
www.elsevier.com/locate/braindev

Brain & Development 33 (2011) 632–643
Review article

Erythropoietin in neonatal brain protection: The past,
the present and the future
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Abstract

Over the last decade, neuroprotective effects of erythropoietin (Epo) and its underlying mechanisms in terms of signal transduc-
tion pathways have been defined and there is a growing interest in the potential therapeutic use of Epo for neuroprotection. Several
mechanisms by which Epo provides neuroprotection are recognized. In this review, we focused on the neuroprotective mechanisms
of Epo and provide a short overview on both experimental and clinical studies, testing Epo as a neuroprotective agent in the neo-
natal brain injury, and the safety concerns with the clinical use of Epo treatment in neonates.
� 2010 The Japanese Society of Child Neurology. Published by Elsevier B.V. All rights reserved.
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1. Introduction

Neonatal brain injury including commonly hypoxic–
ischemic encephalopathy (HIE), periventricular leuko-
malacia (PVL), cerebral-intraventricular hemorrhage
and hyperoxic brain damage is an important cause of
neonatal mortality and subsequent sequelae such as cere-
bral palsy, mental retardation, learning disability, and
epilepsy [1–3]. Although there are increasing evidence
about underlying mechanisms and growing number of
studies about treatment strategies, there is currently lim-
ited clinically utilized treatment for these common
disorders.

Epo is one of the most promising neuroprotective
agents which was first identified as a humoral mediator
0387-7604/$ - see front matter � 2010 The Japanese Society of Child Neuro

doi:10.1016/j.braindev.2010.10.014

⇑ Corresponding author. Address: Department of Pediatrics, Divi-
sion of Neonatology, Dokuz Eylul University, Faculty of Medicine,
Inciraltı, 35340 Izmir, Turkey. Tel.: +90 232 4123645; fax: +90 232
4123649.

E-mail address: abdullah.kumral@deu.edu.tr (A. Kumral).
that is involved in the maturation and proliferation of
erythroid progenitor cells [4]. Over the last decade,
neuroprotective actions of Epo and its underlying mech-
anisms in terms of signal transduction pathways have
been defined and there is a growing interest in the poten-
tial therapeutic use of Epo for neuroprotection [5].

This article overviews the neuroprotective role of Epo
on neonatal brain injury. Initially we discussed the exist-
ing data on the neuroprotective mechanisms of Epo and
then discussed in detail the role of Epo as a neuroprotec-
tive agent against neonatal brain injury in animal mod-
els and clinical trials. Finally we have highlighted the
safety concerns with the clinical use of Epo.
2. Epo as an endogenous product

Epo is a naturally occurring 30.4-kDa glycoprotein
that was originally identified for its role in erythropoi-
esis [6]. The primary production sites of Epo are the
fetal liver and the adult kidney [7], where Epo gene
logy. Published by Elsevier B.V. All rights reserved.
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expression occurs mainly under the control of an
oxygen-sensing, hypoxia-inducible factor (HIF) depen-
dent mechanism [8,9].

Epo is produced primarily by astrocytes in the brain,
but oligodendrocytes, endothelial cells, neurons and
microglia were also found to produce Epo, and the pro-
duction was upregulated mainly by hypoxia. The
homodimeric EpoR has also been demonstrated on neu-
rons, astrocytes, endothelial cells and microglia [10].

3. Neuroprotective mechanisms of Epo

3.1. Epo signaling pathway

Epo has been reported to induce a broad range of
cellular responses in the brain directed to protect and
repair tissue damage. A fundamental mechanism of
Epo-induced neuroprotection is its ability to inhibit
apoptosis [11–21]. The other mechanisms of Epo-
induced neuroprotection include anti-inflammatory,
anti-oxidant, angiogenic, anti-epileptic and neurotro-
phic effects [10,12,22–33] (Fig. 1). It is not easy to differ-
entiate each mechanism distinctly. To better understand
these mechanisms a summary of Epo signaling pathways
in neuronal protection has been demonstrated in Fig. 2
[22,23,34–37].

