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SE C U R I T Y A N D PR I VA C Y I N EM E R G I N G WIRELESS NETWORKS

INTRODUCTION
Most of the focus of cross-layer optimization in
wireless networks has been on enhancing basic
network operations, such as routing and medium
access control, and little attention has been
devoted to using cross-layer information to
enhance security. This is somewhat surprising,
given that wireless networks have properties that
make them markedly less secure than their wired
counterparts. Perhaps foremost of these is the
fact that the wireless medium is intrinsically a
broadcast medium. In order for an adversary to
overhear communications in the wired world, a
physical connection to the wire is required. In
contrast, for wireless networks, adversaries can
easily witness anything that is transmitted as
long as they are within listening range of the
transmitter. Further complicating matters are
the ubiquity and portability of the platform

itself, implying that adversaries can attempt to
access the network from anywhere. This fact is
evidenced by extensive underground wardriving
efforts, and the end result is that network intru-
sion and subversion is now easier.

In spite of the unique challenges the wireless
domain presents, the approach commonly taken
to secure wireless networks has been to translate
traditional cryptographic security protocols to
the wireless domain. Although the application of
conventional security protocols to wireless net-
works is essential, such an approach ignores the
opportunities provided by the wireless aspect of
the problem. For example, the wireless channel
can be employed to explicitly provide forward
and backward security, which present systems
largely lack.

In this article we present the case for new
wireless security modalities that turn the wireless
medium from being a disadvantage into an
advantage. In essence, rather than relying solely
upon generic, higher-layer cryptographic mecha-
nisms, as has been the norm, we argue that it is
possible to achieve a cross-layer approach that
uses physical layer information to enhance
encryption and authentication functionality. At
the heart of the approach are the following key
characteristics of wireless channels:
• Multipath-rich environments exhibit channel

responses that rapidly decorrelate in space
and time.

• Wireless channels are reciprocal in space,
implying that the channel behaves in the same
manner irrespective of in which direction it is
used/observed.

• Wireless channels change in time, thus provid-
ing a natural refresh mechanism for a chan-
nel-based security mechanism.

• The time variation is slow enough that any
reasonable wireless system can accurately esti-
mate and process channel impulse responses
well within the coherence time of the channel.

These properties result from the manner in
which RF waves propagate in a multipath rich
environment (i.e., an environment with a large
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number of reflectors and scatterers), which is
typical for most terrestrial wireless systems, and
represent a benefit to security services that does
not exist for conventional wired or optical chan-
nels. The fact that the radio channel between
two entities is unique and decorrelates quickly
with distance can serve as the basis for establish-
ing shared secrets that may be used as encryp-
tion keys for higher-layer services needing
confidentiality. Similarly, the wireless channel
can allow entities to authenticate each other’s
transmitters by having each user track the other’s
ability to produce an appropriate received signal
at the recipient.

We begin by identifying opportunities for the
physical layer to enhance security services, using
802.11 systems as an example case study. We
then review some basic properties of wireless
propagation that are relevant to these methods
for enhancing security. Physical layer authentica-
tion methods that can be used to enhance secu-
rity in 802.11 systems are described in the
following section. We then focus on PHY-layer
encryption services that can enhance 802.11i by
using the channel to establish secret bits for
encryption. We end with concluding remarks
and research challenges.

WIRELESS SECURITY: THREATS AND
OPPORTUNITIES FOR ENHANCEMENTS

Securing network systems focuses on addressing
confidentiality, data integrity, authentication, and
non-repudiation through protocol suites that are
typically applied at the link, network, transport,
and application layers, as is evidenced by 802.11i,
IPSec, and SSL/TLS. Although each of these
suites might support multiple security objectives
(e.g., confidentiality and authentication in
802.11i), with few exceptions these protocol suites
tend to be focused on a single layer and not
involve cross-layer design. Wireless systems inher-
ently have unique properties at the physical layer
that can be exploited to enhance security. Such
enhancements require the sharing of information
between the physical layer and higher layers.

In considering a cross-layer security architec-
ture, which includes the physical layer, we con-
centrate on two central themes:
• It is often desirable to enhance the security of a

wireless LAN without requiring new crypto-
graphic material. This goal can be accomplished
by properly utilizing physical layer resources.
For instance, spoofing in a wireless LAN is a
problem that can be addressed using informa-
tion from the physical layer without explicitly
introducing new cryptographic primitives.

