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Abstract Non-Gaussian triplet Markov fields (TMF) model is suitable for dealing with multi-class segmenta-~
tion of non-stationary and non-Gaussian synthetic aperture radar (SAR) images. Considering the complexity
of the model and algorithm, as well as the requirement of real-time, and robust and efficient processing of SAR
images, a fast algorithm based on TMF for unsupervised multi-class segmentation of SAR images is proposed
in this paper. For the speckle noise in SAR images, numerical characteristic, threshold selection and QuadTree
decomposition criterion are researched firstly. With the new method, a SAR image can quickly be mapped
into an edge-based pixon-representation, which results in a coarse decomposition in smooth regions, and a fine
decomposition in edges. Then by combining TMF model with the pixon-representation of SAR image, a new
potential energy function of TMF based on pixon-representation is derived. Finally, the segmentation is finished
by Bayesian maximum posterior mode (MPM). The effectiveness of the fast TMF algorithm is demonstrated by
applying it to simulated data and real SAR images.
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1 Introduction

Synthetic aperture radar (SAR) image segmentation is an important part of target recognition and
interpretation of SAR images. It can provide the overall structure of the image information, reveal the
nature of SAR images, establish the basis of automatic target recognition (ATR) and promote applications
of SAR. In recent years it has gradually become a research hotspot both at home and abroad. Because
of speckle produced by coherent electromagnetic irradiation during imaging, traditional optical image
segmentation algorithms cannot suppress noise, which will lead to misclassifications. So they are not
suitable for SAR image segmentation.

Recently, the development of statistical theory has opened up an effective way to analyze and model
images. However, hidden Markov models (HMMs) are too simple to deal with a large number of complex
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images (non-stationary images, texture images, strong noisy images). They can satisfactorily deal with
stationary images [1, 2] but are powerless to treat non-stationary SAR images. So far their own statistical
model has been constantly expanded and improved, making it possible to deal with non-stationary images
and related non-Gaussian noise more efficiently. One of the effective extensions of HMMs is the triplet
Markov fields (TMF) [3-11], which well describes the statistical characteristic of SAR images. In the case
of two random fields X and Y of Markov random fields (MRF) model, TMF have been proposed in which
a third random field U is introduced, and the triplet 7' = (X,Y,U) is assumed to be Markovianity [8].
One possible meaning for U = (Ug)ses is to use U = u to define different homogeneities of (X,Y"). This
means that the Markov field distribution p(x,y/u) is a non-stationary field and the m possible values of
Us describe m different Markov non-stationarities (m-MNS) of (X,Y"). Consequently this model is very
suitable for dealing with the non-stationary SAR images in which the pixel values of image have random
mutations caused by multiplicative speckle noise.

When using TMF algorithm to deal with large SAR images, we have to calculate the potential energy
function with the four neighbors or eight neighbors of each pixel, and then calculate the distribution of
the triplet (X,Y,U). The large amount of computation reduces the efficiency of the algorithm. In this
paper, we try to introduce the concept of pixon into the TMF. This concept was first proposed by Pina
and Puetter [12], whose essence is that the spatial scale at each site of an image varies according to the
information embedded in the image, implying that the picture information can be dealt with by using cells
of variable sizes corresponding to the local spatial information. In this way the optimal scale description
of images is realized. Yang et al. [13] introduced a new pixon definition scheme for segmentation, whose
shape and size can vary simultaneously, and they used the anisotropic diffusion equation to extract the
pixons in their definition scheme. Then they combined the pixon concept and MRF model to reduced
computation cost. On this basis, Lin et al. [14] proposed a classical QuadTree combination algorithm to
extract the pixon-representation of natural images.

