures of location and dispersion of distributions of
microcycle times.

Charts in Fig. 9 can be fitted with the method of the least squares.
The resulting functions are defined by the following equations
(values in seconds):

Tfit
PDC ¼ 0:0009n−0:0007;

Tfit
ppPDC ¼ 0:00006nþ 0:0009:

The negative value of one of the parameters is a side effect of
fitting the function to the specific realization of the random variable.
It is hard to determine the values of variables of Eqs. (1) and (2) using
the fitted parameters, but it is worthwhile to compare the two
obtained slope factors. As it is seen, in case of the proposed ppPDC ar-
chitecture, the value of slope constant is about an order of magnitude
smaller than in the PDC model. It is the confirmation of the hypothe-
sis on the better performance of the modified ppPDC scheduling
when compared to the classical PDC one.

5. Conclusions

Although the performance of the ppPDC is evidently better than
PDC, there is a price for the increased performance of the ppPDC
architecture, which is the limit on the amount of data carried by a
BROAD frame, resulting from the maximum allowable payload of an
Ethernet frame. Using the previously presented simple formats of
the frames (Table 2), the maximum amount of the process data
possible to be carried by a BROAD frame was derived. Using these
quantitative limits, an exact maximum number of variables can be de-
termined, assuming that the size of a variable is known. For example,
assuming that all the variables are of 8-bit type, there can be maxi-
mally 1472 of them in a microcycle. The limits determined for the
other sizes of the variables are shown in Table 4. When the limits
are reached, it should be considered to divide the long microcycle
into few shorter consecutive microcycles. The jumbo frame function-
ality of modern Ethernet networks could also provide solution to the
problem.

Another significant disadvantage of the model described is the
delay between the data production by producers and the delivery to
consumers. In the presented case of application-level implementa-
tion, the delay in ppPDC model is more than an order of magnitude
smaller than the duration of a whole microcycle in PDC model, so it



Fig. 7. The example of data gathered during the experimentation.

603G. Polaków, M. Metzger / Computer Standards & Interfaces 35 (2013) 596–604
is negligible. However, in case of low-level ppPDC implementation for
quick systems, the delay could be significant, and its impact should be
carefully assessed.

There are also other limitations resulting from the maximum
capacity of a network link [9], which result in the relationship
between the demanded period of variable exchanges and the possible
maximum number of the variables. However, because of the high
bit-rate of Ethernet (100 Mbit/s in the presented case) these imposed
time limits are not significant, since the most important restrictions
are imposed by the layer of applications and operating system.
These latter limits are not possible to be determined analytically
due to the non-determinism introduced by the layer. The limits can
be assessed only by using the results of the performance evaluation
presented in this paper.

An important aspect of the implementation of the ppPDC architec-
ture in place of the PDC is the change of a network topology. The PDC
architecture assumes that a network is based on a shared medium, so
the PDC is by definition intended for the networks employing the bus
topology. The ppPDC architecture assumes that the medium is divid-
ed into separate zones of collisions, which are connected to the frame
Table 3
Statistical measures (in milliseconds) of observed microcycle durations in both models.

Number of variables

4 8 16 32 64 128 256
ppPDC Arith. mean 1.12 1.30 1.84 2.85 4.75 8.55 16.20

1st decile 0.82 1.20 1.67 2.63 4.52 8.27 15.94
1st quartile 0.91 1.23 1.70 2.81 4.59 8.36 16.07
Median 1.17 1.27 1.81 2.86 4.73 8.57 16.20
3rd quartile 1.24 1.35 1.97 2.92 4.90 8.72 16.33
9th decile 1.33 1.39 2.07 3.02 5.00 8.80 16.44

PDC Arith. mean 3.49 5.72 13.93 27.95 56.01 112.32 226.96
1st decile 3.26 5.29 13.45 27.32 55.19 110.94 224.79
1st quartile 3.41 5.55 13.73 27.63 55.56 111.60 225.95
Median 3.50 5.72 13.98 27.96 56.00 112.32 227.18
3rd quartile 3.60 5.87 14.15 28.21 56.42 113.03 228.13
9th decile 3.69 6.07 14.31 28.46 56.81 113.69 229.20
queuing and forwarding unit. In effect, the ppPDC is intended for
the network topology of a star. The bus topology is currently well
established in the industrial reality, since virtually all of today's indus-
trial networks use this topology, while the star topology is nowadays
dominant in the field of LANs, due to the popularity of the switched
Ethernet. The change of topology may be unwelcomed by engineers
and practitioners, but the idea can be easily promoted, since the star
topology is convenient in many applications, and often it is even
more justified than the bus topology (see [21]).

