
A big data analytics framework for scientific data management

Sandro Fiore1,2*, Cosimo Palazzo1,2, Alessandro D’Anca1, Ian Foster3, Dean N. Williams4, Giovanni Aloisio1,2
1Centro Euro-Mediterraneo sui Cambiamenti Climatici, Italy

2Università del Salento, Lecce, Italy
3Computation Institute, Argonne National Lab and University of Chicago, Chicago, IL 60637, USA

4Lawrence Livermore National Laboratory, Livermore, CA, USA
*sandro.fiore@unisalento.it

Abstract—The Ophidia project is a research effort addressing
big data analytics requirements, issues, and challenges for
eScience. We present here the Ophidia analytics framework,
which is responsible for atomically processing, transforming and
manipulating array-based data. This framework provides a
common way to run on large clusters analytics tasks applied to
big datasets. The paper highlights the design principles,
algorithm, and most relevant implementation aspects of the
Ophidia analytics framework. Some experimental results, related
to a couple of data analytics operators in a real cluster
environment, are also presented.

Keywords—big data; data analytics; parallel I/O; eScience

I. INTRODUCTION
In several eScience domains [1,4] the analysis and mining

of large volumes of data is increasingly becoming central to
scientific discovery. The multidimensionality, volume,
complexity, and variety of scientific data need specific
solutions able to (i) support the management and analysis of
large datasets [5,6], (ii) provide array-based functionalities, and
(iii) support the scientific analysis process through parallel
solutions able to deliver results in (near) real-time [7].

Unfortunately, the tools, libraries and frameworks used in
many scientific domains are mostly sequential today. This
barrier strongly limits scientific productivity, slowing down or
entirely preventing data analysis activities on large datasets.

In the climate science context few tools exploit parallel
paradigms for analysis and visualization [8,11], making urgent
the need for new (big) data intensive parallel frameworks.
Relevant projects in this area like ParCAT [12], ParNCL, and
ParGAS [13], share this scientific goal, but provide a toolkit
rather than a framework.

Scientific data needs data warehouse-like [14,15] platforms
to perform data analytics. However, current general-purpose
(enterprise-based) On Line Analytical Processing (OLAP)
systems are not suitable for eScience due to their limited
scalability, a lack of support for parallel solutions and for the
analysis of large volumes of data, and their inadequate support
for numerical and mathematical libraries. Additionally, specific
array-based support (which is key for n-dimensional scientific
data) is not sufficient both in terms of data types and data
analysis primitives to address scientist needs and use cases.

The Ophidia project is addressing most of these challenges,
in the context of a research effort addressing big data analytics
issues for eScience. The key test case for Ophidia concerns the
analysis of global climate simulations produced at the Euro-
Mediterranean Centre on Climate Change, in the context of the

international Coupled Model Intercomparison Project Phase 5
(CMIP5) [16,17]. On a daily basis, climate scientists need to
run on large datasets data transformation, analysis, and
processing tasks to reduce data, extract time series, compute
ensemble means, run scenarios, perform model inter-
comparisons, infer statistical indicators, and perform re-
gridding. Most of these tasks are today performed via batch
and sequential command line interfaces and tools that cannot
provide needed answers efficiently or in real-time. In contrast,
the Ophidia platform aims to provide an OLAP-like data
management solution providing (through parallel “data
kernels” running on HPC machines) real-time answers to
scientists questions. An important building block of the
Ophidia project is the analytics framework, which is also the
key topic of this paper.

The remainder of this work is organized as follows. Section
II describes the Ophidia architecture. Section III presents the
Ophidia analytics framework, discussing in detail the
functional and non-functional requirements that have driven its
design, the analytics framework algorithm and implementation,
the deployment diagram, a comprehensive set of operators, the
internals of three operators, and some experimental results on a
12-node IBM iDataplex cluster. Finally, Section IV draws
conclusions and highlights future work.

II. THE OPHIDIA ARCHITECTURE

As depicted in Fig. 1, the Ophidia architecture consists of
several layers: the storage system, the I/O nodes, the
OphidiaDB, the compute nodes, and the Ophidia server.