In this paper, for SAR images with speckle noise, we combine the pixon concept and TMF model to
improve the computation efficiency of TMF segmentation algorithm. First we propose a new QuadTree
decomposition for the speckle in SAR images: we introduce the region noise level o;, and then establish
some new criterions of decomposition discriminant and threshold selection. Thus we obtain a coarse
decomposition in smooth regions and a fine decomposition in edges. Finally we obtain an edge-based
pixon-representation of SAR image. By combining TMF model with the pixon-representation of SAR
image, the new potential energy function of TMF based on pixon-representation and the new segmentation
formula of Bayesian maximum posterior mode (MPM) [15] are derived. The fast TMF algorithm is used
to segment simulated data and real SAR images. Experimental results and analysis demonstrate that the
fast TMF algorithm can effectively suppress the influence of speckle in SAR images, and greatly reduce the
complexity of the algorithm and the running time without affecting the performance of segmentation. The
fast TMF algorithm realizes the real-time, and robust and efficient processing of SAR image segmentation.

2 Non-Gaussian triplet Markov fields (TMF) model

Let S be the set of pixels. The MRF model contains two random fields defined on S, X = (X;), g
and Y = (YS)SC5. The random X and Y; take their values in 2 = {wq,...,wi} and R, respectively.
The problem of the statistical segmentation is how to recover the unobservable X from the observed
Y'[1, 2]. The possible nonstationarity of the distribution p(z,y) of the (X,Y") is managed by introducing
a third random field U = (Us),.g. Thus the m possible values of U, are interpreted as m different
possible stationarities of (X,Y). Let Z = (X,Y) be a pairwise random field. Then Z has an m-
Markov nonstationarity [8]. If there is a random field U = (Us), g each U, taking its value in a
finite set A = {\1,..., A\x}, then the triplet T = (X,U,Y) is a stationary Markov field. When the set
U = (Us),cg is simple enough, the TMF makes Bayesian processing possible and makes it possible to
estimate X = (X;),-g from Y = (Y,) g

Let us denote by C' the set of cliques. Directly consider the Markovianity of the couple (X,U), and
suppose that A = (a,b) is limited to two states of (X,Y’) which represent a set of stationarities. The
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energy of the TMF model is then written as

W(z,u) = Z k(1 =20(xs, x0)) — (a2 56" (us, ug, @) + 3 6™ (us, ug, b)) (1 — 0(xs, x4))
(s,t)ECH

+ Z (1= 28(zg, 1)) — (26" (s, g, @) 4+ iy 6™ (s, ug, ) (1 — 8(zs, 1)), (1)
(s,t)eCy

where C'y (or Cy ) is the set of couples of pixels’ horizontal (or vertical) neighbors, and

1, us=wu; =0,
0, wus # ug.

1, us=us =a,

0, wus # ug, @

0 (us, ug,a) = { 0" (us, ug, b) = {

Then suppose that the random fields Y = (Y;), g are not independent of X = (X,), g, and the dis-
tributions p(ys|zs) would not be necessarily Gaussian. Assume that there are k classes 2 = {w1,...,wi}
and we want to have k densities hq, ..., hy, possibly of different forms, for the k distributions p(ys|zs =
w1), .-, P(ys|rs = wi). Let G be the cumulative distribution function of Gaussian zero-mean variable
with variance one and let Hy, ..., Hi be the cumulative distribution functions corresponding to Ay, ..., hg.
Let us consider the following TMF (X,U,Y):

1. Take a Markov field (X, U) with energy W.

2. Consider Y’ = (Y])ses Gaussian Markov random field, where each Y zero-mean, with variance one
is

p(y') = yexp {— %(Z(yéf +> —5ly;y£)] = yexp[-W'(y)]. (3)
ses (s,t)

3. For each s € S, put Yycs = H;(Sles oG(Y/!cg). Finally, the distribution of the (X,U,Y’) is defined as

aG! ny:’ms(ys)) H

Pl ) = yexp [— W, 0) — W (p(a, ) + 3 log ()

ses

where ¢(z,y) = ¥ = (Y{)ses. The TMF model given by eq. (4) can estimate p(zs|y) in two steps:
1) estimate p(ws,us|y) by the Gibbs sampler [16, 17]; and 2) calculate p(zs|ly) = >°, c P(2s, us|y).
Therefore, the Bayesian MPM can be used in TMF given by eq. (4).