Implementation of the ppPDC at the MAC level is currently consid-
ered by authors. In case of such implementation, some of the consider-
ations provided in the paper lose validity. In particular, assumptions
regarding relation of processing times to physical transmission times
should be re-evaluated. Anyway, physical implementation is expected
to be particularly valuable, as it will allow to compare the performance
of ppPDC, PDC, and FTT in real application contexts, since theoretical
comparisons are often flawed [22].
Fig. 8. Deciles of the observed microcycle time distributions.

image of Fig.�7
image of Fig.�8


Fig. 9. Medians of the observed microcycle time distributions.

Table 4
Maximum number of variables possible to be broadcasted at once in a BROAD frame.

Type/length of variables Maximum number of variables

8 bits 1472
16 bits 736
32 bits 368
64 bits 184
128 bits 92

604 G. Polaków, M. Metzger / Computer Standards & Interfaces 35 (2013) 596–604
Because an experimental verification is themost recognizedmethod
of the performance evaluation of a communication network and the
method is widely used, there is a broad base of the results for similar
protocols and applications available in the literature, to which results
gathered in thepaper are directly comparable– see for example [23–26].
This proves that ppPDC, while simple to develop, provides very attrac-
tive properties comparable to low-level hardware industrial protocols
even when implemented at the application layer.

Acknowledgements

This work was supported by the National Science Centre under
grant no. 2012/05/B/ST7/00096.

References

[1] J.A. Dianes, M. Díaz, B. Rubio, Using standards to integrate soft real-time compo-
nents into dynamic distributed architectures, Computer Standards & Interfaces 34
(2012) 238–262.

[2] IEEE802.3, IEEE standard for information technology—telecommunications and
information exchange between systems—local and metropolitan area networks—
specific requirements—Part 3: carrier sense multiple access with collision detection
(CSMA/CD) access method and physical layer specifications, 2002.

[3] R. Moraes, F.B. Carreiro, P. Bartolomeu, V. Silva, J.A. Fonseca, F. Vasques, Enforcing
the timing behavior of real-time stations in legacy bus-based industrial Ethernet
networks, Computer Standards & Interfaces 33 (2011) 249–261.

[4] S. Vitturi, L. Peretti, L. Seno, M. Zigliotto, C. Zunino, Real-time Ethernet networks
for motion control, Computer Standards & Interfaces 33 (2011) 465–476.

[5] L. Kren, Look out factory floor—here comes Ethernet/IP, Machine Design (2000)
82–86, (15/6/2000).

[6] M. Babb, The race for real-time Ethernet, IEEE Computing and Control Engineering
15 (1) (2004) 8.

[7] L. Winkel, Real-Time Ethernet in IEC 61784-2 and IEC 61158 series, 4th IEEE
International Conference on Industrial Informatics, 2006, pp. 246–250.

[8] IEEE802.1D, IEEE standard for local and metropolitan area networks—Media
Access Control (MAC) bridges, 2004.

[9] K.C. Lee, S. Lee, Performance evaluation of switched Ethernet for real-time industrial
communications, Computer Standards & Interfaces 24 (2002) 411–423.

[10] J. Loeser, H. Haertig, Low-latency hard real-time communication over switched
Ethernet, Proceedings of 16th Euromicro Conference on Real-Time Systems,
Catania, Sicily, 2004, pp. 13–22.

[11] T. Skeie, S. Johannessen, O. Holmeide, Timeliness of real-time IP communication
in switched industrial Ethernet networks, IEEE Transactions on Industrial Infor-
matics 2 (1) (2006) 25–39.
[12] G. Cena, L. Seno, A. Valenzano, S. Vitturi, Performance analysis of Ethernet
Powerlink networks for distributed control and automation systems, Computer
Standards & Interfaces 31 (2009) 566–572.

[13] International Electrotechnical Commission, Digital data communications for mea-
surement and control—fieldbus for use in industrial control systems—parts 2 to 6,
IEC 61158, 2000.

[14] International Electrotechnical Commission, Digital data communications for mea-
surement and control—part 1: profile sets for continuous and discrete manufactur-
ing relative to fieldbus use in industrial control systems, IEC61784-1, 2003.

[15] G. Polaków, M. Metzger, Design and implementation of Ethernet-based horizon-
tal communication scheme using LabVIEW, Proceedings of the 12th IEEE Interna-
tional Conference on Methods and Models in Automation and Robotics, 2006,
pp. 829–834.

