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The purpose of this review article is to provide a summary of the scientific literature on stochastic vehicle routing 
problems. The main problems are described within a broad classification scheme and the most important contribu- 
tions are summarized in table form. 
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1. Introduction 

The classical Vehicle Routing Problem (VRP) is 
defined on a graph G = (V,A) where V =  {111, 
v 2 . . . .  , v,} is a set of vertices and A = {(vi,vj):i 
# j ,  v i, vj ~ V} is the arc set. Vertex v 1 repre- 
sents a depot at which are based m identical 
vehicles, while the remaining vertices correspond 
to cities or customers. A matrix C = (ciy) is de- 
fined on A. The coefficients cgy represent  dis- 
tances, travel costs or travel times. Here we use 
these terms interchangeably. The number of vehi- 
cles can be a given constant or a decision vari- 
able. Each vehicle has the same capacity Q. The 
VRP is t h e  problem of constructing m vehicle 
routes of minimum total cost starting and ending 
at the depot, such that each remaining vertex is 
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visited exactly once by one vehicle, and satisfying 
some side constraints. Here are the most com- 
mon types of constraints. 

(1) Capacity constraints: each city v i has a 
demand d i and the total demand of any route 
may not exceed the vehicle capacity. I n  these 
problems, vehicles make collections or deliveries 
at all customers, and we exclude from considera- 
t ion the case where these two types of operations 
are combined. Delivery and collection :problems 
are symmetrical with one another and equivalent 
from a model ing point of view. Here problems 
will be described in terms of collections. 

(2) Duration constraints: the total iength of 
each route may not exceed a preset constant L. 

(3) Time window constraints: each vertex v i 
must be visited within a time interval [as, bi]. For 
recent survey articles on the VRP see Laporte 
(1992), Desrosiers et al. (1996) and Fisher (1996). 
A bibliography is provided in Laporte and Osman 
(1995) 
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Stochastic Vehicle Rout ing  Problems (SVRPs) 
arise whenever some elements of the problem are 
random. Common  examples are stochastic de- 
mands and stochastic travel times. Sometimes, 
the set of  customers to be visited is not known 
with certainty. In such a case, each customer has 
a probability Pi of being present.  Stochastic VRPs 
differ f rom their deterministic counterpar t  in sev- 
eral fundamental  respects. The concept of a solu- 
tion is different, several fundamental  propert ies  
of deterministic VRPs  no longer hold in the 
stochastic case, and solution methodologies are 
considerably more  intricate. Since they combine 
the characteristics of stochastic and integer pro- 
grams, SVRPs are often regarded as computa-  
tionally intractable. 'True enough, only relatively 
small instances can be solved to optimality and 
good heuristics are hard to design and assess. 
Yet, the study of SVRPs has gained in populari ty 
in recent years and much progress has been made 
towards understanding the structure of these 
problems and the computat ional  behaviour of  
.related algorithms. 

The  purpose of this article is to provide a 
summary of the scientific l i terature on SVRPs. 
We begin in Section 2 by outlining the basic 
solution concepts and methodologies for these 
problems. Each of the following six sections is 
devoted to a particular type of SVRP. The  con- 
clusion follows in Section 9. 

2. Solution concepts and algorithms 

Stochastic VRPs  can be cast within the frame- 
work of stochastic programming.  Stochastic pro- 
grams are modeled in two stages. In a first stage, 
a planned or "a  priori" solution is determined.  
The realizations of the random variables are then 
disclosed and, in a second stage, a recourse or 
corrective action is then applied to the first stage 
solution. The recourse usually.generates a cost or 
a saving that may have to be considered when 
designing the first stage solution. 

To  illustrate, consider the VRP with stochastic 
demands,  i.e., each d i is replaced by a random 
variable ~i. The first stage solution for this prob- 
lem would consist of a set of  m vehicle routes 

such that each customer is visited exactly once. 
After  the first stage solution has been  deter- 
mined, the actual demands are revealed, It  may 
then be impossible to implement  the first stage 
solution as planned since the total demand of a 
route may exceed the capacity, i.e., route failures 
may occur. A possible second stage policy would 
be to follow each route as planned until the 
vehicle capacity becomes attained or exceeded, 
return to the depot  to unload, and then resume 
collections at the customer on the planned route 
where route failure occurred. In this case, the 
recourse  action consists of  performing a return 
trip to the depot. 