3 Fast algorithm based on TMF for unsupervised multi-class segmentation
of SAR images

In this section we propose a fast segmentation algorithm. When using TMF algorithm to deal with
large SAR images, the large amount of computation reduces the efficiency of the algorithm. Here we try
to introduce the concept of pixon into the TMF to reduce computational cost. In subsection 3.1, the
criterion of the new QuadTree decomposition based on speckle of SAR images is established to obtain
a pixon-representation of SAR images. In subsection 3.2, a new potential energy function based on
pixon-representation is derived. Finally the method of parameter estimation is given in subsection 3.3.

3.1 New QuadTree decomposition and pixon-representation of SAR image

First we give the definition of pixon as follows: S is the set of all image pixels, and P; = {s;};;, where
n; is the number of pixels in P;. If and only if all pixels in P; are connected, P; is called the ith pixon
of the image [14]. Pixon-representation of image is defined as follows. A set of pixons, P = {P;}¥, is a
pixon-representation if and only if: 1) P, # 0; 2) P,(\P; =0 if i # j; 3) U~, P, = S.

The definition above shows that the pixon-representation segments the image into a set of disjoint
regions, as shown in Figure 1(a). A set of edges can be acquired from these regions, n = {n; ;| P;, P; € P
and P;, P; are adjacent}, where the direction of n; ; is from ith pixon P; to jth pixon p;, and |n, ;| is
equal to the length of the boundary between the two adjacent pixons F; and P;. The pixons combined
with their edges construct a graph, which represents the observed image S, as shown in Figure 1(b).
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(a) (b)

Figure 1 An example of pixon-representation. (a) The pixon map; (b) the corresponding graph.

In this paper we use the QuadTree decomposition to get the pixon-representation of images. Let maxg
and ming respectively be the maximum and minimum pixel value in the region to be decomposed. T, is
the threshold. The process of classical QuadTree decomposition is as follows. If f. = (maxg —ming) < T,
is false for the initial region, the region will be decomposed into four smaller regions. Then taking the
four regions as the initial region, repeat steps above until f. = (maxg —ming) < 7. is true for all regions.

However, due to the speckle in SAR images, when using classical QuadTree decomposition to deal
with SAR images, the following phenomenons may occur. For too small a threshold T, we will obtain
redundant pixons and for too large a threshold 7., we will lose a lot of details. In this paper, we
introduce the numerical characteristic noise level o; to solve this problem. o; is defined as the noise
standard variance of the i¢th region, which denotes the stationary level of this region. If o; is too large,
there will be edges or multi-class in this region.

Combined with the noise level, a new QuadTree decomposition method with double-discriminants is
used to decompose SAR images. The steps are as follows.

Step 1: Find out the maximum and minimum pixel values of the initial image Iy, maxy = max(Io(z (s,
7))) and ming = min(Zy(z(¢,7))), and then calculate the noise level op.

Step2: Judge whether double-discriminants f.,,, = (maxo — ming) < Ty, and f., = 0o < Ty, are true
or not. If they are true simultaneously, decomposition stops; otherwise decompose the initial image into
four regions. Then use the new regions to replace Iy one by one and return to step 1. Decomposition
does not stop until two discriminants are true simultaneously for all regions.

Since the region consists of multiple classes, when using the classical QuadTree decomposition, the
random mutations of pixel value caused by speckle may make discriminant fe,, = (maxo — ming) <
Tone true; as a consequence, decomposition stops and details are lost. However, when using double-
discriminants, the second discriminant f., = o9 < T, is false for the region, which effectively enables
the decomposition to continue.

The selection of T;,,. and T, directly influences the final segmentation result. To get a better pixon-
representation, our criterion of threshold selection is proposed as follows. For k classes segmentation,
first do an initial segmentation, and then calculate the mean m = {mg,...,m;} and the noise level
o ={o1...0%} of each class such that

Tne = min(m; —my), 1 <14, j <k, i#j, (5)
Tye =min(o;), 1 <i < k. (6)

T defined by eq. (5) can avoid segmenting pixels belonging to different classes into the same class,
and Ty defined by eq. (6) can effectively suppress the influence of noise in stationary regions. The
criterion above combines with the a priori knowledge of images, so it can choose different thresholds for
different images automatically, suppressing the influence of noise.