[16] G. Polaków, M. Metzger, Agent-based framework for distributed real-time simu-
lation of dynamical systems, in: A. Håkansson, et al., (Eds.), KES-AMSTA 2009,
LNAI 5559, Springer, Heidelberg, 2009, pp. 213–222.

[17] J.-D. Decotignie, Ethernet-based real-time and industrial communications, Pro-
ceedings of the IEEE 93 (6) (2005) 1102–1117.

[18] S. Vitturi, On the use of Ethernet at low level of factory communication systems,
Computer Standards & Interfaces 23 (2001) 267–277.

[19] S. Zakaria, L. Abdennour, S. Aomar, Ethernet based implementation of a periodic
real time distributed system, Electrical Engineering and Applied Computing 90
(2011) 337–350.

[20] P. Bilski, W. Winiecki, Methods of assessing the time efficiency in the virtual
measurement systems, Computer Standards & Interfaces 34 (2012) 485–492.

[21] G. Polaków, M. Metzger, ppPDC communication framework—a new tool for
distributed robotics, in: S. Carpin, et al., (Eds.), SIMPAR 2008, LNAI 5325, Springer,
Heidelberg, 2008, pp. 191–202.

[22] L. Seno, F. Tramarin, S. Vitturi, Performance of industrial communication systems:
real application contexts, IEEE Industrial Electronics Magazine 6 (2) (2012)
27–37.

[23] S. Cavalieri, Modelling and analysing congestion in KNXnet/IP, Computer Standards
& Interfaces 34 (2012) 305–313.

[24] L. Chen, Z. Shan, T. Tang, H. Liu, Performance analysis and verification of safety
communication protocol in train control system, Computer Standards & Inter-
faces 33 (2011) 505–518.

[25] D.-S. Kim, S. Lee, Feasibility analysis of hybrid control networks based on common
industrial protocol, Computer Standards & Interfaces 33 (2011) 357–366.

[26] H. Pérez Tijero, J.J. Gutiérrez, On the schedulability of a data-centric real-time
distribution middleware, Computer Standards & Interfaces 34 (2012) 203–211.

Grzegorz Polaków graduated with a Master's Degree in
Control Science and Robotics from Silesian University of
Technology in 2005. After three years of doctoral studies
he received his PhD in automation. Currently he is an assis-
tant professor at the Institute of Automatic Control.
His research interests include all aspects of the IT presence in
industrial automation, e.g., communication in distributed
control systems, industrial networks, PLCs programming
languages, multiagent systems in control.
Mieczyslaw Metzger received his M.Sc degree in automatic
control from the Silesian University of Technology Gliwice,
Poland in 1971. In 1978 he received his Ph.D., and the D.Sc.
(habilitation) in 1989 in modelling, simulation and control
of industrial processes. He is currently the titular professor
and a full professor at the Silesian University of Technology
and since 1992 Vice Director for Research of the Institute of
Automatic Control at the University.
He is an author or co-author of about 200 research papers in
international journals as well as conference proceedings and
11 paper books for students. Some of the papers published in
journals "Simulation", “Simulation – Practice and Theory”,
"Control-Theory and Advanced Technology", "Water Science

and Technology", "Systems Analysis, Modelling, Simulation",

"Chemical Engineering and Processing", "AICHE Journal”, "Applied Thermal Engineering",
“Control and Cybernetics”. He is author of the book: Modelling, Simulation and Control of
Continuous Processes (2000). He is a member of IWA and IEEE.
His current research interests include modelling, simulation (conventional and real-time
training simulators) and control of continuous industrial processes, including agent-based
and network-based distributed control systems. The subjects of his studies are dynamic
properties and control of processes in environmental protection, in chemical and power
plants and in biotechnology. He was the moving spirit behind the development of the
industrial-scale pilot plants treated as real-world control plants. All of these plants
improve experimental basis for research in the industrial automation and in the industrial
informatics.

Unlabelled image
Unlabelled image
image of Fig.�9

	Performance evaluation of the parallel processing producer–distributor–consumer network architecture
	1. Introduction
	2. Materials and methods
	2.1. Description of the developed and tested protocols
	2.2. The method of time measurements
	2.3. The experiments planned

	3. Theory and calculations
	3.1. Analysis of cyclic communication in the PDC architecture
	3.2. The analysis of cyclic communication timings in the ppPDC architecture

	4. Results/Discussion
	5. Conclusions
	Acknowledgements
	References