A stochastic program is usually modeled either 
as a chance constrained program (CCP) or as a 
stochastic program with recourse (SPR). In CCPs, 
one seeks a first stage solution for which the 
probability of failure is constrained to be  below a 
certain threshold. A CCP solution does not take 
into account the cost of corrective actions in case 
of failure. In SPRs, the a im is to determine a first 
stage solution that  minimizes the expected cost  of 
the second stage solution: this cost is made up of 
the cost of the first stage solution, plus the ex- 
pected net cost of  recourse. SPRs are typically 
more  difficult to solve than are CCPs, but their 
objective function is more meaningful. 

For a given problem, corrective actions (or 
recourse policies) may take one of several forms. 
Consider again the VRP with stochastic de- 
mands. Instead of waiting for route failures to 
occur to perform return trips to the depot, one 
could plan "prevent ive breaks" at strategic points 
along the planned route, preferably when the 
vehicle is close to the depot  and is near  full 
capacity. Another  form of recourse could be  to 
reoptimize the remaining port ion of the route 
upon each failure. Such sophisticated recourse 
policies are o f  course more  involved than simple 
return trips, and their expected cost may be diffi- 
cult to take into account in the first stage solu- 
tion. The  best choice of a recourse policy is also 
linked to the moment  at which information is 
made available. For example, information about a 
customer 's  demand may become known upon ar- 
riving at the customer 's  location or before leaving 
the previous customer on the planned route. In 
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the latter case, the range of recourse actions is 
wider - one may, for example, postpone the visit 
of a customer whose demand is too large. For a 
further discussion of recourse policies for this 
problem, see Dror,  Lapor te  and Trudeau  (1989). 

SVRPs are usually modeled as mixed or pure  
integer stochastic programs,  or as Markov deci- 
sion processes. All known exact algorithms be- 
long to the first category. First note that  under  
some mild assumptions, several classes of  chance 
constrained SVRPs can be t ransformed into 
equivalent deterministic VRPs  (Stewart and 
Golden,  1983, Laporte ,  Louveaux and Mercure,  
1989; Bastian and Rinnooy Kan, 1992). Exact 
algorithms for a number  of SVRPs with recourse 
have been  proposed by Laporte ,  Louveaux and 
Mercure  (1989, 1992, 1994) and by Gendreau,  
Lapor te  and S6guin (1995). The last three articles 
describe implementat ions of  the Integer  L-Shaped 
method (Laporte  and Louveaux, 1993), an exact 
algorithm applicable to a wide range of stochastic 
integer programs with recourse. This branch-and- 
cut method computes  a first stage solution using 
a lower bound on the expected cost of  recourse. 
At  any feasible and non-dominated solution, the 
expected cost of  recourse is computed  exactly and 
an optimality cut is generated.  The  effect of such 
a cut is to replace in the objective function the 
lower bound on the solution cost by its true value, 
or force the branching scheme to move to  an- 
other solution. As these cuts are sometimes weak, 
they should ideally be  used in conjunction with 
lower bounding functionals. This method has 
proved successful on a variety of stochastic pro- 
grams. Another  line of  research in the area of 
exact methods  has been to exploit particular data 
structures in some SVRPs. For  example, in the 
single-vehicle V R P  with stochastic demands, the 
demand distribution may be such that at most  
one failure is likely to occur. In  such a case one 
can easily compute  an exact so lu t ion  that  has a 
very high probability of being optimal by solving a 
sequence of deterministic problems (Dror, La- 
por te  and Louveaux, 1993). Finally, note  that  as a 
rule, dynamic programming does not extend nat- 
urally to SVRPs. As shown by Jaillet (1985), 
Jaillet and Odoni (1988) and Dror, Lapor te  and 
Trudeau  (1989) the principle of  optimality can no 

longer be  verified in SVRPs. However,  Carraway, 
Morin and Moskowitz (1989) have proposed a 
generalized dynamic algorithm concept  that  
could, in theory at least, be applied to certain 
classes of  SVRPs. 