We adopt the following simple experiment to verify the validity of the new QuadTree decomposition,
as shown in Figure 2. Figure 2(a) is the observed image with speckle, Figure 2(b) is the result of classical
QuadTree decomposition, and Figure 2(c) is the result of the new method. Experimental results indicate
that for images with speckle noise, the classical QuadTree decomposition gets redundant pixons due to
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Figure 2 The QuadTree decomposition results of speckle noisy image. (a) Observed image with speckle (with variance

noise 0.05); (b) the classical QuadTree decomposition method; (c) the new QuadTree decomposition method.

the influence of speckle, while our new method effectively suppresses the influence of speckle and obtains
a satisfactory result because of the introduction of noise level.

3.2 Derivation of the new potential energy function of TMF based on pixon-representation
of SAR images

A neighborhood system of pixon is defined by eq. (7). Let 2 = {w1,...,w;} be the set of possible labels
denoting the classes in the segment image and L = {l1,...,Ix} be a family of random variables where
li=1...n € £2 denotes the label of the ith pixon. The neighborhood cliques of pxion P; are defined by eq.
(8). C(P;) is the set of the neighborhood pixons P; of P;.

H(P;) ={n; ln;; € n}, (7)
C(P) ={P;|P; € H(P;)}. (8)

The expression of W (x,u) in pixel level is given by eq. (4). Now we transform it into pixon level

W(z,u) = Z a(l —20(zs,zt)) — (8™ (us, ur, a) + 0™ (us, ut, b)) (1 — 0(xs, z1)). (9)
(s,t)eC

There are three parameters in eq. (9) in contrast with six in eq. (1). Because the size of each pixon
is undetermined in the pixon-representation of images, there are no horizontal and vertical cliques, so
we choose the same parameter for all cliques. Introducing the pixon intensity p into potential energy
function to weight J function in eq. (9), we obtain potential energy of clique as follows:

0; .
V.(w) = #, 10
) i — [ 10)
0, i = iy, I Li,j
1, Hi #Mja j=1 nq

where n; is the number of pixels included in P;, and I(x; ;) is intensity of z; ;. When the pixon intensities
of pixons F; and P; are similar, and they have different labels, the clique potential associated with the
pixons will be large. This means that the pixons having similar pixon intensities have high probability
to receive the same label.

Finally, substituting eq. (10) into eq. (9) for the § function, we obtain the energy function W (x,u)
based on pixon-representation:

Wy(z,u) = > > al=Vew) = BV, + Vi) (1 = Veu)

P¥i,; €Ha (pF) pvi,; EHu (DY)

> Y a(i-2y)

P¥i,; €Ha (pF) pvi,; EHu (DY) ¢ T H

ge . oY . .
Mi+Mj_2a Mi+ﬂj_2b My
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05,5, 07 ; and 0 ; are binary piecewise functions
; ;

0, i = 1, L=t =a, 1, v =pu" =0b,
0, = { =l g { o=l =0 g { i = H (13)
1, /‘l#ﬂ]a 0, M?#M?#aa 0, M?#M?#ba

where 17 and g denote the intensity of the center pixon in field X and field U respectively, while I
and p3 denote the intensity of the neighbor pixon in field X and field U respectively.
The forms of W' (p(z,y)) and > ¢ log |%§W| are also transformed to meet the model based

on pixon-representation. For each P; € P, put Yp‘: H)}l o G(Y,). Then we obtain the distribution of
(X,U,Y) as follows:

S g 3(G‘10pri(ypi))H'

14
0 (14)

p(x,u,y) = yexp | — Wy(x,u) — W'(p(z,y)) +
P; j€H(p)

3.3 Parameter estimation for fast TMF algorithm

In this paper, we use iterative conditional estimation (ICE) [8, 18] to estimate the parameters of the
overall algorithm. As X is not observable, we have to use Y = y. The method runs as follows.

