
Coarse-Grained Web Service Availability, Consistency, & Durability

Aspen Olmsted
Department of Computer Science

College of Charleston, Charleston, SC 29401

Csilla Farkas
Department of Computer Science and Engineering
University of South Carolina, Columbia, SC 29208

Abstract— In this paper we investigate the problem of
providing consistency, availability and durability for Web
Service-transactions. We consider each transaction as a black
box, with only the corresponding metadata, expressed as UML
specifications, as transaction semantics. We refer to these WS
transactions as coarse-grained WS transactions. We propose
an approach that guarantees the availability of the popular
lazy replica update propagation method while increasing the
durability and consistency. In this paper we extend our
previous work, called the Buddy System, to handle course
grained WS transactions, we are using UML stereotypes that
allow scheduling semantics from the design model to support:
1.) High availability by distributing service requests across all
available clusters. 2.) Consistency by performing the complete
transaction on a single set of clusters. 3.) Durability by
updating two clusters synchronously.

Keywords-web services; distributed database; modeling

I. INTRODUCTION
In this work, we extend our previous results [1] that

improved the lazy replica update propagation method to
reduce the risk of data loss. The Buddy System executes a
transaction on a primary replica like lazy-replication.
However, the transaction cannot commit until a secondary
replica, “the buddy”, also preserves the effects of the
transaction. The rest of the replicas are updated using one of
the standard lazy update propagation protocols. This
algorithm provides a guarantee of transactional durability
(i.e., effects of the transaction are preserved even if the
server, hosting the primary replica crashes before the update
can be propagated to the other replicas) and efficient update
propagation (i.e., our approach requires the synchronized
update between two replicas only, therefore adding minimal
overhead to the lazy-replication protocol).

However, the Buddy System uses an application-layer

dispatcher to select the buddies based on the data items and
the operations of the transactions, the data versions available,
and the network characteristics of the WS farm. A limitation
of the Buddy System is that the services provided were
simple CRUD (Create, Read, Update, and Delete)
operations. Web Services are normally coarse-grained
functions with input and output that varies based on the
function of the web service. In this paper we propose to use
UML stereotypes to represent transactional semantics. This
will allow the dispatcher to use the resource consumption
semantics to distribute requests to several clusters
concurrently.

Our solution provides several advantages not addressed
in traditional distributed database replica update protocols.
First, our approach provides the scalability required by
modern n-tier applications, such as web farms, and is
suitable for the architectures and technologies implementing
these applications in cloud computing environments. Second,
the buddy-selection algorithm supports dynamic master-
slave site selection for data items and ensures correct
transaction execution. Third, we show that our method can
be easily extended to incorporate network specific
characteristics, such as distance and bandwidth, that further
reduce the latency observed by the client and to provide
load-balancing among the replicas. Our empirical results
support our hypothesis that in the presence of large data sets,
the efficiency of our approach is comparable to the
efficiency of the lazy update propagation method while also
ensuring the integrity of the data.

II. EXAMPLE TRANSACTION
We demonstrate our work using a Ticket Reservation
System (TRS). TRS uses web services to provide a variety
of functionalities to the clients. We use the UML
specification to represent the meta-data. Figure 1 shows an
activity diagram for an implementation of this functionality.
The Unified Modeling Language includes a set of graphic
notation techniques to create visual models of object-
oriented software systems [3]. The XML Metadata
Interchange (XMI) is a standard used by XML to serialize
the visual diagrams into an XML format that can be
consumed by an application program. The following web
services are used in Figure 1: GetSession,
LoginAnonymous, GetZones, GetSeats, GetSeatState,
GetPerformanceDetails, ReserveSeats. Our aim is to handle
unknown load at deployment time. That is, during normal
operations an organization may only have a few concurrent
requests. When a popular event goes on sale, this number
could rise to tens of thousands of requests.