• When new cryptographic matter is required,
the physical layer can provide a good resource
for obtaining such new matter.

802.11I OVERVIEW
In order to set the stage for how physical layer
information can enhance security, we provide a
review of current wireless LAN security. Given
the widespread use of the 802.11 standard, we
use this system as our representative example,
although our ideas are applicable to wireless sys-
tems in general.

Among the innovations of 802.11i is the intro-
duction of two authentication modes. The first
mode is based on the availability of an authenti-
cation server (hereafter referred to as 802.1X-
based authentication). The second mode is based
on configuring a secret password or pass-phrase
on the participating devices: the pre-shared key
(PSK) mode. In the PSK mode a user authenti-
cates by demonstrating knowledge of the secret
key. 802.1X-based authentication is typically used
in WLAN office or enterprise deployments. It is
based on the availability of digital certificates at
both the client as well as the authentication,
authorization, and accounting (AAA) server.

Figure 1 summarizes the sequence of steps in
the 802.1X authentication and key distribution
process. In the PSK mode association between
the STA and AP replaces the communication
prior to the establishment of the pairwise master
key (PMK) in Fig. 1. The PSK then becomes the
PMK, and the rest of the procedure is
unchanged. Note that the master key (MK,
shared by STA and AAA server) and PMK
(shared by STA, AP, and AAA server) are not
the same because the roles of the AP and AAA
server are separated. Furthermore, the PMK and
pairwise transient key are not the same; since
updating the entire key mechanism is resource
intensive, the PTK is the key that is updated.

OPPORTUNITIES TO ENHANCE 802.11I
Although 802.11i addresses a wide range of securi-
ty threats facing wireless LANs, the protocol suite
is not complete, and there are many threats that
can undermine 802.11i. The research and stan-
dards community literature is filled with examples
of exploits against 802.11i, ranging from denial of
service (DoS) attacks to attacks that undermine
802.11i because it attempts to maintain backward
compatibility. Although it may be possible to
address such threats through further refinement of
the security protocol suite, many threats may easi-
ly be addressed in a cross-layer security framework
using information provided by the physical layer.
In this article we briefly touch on two such oppor-
tunities. The first opportunity addresses the fact
that management and control frames are unpro-
tected, and hence various DoS attacks are possible
by conducting a spoofing attack on the identity of
an access point (AP) (e.g., the well-known de-
authentication or disassociation attack), or by a
single client conducting a Sybil attack by claiming
multiple network identities. As seen later, such a
threat can be dealt with by tracking the channel
between transmitter and receiver (e.g., between a
client and an AP), and declaring unusual channel
responses as an anomaly, indicating spoofing. The
physical layer also provides an opportunity to
address risks associated with the compromise of
the PMK in 802.11i. In particular, by integrating
secret bits extracted from the physical layer chan-
nel into the key establishment process, it is possi-
ble to achieve forward and backward secrecy.

THE WIRELESS CHANNEL

We now provide a brief review of wireless prop-
agation in multipath environments. A more
detailed and precise exposition on propagation
can be found in [1].
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Throughout our discussion, we shall assume
that all of our parties are in listening range of
one another. We shall employ the popular secu-
rity convention of introducing three parties,
Alice, Bob, and Eve, who are potentially located
at spatially diverse positions, as in Fig. 2. The
two legitimate users are Alice and Bob; Alice
serves as the transmitter that initiates communi-
cation, while Bob serves as the intended receiv-
er. Their nefarious adversary, Eve, may be either
a passive eavesdropper or an active adversary
that injects communications.