1. Initialize the searched parameters and the densities associated with the classes by some simple
method.

2. At each iteration ¢, obtain the next parameters and densities associated with the classes from Y =y
and current parameters and densities in the following way.

a) simulate (2971, u9*1) according to p(z,u|y) based on the current parameters;

b) use (91 u9t1) to estimate a to get the next a?t!;

¢)foreachi =1,...,k set P/ = {P; € Plz?™" = w; and (y&™') pe pat to calculate the p(y,|z, = w;);

d) use the densities 27" (y,) = p(yp|z, = w;) to calculate the cumulative functions HT! and Yot =
G lo Hg;ll (Yp) and use y?t' = (yd*!),cp to estimate 471,

3. Stop the procedure when the estimates become steady. Calculate the conditional expectation of the
parameter on (X,Y). If the conditional expectation keeps nearly invariant, the estimates are considered
as steady. The parameter estimation process is given in Figure 3(a) and the whole process of the fast
TMF algorithm is given in Figure 3(b).

4 Experimental results and analysis

In this paper we choose two simulated images and four real SAR images to test the validity and popularity
of the fast TMF algorithm. Test 1(a) is a simulated image 256 x 256 in size; it is corrupted by multiplicative
speckle noise with variance 0.05, while Test 2(a) is 512 x 512 in size and with variance 0.5. The a priori
knowledge of four real SAR images is shown in Table 1. The classes are hand-selected according to the
a priori knowledge. The computer configuration in the experiments is Intel(R) Core(TM)2 Duo CPU
with the frequency of 2.33 GHz. All the segmented images presented above are obtained using 150 MPM
samples, each performed through 30 Gibbs sampler iterations.

The analysis and discussion of the segmentation of simulated image and real SAR images (see Figures
4 and 5) are as follows.

Figure 4 Test 1(c)-Test 2(c) and Figure 5 Case 1(b)—case 4(b) show the estimated U = u by the fast
TMF algorithm. The different values of U describe different possible stationarities of (X,Y’). In our
experiments, we consider two different stationarities and the estimated U = u seems to indicate two
kinds of areas really corresponding to two visually different stationarities.
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Figure 3 (a) The process of parameter estimation; (b) the whole process of the fast TMF algorithm.

Test 1

- 2.

Figure 4 The segmentation results of the simulated SAR images. (a) Initial images with speckle noise; (b) manual

segmentation; (c) estimated U = u; (d) non-Gaussian TMF segmentation; (e) the fast TMF algorithm.

Table 1 The a priori knowledge of the real SAR images

Image Size Band Polarization ENL Classes Image resource

Case 1 512 x 512 X HH 2.9908 4 imaging data from a domestic airborne radar
Case 2 256 x 256 X HH 3.9185 4 Jet Propulsion Laboratory

Case 3 256 x 256 X HH 4.4523 4 DLR and EADS Astrium Company

Case 4 256 x 256 X HH 7.2786 4 imaging data from a domestic airborne radar

4.1 Subjective and objective evaluation of two segmentation algorithms

In the segmentation results we mark the obviously different regions and edges between TMF and the
fast TMF algorithm with yellow windows. From the results, we can see that: as shown in Figure 4, the
edge location in Test 1(e) is more accurate than that in Test 1(d); in Test 2(d) and Test 2(e), the same
segmentation performance is presented; as shown in Figure 5, Case 1(d) and Case 4(d) have smoother
stationary regions and more accurate edges than Case 1(c) and Case 4(c); and there are more details in
Case 2(d) than in Case 2(c). So we consider that the proposed fast algorithm performs as well as the
TMF segmentation algorithm, or even better. Because of the use of the new QuadTree decomposition to
decompose SAR images at different scales and reform an edge-based pixon-representation, this algorithm
realizes a fast and efficient segmentation.
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(d)

Figure 5 The segmentation results of real SAR images. (a) SAR images; (b) estimated U = u; (c) non-Gaussian TMF
algorithm; (d) the fast TMF algorithm.

The objective evaluation criterion is given as follows: It contains three criterions of ration image, which
are the logarithm of the normalized likelihood ratio D, the variance Rlya, and the mean Rlyean [19]. D
describes the region homogeneity of the segmentation results. The closer the value of D approaches 0, the
better region homogeneity the segmentation results have. RI,, describes the change of the pixel value
in the ratio image. The smaller the value, the better the performance of segmentation algorithm. RIean
describes the situation of the suppression to speckle noise. The closer the value of Rl can approaches 1,
the better the suppression to speckle noise will be.