3.2. Anti-apoptotic properties

Modulation of Bcl-2 family genes is one of the most
investigated mechanisms in the anti-apoptotic properties
Fig. 1. Protective effect mechanisms of erythropoietin on
of Epo. Epo consistently increases the expression of the
anti-apoptotic gene Bcl-xL, decreases the expression of
pro-apoptotic gene Bak and also shifts the Bcl:Bax ratio
towards a net anti-apoptotic effect in cultured microglia
[38]. Bax, a pro-apoptotic molecule, has been shown to
be required for apoptotic neuronal cell death during
normal development. Bax also plays a role in the regula-
tion of cell death in the CNS following neonatal hyp-
oxic-ischemia (HI) [39,40]. It has been demonstrated
that Epo downregulates Bax gene expression induced
by HI and prevents injury-induced bcl-2 gene downreg-
ulation. Epo significantly prevents hypoxia–ischemia-
induced Bax and DP5 mRNA upregulation in the brain
tissue [11].

Nuclear factor-jB (NFjB) functions as an anti-
apoptotic factor through its induction of genes that
inhibit apoptosis. NFjB has been shown to induce the
expression of the inhibitor of apoptosis (IAP) protein
family. These proteins specifically inhibit the active
forms of caspase-3, caspase-7, and caspase-9. Induction
of IAP activity by NFjB also suppresses TNF-alfa ini-
tiated apoptosis through the inhibition of caspase-8
activity. Nuclear factor-jB may also prevent apoptosis
through the direct activation of Bcl-xL. Loss of NFjB
activity negates the neuroprotective effects of Epo sug-
gesting that the activation of NFjB is necessary for
the Epo protection in the nervous system [20,41].

Brain-derived neurotrophic factor (BDNF) has been
implicated in long-latency action of the Epo. Epo
induces both mRNA expression and production of bio-
logically active BDNF in primary hippocampal cells,
neuronal and glial cells. BBB: blood–brain barrier.



Fig. 2. Summary of EPO signaling in neuronal cell. EPO binds to EPOR dimer and stimulates JAK2 kinase activity which results in phosphorylation
of JAK2 and EPOR. Activated JAK2 initiates signal transduction through several downstream molecules such as STAT-5, MAPK, ERK, PI (3)
K/AKT and IKB. NFjB dissociates from IKB. NFjB and STAT5 enter into the nucleus, bind to DNA, and transcribe neuroprotective genes such as
Bcl-xL and bcl2. Epo: erythropoietin; EpoR: erythropoietin receptor; JAK-2: Janus-tyrosine kinase-2; STAT-5: signal transducer and activator of
transcription-5; NFjB: nuclear factor-jB; MAPK: mitogen-activated protein kinase; PI (3) K: phosphatidylinositol-3-kinase; IAP: inhibitor of
apoptotic protein.
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leading to a long-term activation of its specific receptor
TrkB. The reduced neuroprotection and phosphoryla-
tion of TrkB triggered by Epo, observed when BDNF
is neutralised by a specific antibody, confirm the rele-
vance of both BDNF and TrkB in ruling Epo effect
and its role in neuroprotection. Finally, Epo induces
BDNF expression also in vivo following i.c.v. adminis-
tration in mice [42,43].

3.3. Anti-inflammatory properties

Several studies have investigated the ability of Epo to
affect inflammatory responses. In a mouse model of
autoimmune encephalomyelitis, Epo treatment upon
onset of paresis was reported to significantly improve
neurological functional recovery associated with a
significant reduction in inflammatory infiltrates and
demyelination [24,44]. Epo was found to reduce astro-
cyte activation and recruitment of leukocytes and
microglia in the ischemic brain associated with reduction
of levels of inflammatory cytokines including monocyte
chemoattractant protein-1 (MCP-1), TNF and IL6 in
the ischemic brain in the rat stroke model. Protective
effect of Epo against cytotoxicity induced by inter-
feron-gamma (IFN-gamma) and LPS has been shown
in primary rat oligodendrocyte cultures [45]. Since Epo
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did not reduce cytokine production in response to
directly applied lipopolysaccharide (LPS) in vivo and
in vitro, the authors suggested that the observed anti-
inflammatory effect is due to the inhibition of neuronal
apoptosis and not to a direct effect on inflammatory
cells [12]. But in a previous study, especially prenatal
maternal, Epo treatment has been found to attenuate
LPS-induced white matter damage in neonatal rat brain
by reducing the expression of inflammatory cytokines
and sparing the myeline basic protein. Although the
postnatal Epo treatment has been found to prevent
LPS-induced brain injury, this effect was partial [46].
The exact mechanisms of the anti-inflammatory effects
are unknown. But Epo might reduce leukocyte transmi-
gration through endothelial cells, since Epo enhances the
resistance of endothelial cells towards ischemia [47].