Most algorithms proposed for SVRPs are 
heuristics, typically adaptat ions of  methods origi- 
nally designed for the deterministic case. Adapt-  
ing heuristics to the stochastic case is by no 
means straightforward as intricate probability 
computat ions are usually involved. For  example, 
when merging two routes (as in the Clarke and 
Wright algorithm (1964), for example), it is usu- 
ally necessary to compute  the expected cost of 
recourse from any customer on that route to the 
depot. This type of computat ion can sometimes 
be rather  complex. I t  is illustrated for a relatively 
simple problem in Laporte,  Louveaux and Mer- 
cure (1989); for a more  complicated case, see 
Bertsimas (1992) or S6guin (1994). Since exact 
solutions for most classes of  SVRPs cannot be 
computed and lower bounds are usually quite 
poor, it is difficult to assess the quality of  these 
heuristics. Most authors resort  to comparing 
heuristics with one another.  We now proceed to 
the study of particular types of  SVRPs. 

3. The Travel ing Sa l e sman  Problem with 
Stochastic Customers (TSPSC) 

In the Traveling Salesman Problem with 
Stochastic Customers (TSPSC), each vertex v i is 
present  with probability Pi. In the first stage a 
Hamil tonian tour through all vertices is con- 
structed and the set of  present  vertices is then 
revealed. In the second stage solution, the tour is 
followed by simply skipping absent customers. 
This problem was introduced by Jaillet (1985) 
who described a number  of mathematical  models, 
bounds and theoretical properties.  In  particular, 
this study shows that  an a priori solution obtained 
by solving a deterministic Traveling Salesman 
Problem (TSP) can be arbitrarily bad for the 
TSPSC. Another  interesting property is that an 
optimal solution to a TSPSC defined in a plane 
may cross itself, contrary to what happens for the 
TSP (Flood, 1956). A number  of  heuristics using 
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a nearest neighbour criterion or a savings crite- 
rion (Clarke and Wright, 1964) were imple- 
mented and tested by Jrzrquel (1985) and by 
Rossi and Gavioli (1987). Later, Bertsimas (1988) 
and Bertsimas and Howell (1993) have further 
investigated some of the properties of TSPSCs 
and have proposed new heuristics. These include 
space filling curves (Bartholdi and Platzman, 
1982), a probabilistic 2-opt edge interchange 
mechanism, and vertex moves within a tour. More 
recently, Laporte, Louveaux and Mercure (1994) 
have applied an Integer L-Shaped method to the 
TSPSC and have solved to optimality instances 
involving up to 50 vertices. The main contribu- 
tions relative to the TSPSC are summarized in 
Table 1. 

4. The Traveling Salesman Problem with 
Stochastic Travel Times (TSPST) 

In the Traveling Salesman Problem with 
Stochastic Travel Times (TSPST) the cij coeffi- 
cients represent travel times and are random 
variables. All authors who have treated this prob- 

lem attempt to determine an a priori solution 
such that the probability of completing the tour 
within a given deadline is maximized. To our 
knowledge, no mathematical model has ever been 
presented for this problem. Kao (1978) proposes 
two heuristics for the TSPST. The first is based 
on dynamic programming while the second makes 
use of implicit enumeration. Travel time distribu- 
tions must be such that the probability of a sum 
of random variables can be readily computed. 
Sniedovich (1981) has shown that the dynamic 
programming algorithm could yield sub-optimal 
solutions as the monotonicity property required 
by this method is not verified in the TSPST. 
Later, Carraway, Morin and Moskowitz (1989) 
have proposed a generalized dynamic program- 
ming algorithm to overcome this difficulty and 
have applied it to the TSPST. 

5. The m-Traveling Salesman Problem with 
Stochastic Travel Times (m-TSPST) 

The m-Traveling Salesman Problem with 
Stochastic Travel Times (m-TSPST) is simply the 

Table 1 
Contributions to the  Traveling Salesman Problem with Stochastic Customers  

Authors  Year  Distribution a Characteristics and contributions c 

Jaillet 1985 Pi =P for all i b Ph.D. thesis. Models,  properties and bounds.  
Heurist ics based on s tandard TSP methods.  
Enumerat ive  exact algorithm. No computat ions  results. 