We analyze and discuss the segmentation of simulated data and real SAR images with three criterions
of ration image above. As shown in Table 2, the fast TMF algorithm outperforms the non-Gaussian
TMF segmentation method: the values of |D| and RIean decrease obviously, which indicates that the
regional homogeneity after segmentation is better, thus making the region smoother; the value of Rl ean
is closer to 1, which shows that the fast TMF segmentation algorithm can suppress the speckle noise
more effectively. The subjective evaluation consists with the objective evaluation , which fully indicates
the effectiveness and the universality of the fast TMF algorithm.

4.2 Comparison of computational complexity between the two algorithms

In this paper, a new QuadTree decomposition method is proposed to realize multiscale decomposition to
SAR images, which has smooth regions at coarse scale, and edges at fine scale. In this way, the amount
of data to be processed is effectively reduced, while edges and details are maintained. Table 3 lists the
number of pixels, the number of pixons and the ratios of the numbers of pixons to pixels. From Table
3, we can see that the number of pixons is only 5.32%44.09% of that of pixels. That means that the
amount of data to be processed is greatly reduced. We can also find that the reduction in the amount of
data depends mainly on the complexity of image information. When there are more edges and details,
or strong speckle noise in the image, then more pixons are required, and vice versa.

4.3 Comparison of computational cost between the two algorithms

Table 4 shows a comparison of required computational time between TMF algorithm and our fast TMF
algorithm. From Table 4, we can conclude that the computational cost decreases substantially when new
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Table 2 Comparision of segmentation performance between the two algorithms

Image Non-Gaussian TMF algorithm The fast TMF algorithm

|D| Rlmean Rlyvar |D| Rlmean Rlyvar
Test 1 0.4140 1.0032 0.3687 0.3210 1.0267 0.2745
Test 2 0.7826 1.0355 0.3662 0.7705 1.0533 0.1372
Case 1 1.1079 1.0182 0.2691 0.9278 1.0477 0.2678
Case 2 0.3902 1.0292 0.1632 0.1521 1.0308 0.0677
Case 3 0.2497 1.0294 0.0887 0.2114 1.0327 0.0730
Case 4 0.1815 1.0077 0.0541 0.1810 1.0107 0.0463

Table 3 Ratios between the numbers of pixels and pixons

Image The number of pixels The number of pixons Ratios between the numbers of pixons and pixels(%)
Test 1 65536 3484 5.32
Test 2 262144 115588 44.09
Case 1 262144 44551 16.99
Case 2 65536 19255 29.38
Case 3 65536 9073 13.84
Case 4 65536 11743 17.92

Table 4 Comparison of computational cost between the two algorithms

Image Size of image Cost of TMF algorithm(s) Cost of the fast TMF algorithm(s)
Test 1 256 x 256 49.177021 28.398844
Test 2 512 x 512 305.223631 216.629987
Case 1 512 x 512 245.789907 207.385674
Case 2 256 x 256 61.423555 43.098125
Case 3 256 x 256 61.369764 36.014619
Case 4 256 x 256 61.714754 34.011161

pixon-representation of SAR image is incorporated into the image segmentation process. So our algorithm
is an effective fast algorithm.

5 Conclusions

In this paper, we have proposed a fast algorithm based on TMF for unsupervised multi-class segmentation
of SAR images. For the speckle noise in SAR images, we introduce the region noise level into the classical
QuadTree decomposition, and then establish several new criterions for decomposition discriminant and
threshold selection. With the new QuadTree decomposition, a SAR image can quickly be mapped into
an edge-based pixon-representation. Then by combining TMF model with the pixon-representation of
SAR image, a new potential energy function of TMF based on pixon-representation is derived. Finally,
the segmentation is finished by Bayesian MPM. Our fast TMF algorithm is applied to segment simulated
data and real SAR images. Experimental results and analysis demonstrate that the fast TMF algorithm
can be comparable with, or even outperform the TMF segmentation algorithm, but with significantly
reduced computational cost and greatly improved efficiency. Especially when dealing with SAR images in
large size, the fast TMF algorithm can give a real-time, and robust and efficient result of segmentation.
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