The storage system represents the hardware resource
managing the data store of the Ophidia architecture. It consists
of a set of disks storing datacubes.

The storage system is accessed via the I/O nodes, which
host a set of I/O servers responsible for the parallel I/O with the
underlying storage system. As described elsewhere [18], the
current implementation of a single I/O server relies on the
MySQL relational DBMS, which has been extended to support
array-based data type and primitives. The datacubes in the
MySQL databases are organized in a hierarchical structure and
are partitioned in several tables (called fragments) distributed
across multiple databases and MySQL servers. The data in the
fragments are multidimensional arrays stored according to the
Ophidia internal storage model, which exploits a key-value
approach. A preliminary set of Ophidia array-based primitives,
the storage model, and the hierarchical data structure have been
described elsewhere [18] with some examples and use cases.

2013 IEEE International Conference on Big Data

1978-1-4799-1293-3/13/$31.00 ©2013 IEEE

Metadata is stored in the OphidiaDB, a relational database
running on top of a MySQL server.

The compute nodes are machines used by the Ophidia
infrastructure to run the data analytics framework, which is
based on a set of (parallel and sequential) operators providing
the most relevant data and metadata datacube primitives. Each
operator running on the compute nodes triggers a set of array-
based primitives on the I/O nodes to analyze, transform and
process a datacube as a whole. In more detail, the array based
primitives and datacube operators work at two different levels:
while the former focus on n-dimensional arrays stored in a
single relational table (a single fragment), the latter focus on an
entire datacube involving the complete set of associated
fragments. Another important difference is that array-based
primitives run on the I/O nodes (exploiting a software-based
active storage approach), while datacube operators run on the
compute nodes. The currently available array-based primitives
are sequential, while most datacube operators have a parallel
implementation.

Fig. 1. The Ophidia architecture

Finally, the Ophidia server represents the front-end of the
system. It is a web service implemented in gSOAP and
exposing a standard WS-I interface. The server manages both
the user authentication and authorization. It also provides
complete session management support to (i) track existing user
sessions, (ii) limit the maximum number of active concurrent
sessions per user, and (iii) manage session lifetime, caching
and logging. The Ophidia server is strongly tied to the Ophidia
analytics framework. Indeed, it is responsible for submitting
the analytics operators (through the analytics framework) on
the compute nodes infrastructure, thus dispatching jobs and
managing queues and priorities.

In the sections that follow, we describe the Ophidia
analytics framework and its operators. We will review its
design, present a deployment diagram, classify and list
operators, describe implementation details for some operators,
and present some benchmark results.

III. THE OPHIDIA ANALYTICS FRAMEWORK
As stated before, the analytics framework in the Ophidia

system is responsible for atomically processing and
manipulating datacubes, by providing a common way to run
distributive tasks on large set of fragments. The following
subsections present and discuss in detail several aspects of the
Ophidia design and the implementation.

A. Functional and non-functional requirements
The following major functional requirements drove the

design of the Ophidia analytics framework:
• plugin-based infrastructure: the analytics framework

has to provide a plugin-based infrastructure to make
straightforward the implementation, integration,
monitoring, and execution of new operators. To this
end, we design a well-defined and general API with
which each operator must comply, and implement a
runtime analytics framework execution environment;

• data and metadata operators: we must provide a wide
set of core primitives to manipulate both the data
contained in datacubes (e.g., sub-setting, duplication,
transformation, export/import, array-based analysis,
data reduction) and the metadata associated with
datacubes (e.g., list of datacubes, datacube size,
datacube number of elements, datacube provenance
information);

• domain-oriented and domain-agnostic operators: the
framework has to support both domain-oriented and
domain-agnostic operators. Import and export of a
datacube into/from the Ophidia data store can represent
two cases of domain-oriented operators (e.g.,
import/export of NetCDF [17] files to/from the
Ophidia data store in the climate change domain);

• logging and bookkeeping support: the analytics
framework should provide logging and bookkeeping
for every operator. Thus, we include these capabilities
in the runtime analytics framework execution
environment rather than in each operator module.