1985 M.Sc. dissertation. Tests  on various heuristics, including some 
described by Jaillet (1985). 

1987 Propert ies and bounds.  Description of several heuristics and 
computat ional  results. 

1987 Tests  on nearest  neighbour  and savings heuristics. 
1988 Mostly extracted from Jaillet (1985, 1987) and J rz rque l  (1985). 
1988 Development  of  a lower bound.  
1988 Ph.D. thesis. Properties and bounds.  Design and tests 

of  several heuristics based on s tandard TSP methods.  
1988 Properties and bounds.  Extracted from Jaillet (1985). 
1990 Properties, bounds  and heuristics. Mostly extracted from 

Bertsimas (1988). 
•993 Pi Properties, bounds  and heuristics. Extracted from Bertsimas 

(1988). 
1994 Pi Model, properties and bounds.  Exact Integer  

L-Shaped algorithm tested for n < 50. 

J rz rque l  

Jafllet 

Rossi, Gavioli 

Jaillet, Odoni  
Berman,  Simchi-Levi 
Berts imas 

Jaillet 
Bertsimas, Jaillet, Odoni  

Bertsimas,  Howell 

Laporte,  Louveaux, 
Mercure  

Pi =P for all i 

Pi 

Pi = P for all i 

Pi 
Pi 
Pi 

Pi =P for all i b 
Pi = P for all i b 

a Almost  exclusively Bernouilli distributions with parameters  
b Can be generalized to some extent. 
c Various heuristics are always compared to one another.  

Pi" Other  distributions are somet imes ment ioned.  
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m vehicle version of the TSPST, with all routes 
starting and ending at a common depot. Typi- 
cally, the number of vehicles is a decision variable 
with an associated fixed cost. This problem is 
addressed in two papers. In each case, a deadline 
is imposed on each vehicle route and a penalty is 
incurred for late route completions. The study by 
Lambert,  Laporte  and Louveaux (1993) arises 
from a banking context. The  problem is to design 
money collection routes through bank branches 
in the presence of stochastic travel times. Late 
arrival at the depot  means that all money con- 
tained in the vehicle loses one day's interest. The 
authors propose a mathematical programming 
formulation and an adaptation of the Clarke and 
Wright (1964) savings algorithm. Laporte,  Lou- 
veaux and Mercure (1992) consider stochastic ser- 
vice times at the vertices as well. Here  the penalty 
for late arrival is proportional to the length of the 
delay. Formulations are proposed for the chance 
constrained and recourse  versions of the prob- 
lem. The latter problem is solved to  optimality for 
n = 10, 15 and 20, using an Integer L-Shaped 
method. 

6. The Vehicle Routing Problem with Stochastic 
Demands (VRPSD) 

The Vehicle Routing Problem with Stochastic 
Demands (VRPSD) is without any doubt the most 
studied of all SVRPs. Here,  customer demands 
are random variables usually (but not always) 
assumed to be independent.  We now briefly de- 
scribe the main contributions to this problem. 

To our knowledge, Tillman (1969) was the first 
to propose an algorithm for the VRPSD, in the 
case where there are several depots~ Penalties are 
incurred whenever vehicles are almost empty or 
filled over capacity. The algorithm proposed by  
Tillman is based on Clarke and Wright (1964). A 
second major article is due to Stewart and Golden 
(1983). It contains extensions and generalizations 
of previous results by Gheysens, Golden ,  Stewart 
and Yee (see Table 2). A chance constrained 
model and two recourse models are presented. 
The first of these recourse models uses a penalty 
proportional to the probability of exceeding the 