3.4. Neurotrophic properties

The reported neurotrophic effects of the Epo include
the ability to stimulate axonal regrowth, neurite
formation, dendritic sprouting, electrical activity and
modulate intracellular calcium and neurotransmitter
synthesis and release [16]. Epo was shown to improve
functional outcomes by modulating plasticity, synaptic
connectivity and activity of memory-related neuronal
networks [14,48]. A recent study demonstrated that
erythropoietin activates the cAMP response element
binding protein (CREB) transcription pathway and
increases BDNF expression and production in primary
hippocampal neurons, which contributes to erythropoi-
etin mediated neuroprotection [42].

3.5. Angiogenic properties

Besides its direct effects on neurons, Epo induced
neuroprotection may be attributed to an improvement
in brain perfusion by promoting new vessel growth.
The potential roles of Epo and EpoR in vascular func-
tion have been indicated in both in vitro and in vivo
studies. Epo has been shown to increase microvascular
branch formation from rat aortic rings in a standard
angiogenic assay. In addition, Epo has been shown to
up-regulate expression of several genes involved in vas-
cular function, signal transduction, and energy transfer,
in cultured endothelial cells [49–52]. The angiogenic
effect of the Epo was also found in the brain, since cap-
illary endothelial cells express two forms of EpoR
mRNA and Epo showed a dose-dependent mitogenic
activity on brain capillary endothelial cells [53]. This
angiogenic effect was confirmed in mice genetically engi-
neered to lack either Epo or its receptor (EpoR) where
mutant embryos suffer from severe defects in angiogen-
esis [32]. In angiogenesis, Epo stimulates proliferation
of endothelial precursor cells, production of matrix
metalloproteinase-2, migration of endothelial cells into
vascular sites and formation of capillary tubes [54–56].

One concern specific to preterm infants is that the
angiogenic effects of Epo might affect the development
of retinopathy of prematurity (ROP) [57] and it is fur-
ther discussed in the relevant section.

3.6. Anti-oxidant properties

Oxygen free radicals are produced at low levels dur-
ing normal physiological conditions and are scavenged
by endogenous anti-oxidant systems that include super-
oxide dismutase (SOD), glutathione peroxidase (GPX),
catalase and small molecule substances such as vitamins
C and E [58]. Epo controls a variety of signal transduc-
tion pathways during oxidative stress that can involve
JAK2, protein kinase B, signal transducer and activator
of transcription pathways, mammalian forkhead tran-
scription factors, caspases, and NFjB [29]. Maternal
treatment with Epo has been shown to prevent lipid
peroxidation in fetal rat brain after ischemia–reperfusion
injury [30]. Epo inhibits lipid peroxidation by increasing
the activities of cytosolic anti-oxidant enzymes such as
SOD and GPX [31,59].

Acute ethanol administration produces lipid peroxi-
dation in the brain as an indicator of oxidative stress.
Epo was also shown to have protective effects against
ethanol-induced apoptotic neurodegeneration and oxi-
dative stress in the developing mouse brain. Simulta-
neous administration of Epo along with ethanol
attenuated the lipid peroxidation process and restored
the levels of anti-oxidants [60].

3.7. Promoting neurogenesis

The developing nervous system has long been
known to possess a greater capacity to recover from
injury than the adult system. Hypoxic–ischemic injury
in the neonatal brain initiates an enduring regenerative
response from the subventricular zone [61]. Epo may
contribute to the brain repair process after insult as
it has a promoting capacity on neurogenesis both
in vitro and in vivo [27]. Chemically modified deriva-
tives of Epo such as carbamylated Epo (cEpo) also
exert a similar effect on the neural progenitor cells
[62]. Repeated doses of Epo treatment immediately
after hypoxic-ischemia contribute to neurovascular
remodeling by promoting tissue protection, revascular-
ization, and neurogenesis in the neonatal injured brain
and improve neurobehavioral outcomes [63]. Delayed
administration of Epo also promotes oligodendrogene-
sis and attenuates white matter injury concurrently
with increased neurogenesis. These effects are likely to
contribute to the observed improvement in neurologi-
cal functional outcomes [64].
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3.8. Anti-epileptogenic properties