Across the wireless channel, the radio fre-
quency (RF) signal from Alice to Bob is affected
by a variety of factors, ranging from attenuation
to large- and small-scale fading. Fading arises
when a transmitted signal traverses multiple
paths that combine constructively or destructive-
ly. As a result, fading is largely absent when
there is no multipath, such as in deep space. The
effect of multipath for a specific transmitter-
receiver pair can be represented as a system with
a time varying transfer function. In the time
domain this transfer function is referred to as
the time-varying channel impulse response h(t,τ).
While a direct formulation of h(t,τ) from under-
lying physics is generally unwieldy, this function
is unique between any pair of transceivers, recip-
rocal, and decorrelates very rapidly in space. The
decorrelation property implies that if the loca-
tion of one of the transceivers is changed by an
order of half a wavelength, the resulting new
channel impulse response will be statistically
uncorrelated with the previous one. These prop-

erties form the basis for the channel-based
authentication and confidentiality services being
proposed by the community [2]. We now exam-
ine these objectives.

Channel-Based Authentication — Rather than employ
a shared cryptographic authentication key between
Alice and Bob, we instead exploit the unique-
ness of the Alice-Bob channel relative to the
Eve-Bob channel to detect anomalous communi-
cations. The wireless channel thus provides an
additional layer of guarantee against a breach in
authentication.

Secret Key Establishment via Multipath Channels —
Confidentiality is traditionally achieved through
encryption using a shared key. In multipath envi-
ronments the unique characteristics of the chan-
nel between Alice and Bob can enable the
creation of a unique secret key between them —
a key that cannot be created from any other
location. Furthermore, this key can be refreshed
often and is independent of the authentication
credentials of the users.

These topics are based on the ability of the
multipath environment to provide a waveform
whose structure an adversary cannot measure or
model accurately. Our assumption throughout
this article is that the radio environment is both
quasi-static and richly scattered. These condi-
tions are highly favorable to the effectiveness of
the techniques we propose, and correspond to a
wide range of practical scenarios. Lastly, we note
that the proposed techniques are only suitable

Figure 1. Overview of 802.1X-based authentication and key distribution.
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for channel responses and not gross received
power levels, which may easily be affected by
anisotropic conditions and adversarial attacks.

ENHANCING 802.11 SECURITY USING
CHANNEL-BASED AUTHENTICATION

We now show how the security of 802.11 can be
improved by providing a form of authentication
via the physical layer. It must be noted that such
an identification service must be interpreted
within the restrictions of the physical layer — it
is not possible to verify the identity of a person
involved in communication (which must be
accomplished at a higher layer). However, wire-
less authentication can recognize a particular
device based on its unique channel characteris-
tics (i.e., authentication of the actual transmitter).

SPOOFING FOR DOS IN 802.11
Spoofing attacks are very easy to launch in many
wireless networks. For example, in commodity
802.11 networks, it is easy for a device to alter
its medium access control (MAC) address by
simply issuing an ifconfig command. This is a
dangerous problem because many of the man-
agement and control frames in 802.11 networks
are not authenticated. This implies that a rogue
device can spoof another device by simply chang-
ing its MAC address and then cause a variety of
DoS attacks. For instance, an attacker can trans-
mit de-association or de-authentication frames,
since these are not protected by 802.11i, and
thereby cause repeated disruptions in valid
802.11 links. In another variant, an attacker can
forge the unprotected EAPOL-Start or EAPOL-
Logoff messages in the 802.1X authentication
protocol, which would prevent 802.1X authenti-
cation from succeeding and disconnecting the
supplicant, respectively. Similar DoS attacks are
possible on unprotected control frames such as
the request to send (RTS) virtual carrier sense
mechanism. Each of these attacks is possible
because there is no simple means to detect that
the transmitter initiating the attack is not in fact
the legitimate transmitter.

CHANNEL-BASED AUTHENTICATION

We seek to exploit the uniqueness of the Alice-
Bob channel as an authenticator to distinguish
between a legitimate transmitter and an illegiti-
mate one. To illustrate how the property of rapid
spatial decorrelation can be used to authenticate
a transmitter, consider a simple transmitter iden-
tification protocol in which Bob seeks to verify
that Alice is the transmitter. Suppose that Alice
sends messages to Bob sufficiently frequently to
ensure temporal coherence between successive
messages and that, prior to Eve’s arrival, Bob has
estimated the Alice-Bob channel. Now, Eve wish-
es to convince Bob that she is Alice.