vehicle capacity. In the second recourse model, 
the penalty is proportional to the expected de- 
mand in excess of the vehicle capacity. Several 
demand distributions are considered and two 
heuristics are tested: one based on Clarke and 
Wright, and another one based on Lagrangean 
relaxation. A major contribution to the study of 
VRPSDs is Bertsimas' thesis (1988). The author 
derives several bounds, asymptotic results and 
other theoretical properties for the case where 
each demand is equal to 1 with probability Pi and 
to 0 with probability 1 - P i .  A number of greedy 
heuristics are proposed and analyzed in an 
asymptotic sense. In the study by Laporte, Lou- 
veaux and Mercure (1989), the depot  location is 
also a decision variable. This article considers 
more general demand distributions. Exact branch 
and cut algorithms are presented for the chance 
constrained version of the problem, and for a 
bounded penalty model in which the expected 
cost of recourse cannot exceed a certain percent- 
age of the first stage solution value. Computa- 
tional results are presented for problems involv- 
ing up to 30 vertices. S6guin's thesis (1994) and 
the paper  by Gendreau,  Laporte and S6guin 
(1995) describe an Integer L-Shaped algorithm 
for the recourse model where the penalty func- 
tions is the cost of back and forth trips to the 
depot  due to route failures. Depending on the 
value of some parameters,  the problem can be 
solved to optimality for up to 70 vertices. Finally, 
we refer to the survey article of Dror,  Laporte  
and Trudeau (1989) which describes a variety of 
operating and service policies, properties and 
models for the VRPSD. These authors prove that 
as in the case of the TSPSC, optimal routes may 
cross themselves. Th e  main contributions relative 
to the VRPSD are summarized in Table 2. 

7. The Vehicle Routing Problem with Stochastic 
Customers (VRPSC) 

The Vehicle Routing Problem with Stochastic 
Customers (VRPSC) is a direct extension of the 
TSPSC: Customers are present with some proba- 
bility but have deterministic demands. The vehi- 
cle capacity must be respected and return trips to 
the depot may be necessary whenever it becomes 
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attained. As in the TSPSC, absent customers are 
skipped in the second stage solution. All articles 
except one only treat the case of unit demands. 

The best source of information on this problem is 
Bertsimas' thesis (1988) which describes several 
properties, bounds and heuristics. Waters (1989) 

Table 2 
Contributions to the Vehicle Routing Problem with Stochastic Demands 

Authors Year Demand Model b Characteristics and contributions 
distribution a 

Tillman 1969 P (A = 2) - -  
Golden, Stewart 1978 P (Ai) CCP 
Golden, Yee 1979 B, NB, G CCP 
Yee, Golden 1980 Any - -  
Stewart, Golden 1980 - -  CCP 
Stewart 1981 - -  SPR 
Stewart, Golden, 1982 N SPR 
Gheysens 
Stewart, Golden 1983 Several CCP, SPR 

Bodin, Golden, Assad, 1983 Several CCP 
Ball 
Dror, Trudeau 1986 Any, N CCP, SPR 
Jaillet 1987 Bet (Pi =P)  - -  

could be 
generalized 

Bertsimas 1988 Ber - -  

Jaillet, Odoni 1988 Ber (Pi =P)  - -  
could be 
generalized 

Laporte, Louveaux, 1989 Several CCP, BPM 
Mercure 
Dror, Laporte, Trudeau 1989 Any CPP, SPR, M 
Waters 1989 Any SPR 
Laporte, Louveaux 1990 Any SPR 
Bertsimas, Jaillet, 1990 Ber (Pi =P)  - -  
Odoni 
Dror 1992 Any SPR, M 
Bouzdiene-Ayari, Dror, 1993 Any 
Laporte 
Bastian, Rinnooy Kan 1992 Any CCP, SPR 

Bertsimas 1992 Discrete - -  

Dror, Laporte, 1993 Any CCP, SPR 
Louveaux 
S~guin 1994 Discrete SPR 

Continuous 
Gendreau, Laporte, 1995 Discrete SPR 
S6guin 

Savings heuristic, multi-depot. 
Savings heuristic (penalty equal to sum of return trips). 
Heuristic, correlated demands, theoretical results. 
Dynamic programming to plan preventive return trips. 
Extension of Golden and Stewart (1978). 
Ph.D. thesis. Heuristics and Lagrangean method. 
Continuation of Stewart and 
Golden (1983), heuristic. 
Model, savings heuristic, 
Lagrangean method, survey. 
Transformation of SVRP into deterministic VRP. 