The loss of oxygen and glucose supply to the develop-
ing brain leads to excitotoxic neuronal cell damage and
death. Such over-excitation of nerve cells can also man-
ifest as seizures. Clinical neonatal seizures in the setting
of birth asphyxia are associated with worse neurodevel-
opmental outcome, independent of the severity of
hypoxic–ischemic brain injury [65]. In contrast to this,
a recent experimental study has shown that both sub-
clinical and clinical seizures are associated with
increased severity of hypoxic–ischemic injury in a
term model of neonatal hypoxic–ischemic injury [66].
Anyway, these results suggest that anti-epileptogenic
medication may contribute to the neuroprotective strat-
egies. Recent experimental studies performed in adult
rodents have indicated that Epo and its peptide deriva-
tive also exerted anti-epileptogenic effect and decreased
seizure-induced neural cell death [23,28,67,68]. Adminis-
tration of a single dose of Epo directly after an acute
hypoxic event at P10 has significantly decreased seizure
susceptibility [33]. In a recent clinical pilot study on
infants with mild/moderate hypoxic–ischemic encepha-
lopathy, significantly less seizure has been observed in
Epo-treated group. Epo also showed significantly
improved abnormal electroencephalography findings
[69]. Overall, these results suggest that the use of Epo
in HIE may also decrease the need for anti-epileptic
medication.

4. Experimental models evaluating the neuroprotective

role of Epo in the neonatal brain injury

4.1. Protective role of Epo in hypoxic–ischemic brain

injury

Increasing evidence suggests that exogenously admin-
istered Epo has a protective effect in a variety of different
models of brain injury. The neuroprotective effects by
Epo and Epo derivatives, shown in in vitro [17,70–73]
and in vivo adult studies [21,67,72,73], were followed
by studies involving animal models for neonatal cerebral
injury. The most widely studied animal models include
the Vannucci–Rice model for neonatal HI and middle
cerebral artery occlusion for neonatal stroke [74].

Systemic Epo pretreatment (5 U/g vs vehicle) reduced
the infarct volume after hypoxic–ischemic injury model of
newborn rats [75]. Single dose systemic Epo treatment
given immediately after the hypoxic–ischemic insult in
newborn rodents was shown to improve both short- and
long-term histological and behavioral changes [76–78].
Delayed administration of exogenous rh-Epo starting
24–48 h after a hypoxic–ischemic insult was also found
to be neuroprotective in the neonatal rat models [64,79].

Substantially, timing of assessment of the brain dam-
age is an important factor to evaluate the efficiency of
therapy. In the majority of the studies, assessment of
brain damage was performed only a few days (1–7) after
the insult. However brain injuries due to a hypoxic–
ischemic insult are known to evolve over a period of
6–12 weeks and possibly longer. In few studies, neuro-
protective effects of Epo persisted when brain infarcts
were assessed at 4, 6 and 10 weeks after MCAO
[78,80–83]. Previous studies evaluating the effects of
post-insult Epo treatment on functional development
(assessed by righting and postural reflexes, grip traction
performance, asymmetries of forelimb use, rotation,
Morris water maze) revealed that functional outcomes
directly correlated with the histological improvement
[78,80–82,84,85].

The beneficial effects of Epo seem to be related to
timing and dose as well as the type of injury to a great
extent. For neuroprotection, the term high-dose rEpo
is often used to emphasize that the effective neuroprotec-
tive dose range (1000–30,000 U/kg) is well above the
range used to treat anemia (500 U/kg) [86]. Pharmacoki-
netics of high-dose recombinant erythropoietin in the
plasma and brain of neonatal rats confirmed that sys-
temic rEpo is only detected in the brain after high doses
(5000 U/kg) [87]. Lower multiple Epo doses, such as
1000 U/kg, did not result in significant neuroprotection
from early neuronal damage even when combined with
deferoxamine, an iron chelator which has been shown
to decrease oxidative stress [88]. In a study comparing
the neuroprotective effect of dosing regimens, three
injections of 5000 U/kg and single injection of
30,000 U/kg were found most protective [89]. Favor-
ably, dosing regimen including multiple injections of
the high dose Epo on neonatal hypoxic–ischemic brain
injury model in rats was shown to improve short- and
long-term physiological and behavioral outcomes with
no documented important side effect [90].