Bob can use the received signal to estimate the
channel response and compare this with a previ-
ous record for the Alice-Bob channel. If the two
channel estimates are close to each other, Bob will
conclude that the source of the message is the
same as the source of the previously sent message.
Otherwise, Bob should conclude that the source is
likely not Alice. Mutual authentication can be
achieved by having Alice similarly estimate the
Bob-Alice channel using successive transmissions.
In one formulation of this problem, the authenti-
cator signal consists of multiple simultaneous car-
rier tones [3], such as in an orthogonal
frequency-division multiplexing (OFDM) system.
To ensure independent fading across carriers, the
carrier frequencies should be separated by at least
the channel coherence bandwidth [1]. Let us sup-
pose that Alice has initially sent Bob N carrier
waves. The received tones at Bob allow him to
measure Hi = H

~
i + zi for i =1 … N, where H

~
i is

the gain of the Alice-Bob channel at frequency fi,
and zi is the corresponding noise and interference,
modeled as a complex Gaussian N(0,σ2). At a later
time, the claimant sends Bob N carrier waves with
the same carrier frequencies, and Bob measures
the corresponding set of complex gains {Gi}. The
verification process involves testing {Gi} against
{Hi} using a hypothesis testing framework [3].
Under the null hypothesis H0, the claimant is
Alice, and Gi = H

~
i + ni, for measurement noise ni

~ N(0,σ2), while under H1 the claimant is Eve and
Gi = G

~
i + ni. Here, over i, H

~
i has average power

Figure 2. a) The adversarial multipath environment involving multiple scattering surfaces. The transmission
from Alice (A) to Bob (B) experiences different multipath effects than the transmission/reception by the
adversary, Eve (E); b) the resultant wireless channel between Alice and Bob is reciprocal — that is, the
channel has the same random state if measured in either direction at the same time instant. The channel
decorrelates in space, so the Alice-Eve and Bob-Eve channels are statistically uncorrelated with the Alice-
Bob channel if Eve is more than an order of a wavelength away from Alice and Bob.
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γA, while G
~

i has average power γE. We may choose
a normalized correlation statistic, T = (∑ i
HiG*i)/(NγA), for discrimination. If we assume that
we have a uniform scattering environment [1] and
that Eve is several wavelengths away from Alice,
we can assume independence between H

~
i and G

~
i.

In Fig. 3 we present the probability of detecting
Eve vs. the (adversarial) power ratio γA/γE for a 1
percent false alarm rate with the number of carri-
ers N as a parameter. If we make assumptions on
Eve’s largest likely channel power γE, these results
serve as guidelines for choosing the number of
carriers needed for reliable physical layer discrimi-
nation and authentication. Alternately, if we have
limits on N, such as might arise from regulatory or
hardware constraints, we may use these results to
assert Eve’s ability to successfully forge a single
authentication challenge, thereby quantifying the
additional security gain provided by physical layer
authentication. When Eve has a much larger
power γE compared to γA, the correlator alone
performs poorly. However, Eve can then be
detected through energy detection techniques
because the larger received power of her signal
makes it easily distinguishable from the legitimate
user’s signal.

Physical-layer authentication compares each
new measurement with prior channel estimates,
thereby verifying whether the new measurement
likely came from the source of prior measure-
ments. Even in the absence of an initial crypto-
graphically verifiable association between Alice’s
identity and her channel response, the physical
layer can still detect whether there has been a
change in the transmitter. In essence, physical
layer authentication is a form of anomaly detec-
tion, and thus can be used to detect anomalous
spoofed frames in 802.11.

ENHANCING 802.11I SECURITY USING THE
PHYSICAL LAYER

Rather than try to design new encryption algo-
rithms, the wireless channel may be used to gen-
erate secret bits that can be used as keys for
conventional encryption algorithms like the
Advanced Encryption Standard (AES). Although
such utilization may appear limited at first, it in
fact delivers a significant improvement in the
security of the baseline crypto-systems and does
so precisely in the aspects that traditional (com-
putational) cryptography cannot address.

OVERVIEW OF INFORMATION-THEORETIC SECRECY
Our focus is on secrecy extraction schemes. We
note, however, that there is a complimentary
approach, secrecy dissemination, which has also
received attention recently [2, 4, 5]. Referring back
to Fig. 2, when Alice transmits a signal to Bob, he
receives a signal that is a result of the Alice-Bob
channel, while Eve receives a signal that follows
from the Alice-Eve channel. In a secrecy extraction
scheme, Alice’s signal may be a probing signal that
Bob uses to estimate channel state information
hAB, from which secret bits (keys) are extracted.