In addition, we also took into account the following major
non-functional requirements in the Ophidia analytics
framework design:

• dynamicity: adding new operators to the system must
not imply rebuilding the entire framework (dynamic
approach);

• flexibility: the framework API must be sufficiently
general and flexible to allow the implementation of
whatever task running on the Ophidia infrastructure in
the form of a framework operator;

• robustness: the framework has to be able to properly
react to and cope with errors and exceptions during the
execution of any operator;

• extensibility: the system must be easily extensible to
keep rapidly evolving in terms of set of functionalities
through the implementation of new operators. Besides
the core/system operators available in the Ophidia
middleware, the framework API has to be easy and
clear enough to facilitate the implementation of
operators by the end-users. This will help making this
effort community based and incorporating new
functionalities in the form of new operators;

2

• paradigm-agnostic: the framework must not be tied to
a specific execution paradigm. It has to allow the
implementation of sequential, parallel, and distributed
operators. Thus, paradigm-specific instructions must
be incorporated in operator implementations rather
than in the framework itself;

• efficiency: the runtime analytics framework execution
environment has to be lightweight and efficient
without representing a bottleneck for the entire system.

B. Analytics framework design
Starting from the aforementioned requirements, the Ophidia

analytics framework has been designed and implemented as an
algorithm based on seven functions, plus a wide set of
operators implemented as dynamic libraries. To address
flexibility and deal with both complex and simple operators,
three functions have been defined as mandatory and four ones
as non-mandatory. Each operator must implement the three
mandatory functions and may choose to implement the other
four ones as well.

To dynamically bind an operator at runtime, the analytics
framework exploits the GNU Libtool libltdl library, which
hides the complexity of using shared libraries behind a
consistent, portable interface [19]. Such an approach makes the
framework lightweight, simple, and manageable. The set of
interfaces has been designed to guarantee strong code
modularity and separation of concerns.

The framework manages status and logging information;
thus, operator implementations need not be concerned with
these issues. Conversely, the framework does not include any
MPI, OpenMP, or distribute calls/APIs since the adopted
paradigm (sequential, parallel, or distributed) is operator-
specific. Even though the Ophidia software is being tested
today on a single cluster configuration and most current
operators are MPI-based, in the future the same software could
run on a distributed set of clusters, by exploiting new operators
based on distributed libraries and middleware.

The seven interfaces reflect the following general tasks:
environment setup/clean-up, operator init/destroy, task
distribution/reduction and operator execution.

The Ophidia analytics framework algorithm goes through
all of these steps, as depicted in the following pseudo-code. In
this pseudo-code, the three mandatory calls are shown in
boldface.

int oph_analytics_framework_algorithm (char* input_args) {

 oph_setup_env (char* input_args,

 oph_operator_struct * handle);

 oph_init (oph_operator_struct * handle);

 oph_distribution (oph_operator_struct * handle);

 oph_execute_operator (oph_operator_struct * handle);

 oph_reduction (oph_operator_struct * handle);

 oph_destroy (oph_operator_struct * handle);

 oph_cleanup_env (oph_operator_struct * handle);

 return 0;

}

To address readability, this pseudo-code does not include
any logging, bookkeeping or error management
sections/instructions. For a more complete understanding of the
analytics framework algorithm, it is important to look at the
oph_operator_struct data structure (used by all of the
framework functions) definition:

typedef struct {

 char *operator_type;

 void *operator_handle;

 int proc_number;

 int proc_rank;

 char *lib;

 void *dlh;

 } oph_operator_struct;

In addition to a few general and intuitive attributes

regarding all operators, the oph_operator_struct always
includes a void* operator_handle pointer to an internal handle
containing any additional attributes needed by the target
operator. This feature makes the analytics framework interfaces
highly flexible, allowing for each operator the definition and
management of an operator-specific set of attributes.