Summary of the studies evaluating the neuroprotec-
tive effects of Epo in neonatal HIE models is shown in
Table 1.

4.2. Protective role of Epo on periventricular

leukomalasia

PVL, a common neonatal brain white matter lesion,
is frequently associated with cerebral palsy. In addition
to the ischemia/reperfusion injury, cytokine-induced
brain injury associated with maternal or fetal infection
also plays an important role in the pathogenesis of
PVL [2]. As mentioned above, several studies have dem-
onstrated the ability of Epo to affect inflammatory
responses. In primary rat oligodendrocyte cultures Epo
was shown to be protective against cytotoxicity induced
by IFN-gamma and LPS [45]. In previous studies post-
natal Epo was found to attenuate LPS induced white
matter damage, proinflammatory cytokine and chemo-
kine induction in the developing rat brain [46,92].



Table 1
Experimental in vivo studies evaluating the neuroprotective effects of Epo in neonatal HIE models.

Animal Dose and route Administration Assessment Results–reference

Rat P7* 1000 U/kg (i.p.) 0 h 3 days 37% improvement in neuron count [77]
Mice P7 5000 U/kg (i.p.) �1 h 7 days 50% improvement in neuron count [75]
Rat P7 20 U/kg (i.p.) 0 h 7 days 53% improvement in neuron count [91]
Rat P7 1000 U/kg (i.p.) 0 h 3 days Epo decreased NO production [76]
Rat P7 1000 U/kg (i.p.) 0 h 20 weeks Improved long-term spatial memory deficits and brain injury

[80]
Rat P7 2500 U/kg �3 (i.p.) 0, 1, 2 days 4 weeks Epo protected mesencephalic dopamine neurons and reduced

the degree of behavioral asymmetries at 4 weeks of life [81]
Rat P7 2000 U/kg (i.p.) 0 h 42 days Epo prevented long-term sensorimotor deficits and attenuated

brain injury [78]
Rat P7 5000 U/kg �3 (i.p.) 24, 48, 72 h 3, 7, 14 and 21 days Epo attenuated brain injury and prevented both the hypoxia–

ischemia-induced increases in IL-1beta mRNA and protein
levels [79]

Rat P7 1000 U/kg (i.p.) 0 h 3 days Epo prevented HI induced Bax and DP5 mRNA upregulation
and Bcl-2 downregulation [11]

Rat P7 2500, 5000 or
30,000 U/kg (s.c.)

(1, 3, or 7 dose)
0 day 0, 1, 2 days
0, 1, 2, . . . , 6 days

2 or 7 days Three doses of 5000 and one dose of 30,000 U/kg rEpo were
most protective (79% improvement in neuronal apoptosis) [89]

Rat P7 2500 U/kg �3 (s.c.) 0, 1, 2 days Repeated treatment with high-dose rEpo was safe. rEpo
prevented hypoxia–ischemia-induced learning impairment and
substantia nigra neuron loss [90]

Rat P7 3000 U/kg (i.p.) 0, 24, 48 h 2 weeks Epo attenuated brain injury, subventricular zone expansion,
and sensorimotor deficits [84]

Rat P7 1000 U/kg
+ deferoxamin
200 U/kg (i.p.)

0, 24, 48 h 72 h DFO-Epo treatment reduced the number of cleaved caspase
3(+) cells, but did not protect against gray or white matter
damage [88]

* P represents postnatal day.
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Although the postnatal Epo treatment was shown to
prevent LPS-induced brain injury, this effect was partial
as compared to prenatal treatment [46]. Epo may also
exert its effect on PVL by stimulating oligodendrocyte
differentiation. EpoR expression has been detected in
O4-positive immature oligodendrocytes, and rEpo treat-
ment or co-culture of these cells with astrocytes
enhances oligodendrocyte maturation [93]. Inhibition
of this effect by anti-rEpo antibody and/or soluble
EpoR suggests that release of Epo by astrocytes may
promote oligodendrocyte differentiation. Since the
mature oligodendrocyte is less vulnerable to injury,
rEpo probably plays a role in reducing white matter
injury by stimulating oligodendrocyte maturation.