In this article we only outline the basic process.
The interested reader can find details of the analy-
sis and algorithm design in the references provid-
ed. In our discussion we assume that Alice and

Bob each have estimates of their shared channel
(e.g., by probing the channel repeatedly in a time-
division duplex [TDD] fashion). We denote by hAB
Bob’s estimate of the Alice-Bob channel, and by
hBA Alice’s estimate of the Bob-Alice channel.
Similarly, we denote by hAE Eve’s estimate of the
Alice-Eve channel. The channel estimates may
correspond to scalar or vector quantities.

SECRECY EXTRACTION FROM CHANNEL ESTIMATES
Once channel state information has been esti-

mated, the process of key extraction is rather
straightforward. One simple approach to extract-
ing shared keys employs cryptographic one-way
functions [6]. For example, once Alice and Bob
have converted hBA and hAB to a binary repre-
sentation (requiring quantization of the channel
state information), Alice can calculate KA =
f(hBA), while Bob can calculate KB = f(hAB),
where f is a one-way function. If hBA = hAB, they
have arrived at the same result.

In the ideal situation we would have KA =
KB, and hence Alice and Bob would have a
shared key. However, in practice Alice and Bob
have slightly different channel estimates. To
resolve this difference, Alice and Bob must com-
municate over a public channel to ensure that
they generate identical bit strings. The challenge
for them, therefore, is how to communicate pub-
licly in a manner that gives away little of their
shared secret and yet results in a common iden-
tical key string.

The solution involves simple use of an error
correction code. One of the parties, say Alice,
simply pretends that Bob’s quantized channel
observation hAB is obtained by Bob as a result of
transmission of hBA by Alice through a noisy
channel. (We stress that this is just a thought
experiment; in reality, no such transmission has
occurred!) The discrepancies between hBA and
hAB are due to errors introduced by this (imagi-
nary) channel. Alice’s challenge is therefore to
correct these errors. This is accomplished by

Figure 3. Probability of detecting Eve as a function of different power ratios.
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transmitting a set of error correction bits gener-
ated using an appropriate error correction code.
Unfortunately, in transmitting these bits, part of
the secret information contained in the hAB, hBA
pair is leaked. This problem is eliminated
through the use of an appropriate hash function
that replaces the one-way function and produces
somewhat shorter keys, K′A and K′B. Through
proper selection of the error correcting code and
the hash, we can make sure that K′A and K′B are:
• Arbitrarily close to complete secrecy in a

strong sense
• Equal with probability arbitrarily close to 1

For a detailed analysis of this procedure, we
refer the reader to the seminal work of Maurer
[7] and Ahlswede and Csiszar [8]. This work
demonstrated that under certain conditions and
by using appropriate code and hash functions,
the resulting extracted key, K′A = K′B, is the
largest theoretically possible. Over the last
decade the ideas developed in [7, 8] have been
successfully implemented in quantum cryptogra-
phy systems. The application to the wireless
channel is more recent; however, significant
progress has been made. An earlier work [9]
demonstrates how many bits may be generated
from a flat (e.g., Rayleigh) fading channel. Fig-
ure 4, taken from [9], shows both the theoretical
limit (mutual information) and the performance
attained using simple scalar quantization tech-
niques described therein.

Finally, recent work [10] demonstrated key
generation from actual 802.11 channels as mea-
sured in a real propagation environment.

ENHANCING 802.11I WITH
CHANNEL-BASED SECRECY

To demonstrate how the introduction of chan-
nel-generated information-theoretic-secret (ITS)
bits can improve the 802.11i protocol, we begin
with minimal modification. In Fig. 5 we show
how a WLAN transmission using PSK authenti-

cation mode can be modified using channel-
based secrets.