Properties, savings heuristic. 
One vehicle, 0-1 demands, properties. 

Ph.D. thesis. One vehicle, 0-1 
demands, properties, heuristics 
with worst-case performance. 
One vehicle, 0-1 demands, properties. 

Variable depot location, exact constraint relaxation 
algorithms, n < 30; bounded penalty model. 
Properties, models, survey. 
Model. 
Model, bounds, preventive return trips. 
One vehicle, 0-1 demands, properties, heuristic. 
Extracted from Bertsimas (1988). 
Model. 
Savings heuristic, split deliveries. 

Model: Time-dependent 
traveling salesman problem. 
Properties, bounds, heuristics. 
Extracts and generalizations of Bertsimas (1988). 
Restricted failures. Models, 
heuristic and exact algorithms. 
Ph.D. thesis. Exact Integer 
L-Shaped algorithm for discrete case, n < 70. 
Extracted from S6guin (1994). 

a p: Poisson; B: binomial; NB: negative binomial; G: gamma; N: normal; Ber: Bernoulli. 
b CCP: chance constrained programming; SPR: stochastic programming with recourse; BPM; bounded penalty model; M: 
Markovian model. 
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considers non-binary demands and proposes an 
empirical comparison of three operating policies: 
(1) follow the planned route without skipping 
absent customers; (2) skip absent customers; (3) 
reoptimize the remaining route whenever the ab- 
sence of a customer is revealed. 

Two interesting properties stand out and apply 
to both the VRPSD and the VRPSC. (1) Even if 
travel costs are symmetrical (i.e., cij = cii for all i, 
j),  the overall solution cost is dependent  on the 
direction of travel (Dror and Trudeau,  1986; Ja ib  
let and Odoni, 1988). (2)Larger  vehicle capacities 
may yield larger solution costs (Jaillet and Odoni, 
1988). The main contributions relative t o  the 
VRPSC are summarized in Table 3. 

8. The Vehicle Routing Problem with Stochastic 
Customers and Demands (VRPSCD) 

The Vehicle Routing Problem with Stochastic 
Customers and Demands (VRPSCD) combines the 
VRPSC and the VRPSD. The problem is men- 
tioned in early studies by J6z6quel (1985), Jaillet 
(1987), Jaillet and Odoni (1988) and Trudeau and 
Dror  (1992). The definition proposed by Bertsi- 
mas (1992) seems the most interesting. In a first 
stage, one determines a set of routes starting and 
ending at the depot  and visiting each customer 
exactly once. The set of customers with zero 
demand (absent customers) is then gradually re- 
vealed, but the positive demand of every remain- 
ing customer becomes known only when the vehi- 
cle arrives at the customer's location. In the sec- 
ond stage, the first stage routes are followed as 
planned, with the following two exceptions: (1) 

any absent customer is skipped; (2) whenever the 
vehicle capacity becomes exceeded, it returns to 
the depot to unload, and resumes collections 
starting at the last visited customer; if for any 
customer the vehicle capacity becomes exactly 
attained, the vehicle then returns to the depot 
and resumes collections at the next present cus- 
tomer along its route. This problem occurs natu- 
rally in less-than-truckload operations where car- 
riers often make collections at a set of regular 
customers on a periodic basis, e.g., daily (see 
Delorme,  Roy and Rousseau, 1988), but not all 
customers require the vehicle's visit every day and 
this can be known just before starting collections; 
these customers are simply dropped from the 
planned route. The quantity to be collected at a 
customer is random. 

The VRPSCD is an exceedingly difficult prob- 
lem. Even computing the value of the objective 
function is hard. Bertsimas (1992) provides a re- 
cursive expression for this, as well as bounds, 
asymptotic results and an analysis of several reop- 
timizafion policies. The function evaluation de- 
scribed in S6guin (1994) and in Gendreau,  La- 
porte and S6guin (1995, 1996) is slightly less 
restrictive in that it allows for full or split deliver- 
ies. Note that only one of the versions of the 
VRPSCD studied by Jaillet and Odoni (1988) and 
Bertsimas (1992) is in fact a true VRPSCD: this is 
when absent customers are not visited (otherwise, 
their problem reduces to a VRPSD).  Another  
study is that of  Benton and Rossetti (1992) who 
consider the case where route reoptimizations are 
allowed as demands become known. 