4.3. Protective effects of Epo on hyperoxic brain injury

Supraphysiological oxygen concentrations are widely
used in neonatal intensive care units for resuscitation,
pulmonary hypertension and respiratory distress syn-
drome, and it has been demonstrated that these high
concentrations of oxygen exert toxicity to the neonatal
brain [3,94]. In recent years, it has been shown that
Epo has protective effects on hyperoxic brain damage
as well as hypoxic–ischemic brain damage. In a previous
study, evaluating the protective effect of Epo against
hyperoxic brain injury in the developing rat brain, it
was shown that erythropoietin treatment (1000 U/kg/
day �5 dose, i.p.) significantly diminished apoptosis in
the CA1 region and dentate gyrus of hippocampus
and parietal cortex in the Epo-treated hyperoxia group
[95].

Similarly, systemic treatment with single high dose of
Epo (20,000 U/kg i.p.) significantly found to reduce
hyperoxia-induced apoptosis and caspase-2, -3, and -8
activity in the developing rat brain [96]. Subsequently
the same author group demonstrated that rEpo gener-
ates its protective effect against oxygen toxicity by a
reduction of diverse oxidative stress parameters and by
limiting the stressor-inducible changes in both heme
oxygenase 1 (HO-1) and cholinergic functions [97].

5. Clinical trials

Perinatal HIE is associated with high morbidity and
mortality rates worldwide. Treatment and care for the
sequelae of early brain hypoxic–ischemic injury impose
considerable financial and lifelong personal burdens on
society and affected families [1]. Hypothermia is rapidly
becoming a standard therapy for full-term neonates with
moderate-to-severe HIE [98–100]. Drugs added during
or after hypothermia that can improve neuroprotection
by extending the therapeutic window or providing long-
lasting additive or synergistic protection are needed.
Unfortunately no proven therapy has been established
for preterm brain injury till now [101,102].

Neuroprotective therapeutic strategies except Epo
include the use of oxygen free radical inhibitors and
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scavengers (i.e. SOD, catalase, N-acetylcysteine, xanth-
ines, deferoxamine, lazaroids); glutamate receptor
antagonists (i.e. magnesium sulfate); growth factors
(i.e. neurotrophins, IGF-1) and blockage of apoptotic
pathways (i.e. minocycline). Although these strategies
have been evaluated experimentally, none of them have
been replicated in a systematic manner in the human
neonate. It is important to consider that drugs adminis-
tered during the neonatal period may be toxic to the
immature brain [102].

Because of the multi-directional mechanisms of
action and the safety profile, Epo is the most promising
drug for neonatal brain protection. Clinical studies are
ongoing to test the safety and efficacy of higher doses
of Epo in newborns.

There exist only few studies evaluating the neurode-
velopmental outcomes of the premature infants given
Epo treatment for stimulation of erythropoiesis
[103–107]. Newton et al. reported that Epo, given in
clinical trials to reduce transfusions in low birth weight
infants under 1250 g, did not significantly influence the
neurological or cognitive outcomes at 2.5–8 years [103].
Ohls et al. showed that extremely low birth weight
infants (ELBW) who were treated with Epo (400 U/
kg body weight 3 times weekly given intravenously or
subcutaneously from 96 h after birth until the 35th
post-menstrual week) did not benefit in neurodevelop-
mental outcome at 18–24 months of age [105]. In a
posthoc analysis, however, the same group reported
that infants with elevated Epo concentrations
(>500 mU/mL, n = 6) had higher Mental Development
Index (MDI) scores than those with lower Epo concen-
trations (<500 mU/mL, n = 6). But these studies had
several limitations in terms of sample size and study
design to yield a clear comment [104].

A retrospective cohort study with a data set for a
group (n = 366) of infants of <1500 g and 630 weeks
of gestation revealed a dose–response relationship
between Epo treatment and improved MDI scores [106].