First, as shown on the left of Fig. 5, we vary
the 802.11i protocol only slightly. We simply use
information-theoretically secure strings obtained
as described earlier to derive the PT from the
PMK. That is, PTK = Hash{PMK, PTK-old,
Info-in-the-clear, ITS bits}, where the hash is a
secure, one-way, many-to-one function. It not
only provides computational security for its input
as a whole, but makes sure that the presence of
ITS bits makes it impossible to deduce PMK
with a certainty that exceeds the entropy of the
ITS bits. The measurements required to gener-
ate the ITS bits can be carried out at any time
prior to deriving the PTK (not just after deriving
the PMK as shown in Fig. 5).

We now depart from the key hierarchy of
802.11i to show how we might maximize the
potential benefits of the ITS bits. The resulting
approach is shown on the right of Fig. 5. If
802.1x authentication is used, the AAA server
and STA verify each other’s credentials, and the
STA provides the server with a secret. The AAA
server forwards the secret to the AP, and an
encryption key (EK) is derived by the STA and
AP using the secret and the ITS bit-string. If
authentication is PSK-based, the PSK acts as the
secret. Part of the EK is used for verification, a
second part is used to protect group keys derived
later and the remaining part is the portion actu-
ally used as the session key. We note that in
place of the key hierarchy of 802.11i we simply
have the following two sets of keys:
• The pre-shared secret used for authentication
• An intermittently updated EK, which is used

for actual data transmission
Let us examine how the proposed scheme

addresses the security threats we pointed out in
our discussion of 802.11i. Suppose an attacker
has been able to gain access to a user’s PSK and
is eavesdropping on the transmission. With the
scheme on the left in Fig. 5, the eavesdropper is
able to obtain the PMK, but can go no further
since it cannot obtain the ITS bits used to derive
the PTK. Similarly, the scheme on the right of
Fig. 5 permits the eavesdropper to realize that
authentication has transpired, but does not allow
it to eavesdrop on actual data being transmitted.

The proposed scheme specifically provides
forward and backward security. Since ITS bit
strings are constantly generated in time, we are
regularly provided with a fresh set of ITS bits
that can then be immediately used to derive a
new PTK or EK for communication. Thus, even
when the key is completely exposed, data is vul-
nerable only during the period of time it takes to
accumulate enough ITS bits for a new key. Final-
ly, we note that attacks where Eve impersonates
Alice in the key extraction protocol can be dealt
with using physical layer authenticatio, in a man-
ner similar to that in [3, 10].

CONCLUDING REMARKS

The selectivity and uniqueness of a wireless
channel, along with the fact that the channel
decorrelates away in space over distances that
are on the order of a wavelength, can allow the
channel to be used as a means to prevent spoof-

Figure 4. Secret key rate against SNR.
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ing attacks and thus maintain an authenticator
for the legitimate transmitter. Furthermore, the
fact that the channel follows reciprocity allows
the collection of highly correlated information,
which can be used to extract a string of secret
bits for use as cryptographic keying material.
Thereby the channel also provides a simple
means for enhancing confidentiality services in
wireless networks.

RESEARCH CHALLENGES
One of the main challenges is the careful inte-
gration of physical layer information into exist-
ing security infrastructure such that the resultant
systems are quantifiably resistant to attacks.
Since physical-layer security techniques rely on
the randomness inherent in the wireless channel,
another challenge that remains is to ensure that,
as time evolves, terminals properly adapt to the
amount of randomness the channel provides.
This may be possible, for example, by estimating
the K-factor of the channel to distinguish
between channels with sufficient multipath from
those without. Otherwise, the methods are sus-
ceptible to overestimating the level of security.

Finally, a major challenge faced by these
methods is to prove that the randomness provid-
ed by a wireless channel is in fact hidden from a
suitably defined adversary. One important direc-
tion to explore is the capability of an active
adversary to manipulate the phase characteristics
of the channel and its estimates in a controlled
manner. Critics further argue that modeling the
wireless channel can reveal information to a pas-
sive adversary. However, randomness in the
channel in fact arises from the hardness of
acquiring accurate information about the posi-
tions and velocities of all scatterers and reflec-

tors, and the extremely sensitive dependence of
the channel conditions on these parameters. A
relevant direction for security researchers to
explore is to relate the underlying security pro-
vided by the physical layer with the complexity
needed to specify a model that accurately
describes the actual realizations of the physical
channel. For example, there is no physical layer
security in free space, where the actual channel
realization is trivial to predict.
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