Another important property of the analytics framework
algorithm lies in its symmetry (oph_init/oph_destroy,
oph_setup_env/oph_clean-up_env, distribution/reduction).

Moreover, note that in a generic operator implementation,
only oph_setup_env, oph_cleanup_env and
oph_execute_operator are mandatory. Thus, the
implementation of simple operators can be lightweight.

Due to the framework generality, each interface/task
objective has been properly defined to better guide the user
through the correct operator implementation process. In
particular:

• oph_setup_env is a mandatory task responsible for
setting up the operator runtime environment (e.g.,
allocating the operator-specific structure pointed by the
operator_handle pointer). The oph_cleanup_env
(mandatory task) does the opposite of the
oph_setup_env, releasing the memory or deactivating
modules initialised in the oph_setup_env;

• oph_init is a non-mandatory task responsible for
activating a set of preliminary actions to be executed
before the distribution task (e.g., the creation of a new
datacube entry in the OphidiaDB); conversely the
oph_destroy task finalises/closes those actions;

• oph_distribution task is a non-mandatory task in
charge of distributing the load among the available
workers (e.g., processes, threads, agents). Scheduling
strategies and policies are implemented as part of this
task; on the other hand, the oph_reduction is the non-
mandatory and complementary task in charge of
gathering/reducing data and results from all the
workers. Reduction strategies and policies are
implemented as part of this task;

• oph_execute_operator is a mandatory task responsible
for running the core operator function. It is the central
and more intuitive task of the framework. It exploits all

3

the memory structures, connections and information
initialised and distributed in the previous tasks. It is
also responsible for providing the main output of the
operator.

Fig. 2. The deployment diagram of the Ophidia analytics framework

C. Analytics framework implementation
We next review some important aspects of the

implementation. The analytics framework is based on the
pseudo-code presented in the previous section and is
implemented in C language. In more detail, the seven functions
of the Ophidia API represent the static part of the analytics
framework library. They basically deal with the libltdl, to
properly manage the dynamic libraries binding associated to
each operator. It is important to remark that they are not
directly available to developers. Indeed, the analytics
framework library supplies the developers with just the
following single algorithm function:

 int oph_analytics_framework_algorithm (char* input_args)

which is the only one called by each analytics framework

client application built on top of the Ophidia software. This
interface has only one input parameter (input_args) consisting
of a semicolon-separated list of argument=value strings. It is
mandatory to have an operator argument in the input_args
string so that the framework can properly identify the target
operator and the associated dynamic library.

The deployment diagram reported in Fig. 2 shows that each
operator exploits several libraries. Two of the most relevant
ones in the current release of the Ophidia analytics framework
(v1.0) are the Message Passing Interface (MPI) and the
MySQL client. The former has been used to implement a set of
parallel data operators, whereas the latter has been exploited in
the data and metadata operators code to establish the
connection with the I/O servers (MySQL DBMSs) and trigger
array-based primitives (SQL statements). Moreover, the
diagram highlights the adoption of several numerical libraries
in the Ophidia framework (e.g., GSL [20] and PETSc [21]) to
build array-based primitives.

Since both the operators and the primitives are dynamic
libraries, new ones can be added to the system without doing

any change to (or rebuild) the existing code. This makes the
entire software infrastructure (both in terms of datacube
operators and array-based functionalities) dynamic and easily
extensible by external users, thus addressing both the
extensibility and the dynamicity non-functional requirements.

Even though the primary goal of the framework is to
support data operators for analysing and processing datacubes,
the framework is also extensively used to run metadata
operators—usually single process tasks accessing to the
OphidiaDB to get metadata information and implementing only
the three mandatory framework interfaces.

TABLE I. THE OPHIDIA DATA AND METADATA OPERATORS

As a general rule, all interactions with the Ophidia system

come in the form of operators. Yet, some operators run system
(parallel and/or sequential) tasks that do not interact with the
Ophidia data/metadata infrastructure at all. Some examples are
operators that clean up directories on cluster nodes (I/O or
compute), that perform RPMS update/installation, or that check
system logs. This flexibility illustrates the generality of the
designed framework, which is able to go even beyond the
data/metadata analytics infrastructure needs.