In a recently published observational study the neu-
rodevelopmental and school outcome of the ELBW
infants receiving Epo treatment for stimulation of eryth-
ropoiesis in the first weeks of life (n = 89) was compared
to that of untreated children (n = 57) at the age of
10–13 years. The Epo group scored significantly better
than the untreated children in the overall developmental
assessment (55% vs 39% normally developed) as well
as in the psychological examination using the
Hamburg-Wechsler Intelligence Test for Children-III
(HAWIK-III). While children with IVH treated with
Epo scored significantly better than the untreated
children, treated and untreated children without IVH
did not differ in their outcome [107].

Two single-center phase I/II prospective trials
examining the safety and efficacy of high-dose Epo for
preterm infants have been published. The phase I/II trial
by Juul et al. tested the safety and determined the phar-
macokinetics of high-dose Epo in ELBW infants. All of
the participants were <24 h old and 628 weeks of gesta-
tion. Thirty infants treated with high-dose rEpo were
compared to 30 concurrent control subjects. Epo was
given 3 i.v. doses of 500, 1000, or 2500 U/kg at 24-h
intervals beginning on postnatal 1st day. Both 1000
and 2500 U/kg Epo produced peak serum Epo
concentrations that were comparable to neuroprotec-
tive concentrations that previously were seen in experi-
mental animals. There were trends towards less IVH
(p = 0.07) and less severe IVH or PVL (p = 0.06) with
Epo treatment. No excess adverse events occurred in
the Epo-treated infants compared to control infants
[108].

In the study by Fauchere et al., newborns born at
24–32 weeks of gestation and less than 1500 g were given
Epo [3000 U/kg �3 i.v. doses, n = 30] or placebo
(n = 15). There were no relevant differences regarding
short-term outcomes such as IVH, ROP and PVL.
Importantly, any relevant increase in typical adverse
effects of Epo, in particular ROP, was not observed in
the treatment group [109].

The first trial of Epo therapy for neuroprotection in
term infants with moderate-to-severe HIE revealed that
repeated, low dose Epo (300 or 500 U/kg every other
day for 2 weeks) was safe and resulted in improved
neurological outcome for patients with moderate HIE
at 18 months of age [110]. Consistent with trials of hypo-
thermia for HIE, Epo was only effective for infants with
moderate injury and did not improve outcome for
severely affected infants. Clinical studies are ongoing
to test the safety and efficacy of Epo [111].

6. Safety concerns with the clinical use of erythropoietin in

neonates

Complications that are seen in adults (e.g. hyperten-
sion, clotting, seizures, polycythemia and death) have
not been identified in infants. Preterm infants have a long
history of Epo treatment, with few reported side effects
[57]. The safety and efficacy of Epo as an erythropoietic
treatment for the prevention or treatment of anemia of
prematurity have recently been reviewed [111]. In pro-
spective randomized trials, treatment regimens ranged
from 70 to 5000 U/kg/week (35 to 750 U/kg/dose), with
duration of therapy ranging from 2 weeks to several
months [86,112]. None of these studies are reported as
increased risk for stroke, thrombotic events, hemorrhage
or death. At the outset, erythropoietic Epo dosing for
neonates was extrapolated from adults. But that dosing
was found to be too low for neonates who have higher
volume of distribution and more rapid clearance than
adults [111]. Subsequent trials in preterm infants estab-
lished the safety, pharmacokinetics and efficacy of higher
doses [113–115].
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Two single-center phase I/II prospective trials exam-
ining the safety and efficacy of high-dose Epo for the
preterm infants have been recently published [108,109].
In very immature preterm infants with a gestational
age <26 weeks that received early high-dose recombi-
nant Epo, the rates of severe intraventricular hemor-
rhage were rather increased, although not statistically
significant [109]. The phase I/II study by Juul et al.
did not report any Epo-related complications [108]. A
phase III randomized controlled study is ongoing in
Switzerland [111].

Another safety concern which is unique to the pre-
term population remains whether Epo might increase
the risk or severity of ROP. Early repeated high-dose
of Epo did not exacerbate (or reduce) ROP in a neonatal
rat model [116]. The effects of Epo on ROP might
depend on timing because late Epo exposure exacer-
bated, but early Epo exposure reduced, experimental
murine ROP. While early Epo administration decreases
ROP by normalizing blood vessel growth after exposure
to hyperoxia, late Epo signaling increases ROP pathol-
ogy by virtue of its angiogenic effects [117].