Figure 1 Activity Diagram for Self Service Seat Selection

2013 IEEE 20th International Conference on Web Services

978-0-7695-5025-1/13 $26.00 © 2013 IEEE

DOI 10.1109/ICWS.2013.91

619

III. BUDDY SYSTEM
In our previous work [4, 1], we proposed the Buddy System,
that used pairs of clusters to synchronously update all
transactions. The pairs of buddies are allocated for each
request, allowing increased availability by fully using all
server resources available. Consistency is increased over
lazy-replication because all transactional elements are
updated in the same cluster allowing for transaction time
referential integrity and atomicity. To support the above
components, an intelligent dispatcher was placed in front of
all clusters. The dispatcher operated at the OSI Network
level 7. This allowed the dispatcher to use application
specific data for transaction distribution and buddy
selection.

Coarse-grained web services are essentially distributed
functions where the only information the dispatcher has at
runtime is the input and output parameters of the web
service. For the dispatcher to schedule the coarse-grained
web services properly it needs to map the coarse-grained
service to a limited set of operations on the atomic data item
level.

IV. PRELIMINARIES
Semantics for the coarse-grained web services can be
modeled as UML Activity and Class diagrams. A stereotype
is one of three types of extensibility mechanisms in the
UML that allows a designer to extend the vocabulary of
UML in order to represent new model elements [3].

READ vs WRITE SEMANTICS: Figure 1 is an activity
diagram with two stereotypes used to model web services
that are read-only and web services that write and update
data as part of the process. In the example the
ReserveSeats services modifies data as part of its process
and all other services just read data as part of their process.

ELEMENT UNIQUE IDENTIFIER SEMANTICS: Each
Web Service in the Activity diagram has a matching UML
Class diagram that shows the structure of the input and
output messages. An attribute level stereotype <<PK>> is
used to represent the unique identifier combination of the
attributes.

PARALLEL SCHEDULING SEMANTICS: The UML
Activity diagram (Figure 1) also provides us with the
semantics required to know which services can be called in
parallel. The getSession and loginAnonymous services are
required to be called before the remaining services as they
change required state used by the later service.

V. BUDDY SYSTEM FOR COARSE-GRAINED SERVICES
The Dispatcher Service Request Algorithm needs visibility
into all operations of the transaction at a single point in
time. To facilitate this visibility for coarse-grained services,
the client sends all requests as a batch and the dispatcher
sequences the calls based on the semantics from the UML.

A. Buddy Selection Algorithm
The algorithm iterates over the forks in the activity diagram
to service the items that can be done in parallel. A fork is a
point in the activity diagram where the flow is split and can
run in parallel. The algorithm then determines eligible
buddies that can service the batch of web service requests
and randomly chooses two to do so.

Theorem 1: The Buddy Algorithm guarantees one-copy
serializability.

VI. EMPIRICAL RESULTS
Figure 2 shows the performance results of the
implementation where the additional semantics gained from
the UML data allows the buddy system to almost double the
availability of the original sequential schedule.

VII. CONCLUSION
In this paper we propose an extension to the buddy system
to handle coarse-grained web services. Our solution is based
on extending UML with stereotypes to embed CRUD,
Parallel and data element semantics into the model. Each
individual transaction is applied to a pair of clusters
synchronously allowing enforcement of consistency
guarantees and durability while increasing availability.

VIII. REFERENCES

[1] A. Olmsted and C. Farkas, "The cost of increased transactional
correctness and durability in distributed databases," in 13th
International Conference on Information Reuse and, Las
Vegas, NV, 2012.

[2] Object Management Group, "Unified Modeling Language:
Supersturcture," 05 02 2007. [Online]. Available:
http://www.omg.org/spec/UML/2.1.1/. [Accessed 08 01 2013].

[3] A. Olmsted and C. Farkas, "High Volume Web Service
Resource Consumption," in Internet Technology and Secured
Transactions, 2012. ICITST 2012, London, UK, 2012.

Figure 2 Empirical Results

620