OPERATOR NAME OPERATOR DESCRIPTION
Operators “Data processing” – Domain-agnostic

OPH_APPLY(datacube_in,
datacube_out,

array_based_primitive)

Creates the datacube_out by applying
the array-based primitive to the

datacube_in
OPH_DUPLICATE(datacube_

in, datacube_out)
Creates a copy of the datacube_in in

the datacube_out
OPH_SUBSET(datacube_in,
subset_string, datacube_out)

Creates the datacube_out by doing a
sub-setting of the datacube_in by

applying the subset_string
OPH_MERGE(datacube_in,
merge_param, datacube_out)

Creates the datacube_out by merging
groups of merge_param fragments

from datacube_in
OPH_SPLIT(datacube_in,
split_param, datacube_out)

Creates the datacube_out by splitting
into groups of split_param fragments

each fragment of the datacube_in
OPH_INTERCOMPARISON
(datacube_in1, datacube_in2,

datacube_out)

Creates the datacube_out which is the
element-wise difference between
datacube_in1 and datacube_in2

OPH_DELETE(datacube_in) Removes the datacube_in
Operators “Data processing” – Domain-oriented

OPH_EXPORT_NC
(datacube_in, file_out)

Exports the datacube_in data into the
file_out NetCDF file.

OPH_IMPORT_NC
(file_in, datacube_out)

Imports the data stored into the file_in
NetCDF file into the new datacube_in

datacube
Operators “Data access”

OPH_INSPECT_FRAG
(datacube_in, fragment_in)

Inspects the data stored in the
fragment_in from the datacube_in

OPH_PUBLISH(datacube_in) Publishes the datacube_in fragments
into HTML pages

Operators “Metadata”
OPH_CUBE_ELEMENTS

(datacube_in)
Provides the total number of the

elements in the datacube_in
OPH_CUBE_SIZE

(datacube_in)
Provides the disk space occupied by the

datacube_in
OPH_LIST(void) Provides the list of available datacubes.

OPH_CUBEIO(datacube_in) Provides the provenance information
related to the datacube_in

OPH_FIND(search_param) Provides the list of datacubes matching
the search_param criteria

4

The current version of the Ophidia framework provides
about forty operators (parallel and sequential). The parallel
ones are all concerned with data (both domain-oriented and
domain-agnostic) and the sequential ones are all concerned
with either metadata or system. Table I lists, describes, and
classifies 16 of these operators.

D. The internals of three relevant operators
This section presents in detail the OPH_APPLY (Fig. 3),

OPH_PUBLISH (Fig. 5) and OPH_CUBE_ELEMENTS (Fig.
4) operators from an implementation point of view. In each
case, we discuss how the seven steps of the analytics
framework are mapped onto the seven functions described
before. We also review the main differences among the
operators. OPH_APPLY (data processing), OPH_PUBLISH
(data access), and OPH_CUBE_ELEMENTS (metadata
management) are all parallel operators implemented using the
Message Passing Interface (MPI) library.

OPH_APPLY applies an array-based primitive to all
fragments of an input datacube. The input string for this
operator is quite simple and involves few arguments like in the
following example:

 operator=oph_apply;datacube_input=cube_in;datacube_output=
cube_out;query=oph_reduce(oph_subarray(measure,1,120),’OPH_A
VG’,30)

The array-based primitive in this example is the following

nested query:

 oph_reduce(oph_subarray(measure,1,120),’OPH_AVG’,30)

which extracts the array elements in the interval [1,120],

and then computes the average on the sub-intervals
[1,30],[31,60],[61-90],[91-120]. Assuming that the arrays
contain daily temperature values (360-value based arrays
according to a 360-day calendar, 12 months of 30 days each),
this example could represent a monthly-based data reduction
carried out on a subset of data (four months, from January to
April).