Because of the reported presence of EpoRs on tumor
cells, it was questioned if Epo had the potential for pro-
moting tumor growth through stimulation of EpoRs. It
is doubtful whether EpoRs on tumor cells are functional
and there is no evidence that Epo can stimulate EpoRs
on tumor cells in vivo [118,119]. Preclinical and clinical
data published to date do not provide compelling sup-
port for a role for the Epo in tumor angiogenesis
[120]. Preterm infants have a long history of Epo treat-
ment, with few reported side effects [121]. Nonetheless,
clinical trials should be proceeded cautiously particu-
larly if the higher doses will be used for neuroprotection
and these patients need to be followed closely in terms of
the long-term side effects.

Since Epo is a potent erythropoietic growth factor,
one can expect that using high doses of Epo as neuro-
protective treatment will have transient hematopoietic
effects such as increasing erythropoiesis. In the neonatal
population in whom anemia is ubiquitous, this is unli-
kely to be a negative consequence but rather a beneficial
side effect. However, the discoveries of EpoR expression
in neural tissue and the neuroprotective effect of Epo
raised the interest in tissue-specific Epo stimulation with
the potential of activation of Epo neuroprotection with-
out increasing erythropoiesis [122,123]. Such activity
would be useful in chronic Epo therapeutic intervention
for conditions such as ischemic and traumatic events in
the brain.

Several modified forms of Epo have been proposed as
neuroprotective agents that would limit the extent of
injury but would not affect hematopoietic tissue
[122,124]. Enzymatic removal of sialic acid residues
from Epo shortens its plasma half-life in vivo so that
it does not stimulate erythropoiesis, but it is able to
provide the neuroprotection in animal model of neona-
tal hypoxic–ischemic brain injury [125]. Another modifi-
cation is Epo with carbamylation of lysines that does
not appear to activate the EpoR homodimer and lacks
erythropoietic activity [124]. Carbamylated Epo exhibits
protection in animal models of cerebral infarct and
spinal cord injury [126]. The activity of these modified
Epo molecules raises the possibility of an alternate
EpoR involved in nonhematopoietic protective effects
of Epo [123]. Further analyses are necessary to validate
the activity of these Epo analogs and the alternate forms
of the EpoR and to determine their molecular mode of
action.

Clinical studies are ongoing to test the safety and effi-
cacy of Epo for the treatment of different neurological
diseases in patient populations that span from newborns
to adults [111]. The recent multicenter Epo stroke trial
in which more than 60% of patients who received the
thrombolytic treatment reported increased risk of
serious complications such as mortality, intra-cerebral
hemorrhage, brain edema, and thromboembolic events
in adult stroke patients receiving Epo after tissue-
plasminogen activator (tPA)-induced thrombolysis
[127]. Clinical trials in neonatal stroke are still ongoing
and it will be interesting to compare the results and to
know the differences between the responses of adult
and developing brain to exogenous Epo administration
in stroke. Although neither term nor preterm infants
have exhibited complications after Epo, it is important
to proceed cautiously with clinical trials because risks
may vary among specific populations, ages and disease
states [111]. Conclusively, all safety concerns should be
evaluated in preclinical and clinical studies with Epo
and its derivatives and analogs.

7. Conclusion

The protective effects of Epo have been demonstrated
in in vitro studies and in experimental animal models for
neonatal cerebral injury. Recently, clinical studies have
suggested favorable results about the neuroprotective
effects of Epo in newborns. However, many questions
still remain unanswered. More information is needed
regarding the optimal treatment regimens (dose, dosing
frequency and length of treatment).

A concern unique to the preterm population remains
whether Epo might increase the risk or severity of
ROP. Recent clinical trials did not show any apparent
side effects of systemically administered Epo but the
long-term data are not sufficient and the studies are
ongoing. Recent data in neonatal rat model suggested
that early high-dose Epo did not exacerbate ROP. To
avoid the possible adverse effects of Epo, other non-
erythropoietic variants may hold great promise for
the future treatments of focal and global cerebral
injury. Further research involving longer follow-up of
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the neuroprotective effects after Epo administration is
required prior to routine clinical application.
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