S6guin (1994) and Gendreau ,  Laporte  and 
S6guin (1995) proposed the first exact algorithm 

Table 3 
Contributions to the Vehicle Routing Problem with Stochastic Customers 

Authors 

J~z~quel 
Jaillet 
Jaillet, Odoni 
Bertsimas 

Waters 
Bertsimas, Jaillet, Odoni 
Bertsimas 

Year Characteristics and contributions 

1985 M.Sc. dissertation. Notion of risk. TSP based heuristic described. 
1987 Properties, partially generalized distributions of customers' presence. 
1988 Extracted from Jaillet (1987). 
1988 Ph.D. thesis. Properties, bounds, asymptotic results and heuristic 

with worst-case performance. 
1989 Non-binary demands. Comparison of three operating policies. 
1990 Survey of J6z6quel (1985), Jaillet (1987), Bertsimas (1988) and Jaillet and Odoni (1988). 
1992 Extracted from Bertsimas (1988). 
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Table 4 
Contributions to the Vehicle Routing Problem with Stochastic Customers and Demands 

Authors Year Characteristics and contributions 

J6z6quel 1985 
Jaillet 1987 

Jaillet, Odoni 1988 
Trudeau, Dror 1992 

Benton, Rossetti 1992 
Bertsimas 1992 
S6guin 1994 

Gendreau, Laporte, 1995 
S6guin 
Gendreau, Laporte, 1996 
S6guin 

M.Sc. dissertation. Description of a TSP based heuristic. No test results. 
Creation of customers with non-unitary demands by agglomeration from customers with Bernouilli 
demands. 
Extracted from Jaillet (1987) 
The VRPSCD is indirectly addressed within the context of inventory-routing. The expected cost 
of recourse is computed under the assumptions of split deliveries and continuous demand 
distributions. 
Comparison of several operating policies. 
Asymptotic results, bounds, properties. Recursion formula for the computation of expected cost. 
Ph.D. thesis. Models, bounds and properties. First exact algorithm using an Integer L-Shaped 
method (n < 46). Tabu search heuristic (optimal in 89.45% of cases; average deviation from 
optimality: 0.38%). 
Integer L-Shaped exact algorithm. Extracted from S6guin (1994). 

Tabu search heuristic. Extracted from S6guin (1994). 

for the VRPSDC. Again, it uses an Integer L- 
Shaped method. Solutions are reported for in- 
stances involving up to 46 vertices. One interest 
of these studies is to show that stochastic cus- 
tomers are a far more complicating factor than 
stochastic demands. Another  interest is that they 
provide for the first time optimal solutions against 
which heuristics can be measured. One such 
heuristic was recently proposed by Gendreau, 
Laporte and S6guin (1996). It constitutes the first 
application of tabu search (see, e.g., Glover, 1993) 
in a stochastic VRP setting. A novelty in this 
algorithm is the use of a proxy function to avoid 
computing at each iteration the exact expected 
cost of a candidate solution. On a set of 825 
instances ranging from 6 to 46 vertices, it pro- 
duces an optimal solution in 89.45% of all cases. 
The average deviation from optimality is only 
0.38% and in 97.8% of all cases it is smaller than 
5%. We have summarized in Table 4 the main 
scientific contributions relative to the VRPSCD. 

9. Conclusion 

The study of SVRPs is a relatively new and 
fast growing research area which should gain in 
importance with the spread of real-time vehicle 
guidance systems and the need to provide up- 

dated instructions to drivers. As compared to the 
development of research in the deterministic case 
(see, e.g., Laporte, 1992), research on SVRPs is 
rather underdeveloped. Two promising research 
avenues are the development of exact algorithms 
based on the Integer L-Shaped method, and the 
construction of tabu search heuristics. 
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