OPH_PUBLISH publishes on the HTTP server of the
Ophidia system a HTML based version of the input datacube,
which can be remotely accessed through a web browser. The
operator creates one HTML page for every single fragment and
builds an index page linking all of the other pages. In this case,
no output datacube is created in the Ophidia data store. The
input string for this operator is even simpler than the
OPH_APPLY one:

 operator=oph_publish;datacube_input=cube_in

Finally, OPH_CUBE_ELEMENTS computes in parallel

the total number of elements stored in a datacube without
counting NotANumber values, which are common in sparse
datacubes. The input string is similar to the OPH_PUBLISH:

 operator=oph_cube_elements;datacube_input=cube_in

Note that the inputs strings reported before contain the

mandatory arguments only. In some cases additional non-

mandatory arguments are also available (e.g., the scheduling
policy for the distribution task).

The three operators have a similar implementation of the
oph_setup_env and oph_cleanup_env interfaces. In the first
case (oph_setup_env), the master reads and checks the input
string arguments against the information related to the input
datacube in the OphidiaDB. It then sends the input arguments
to all slave processes. In the second case (oph_cleanup_env),
all processes de-allocate the memory structures previously
allocated.

Similarly, in the three operators, oph_destroy is an empty
function and oph_distribution distributes the fragments among
the parallel processes, applying a simple and intuitive
distribution algorithm based on the process identifier.

Fig. 3. The OPH_APPLY internal diagram. The schema shows how the 7
steps of the analytics framework are mapped onto the implementation of the

OPH_APPLY operator.

The principal differences among the three operators are:
• OPH_CUBE_ELEMENTS implements the

oph_reduce interface to perform a reduction task and
sum the total number of elements from the partial
results computed by all the processes. The reduction
task is not needed by the other two operators;

5

• OPH_APPLY and OPH_PUBLISH implement the
oph_init interface to create, respectively, the
datacube_out entry in the OphidiaDB and the web
directory containing the HTML pages. The
OPH_CUBE_ELEMENT does not need the
implementation of this interface since the result is
managed in memory and delivered to the end user as a
metadata output information;

Fig. 4. OPH_CUBE_ELEMENTS internal diagram. The schema shows

how the seven steps of the analytics framework are mapped onto the
implementation of the OPH_CUBE_ELEMENTS operator.

• each operator provides a different implementation of
oph_execute_operator. OPH_APPLY creates a new set
of fragments by applying the array-based primitive on
the input datacube. OPH_PUBLISH creates a set of
HTML pages containing all the data reads from the
input datacube (no filtering or data transformations are
applied by this operator on the input data).
OPH_CUBE_ELEMENTS counts the number of
elements from each fragment by running the following
SQL statement:

SELECT sum(oph_count(array_attr)) FROM fragment

which invokes an array-based primitive (oph_count) to
get the number of elements from each tuple (array_attr
attribute) and sums these results to infer the total
number of elements related to the table fragment.

Finally, we note that more complex use cases can be
defined by simply nesting several operators like in the
following example:

 OPH_PUBLISH(OPH_APPLY(OPH_APPLY(OPH_IMPORT_NC(input_
file), transformation1), transformation2), HTTP_folder)

which imports the NetCDF input_file file into the Ophidia
data store, applies two data transformations (transformation1
and transformation2), and then publishes the results on the
HTTP server (HTTP_folder) available in the Ophidia
infrastructure.

Fig. 5. The OPH_PUBLISH internal diagram. The schema shows how the
seven steps of the analytics framework are mapped onto the implementation

of the OPH_PUBLISH operator.

E. Operators benchmark: preliminary insights
A comprehensive evaluation of the Ophidia analytics

framework is out of the scope of this paper and will be
presented in future work. However, a preliminary performance

6

evaluation provides some interesting insights about both the
analytics framework and the current implementation of some
key operators. The benchmark environment consists of a
cluster equipped with 12 dual processor nodes IBM iDataplex
(2 Intel Sandy Bridge processors, 2x8 cores, 64GB RAM,
500GB local disk, 20MB chipset cache). Four nodes are
configured as compute and are used to run the parallel
operators. The remaining eight nodes host 4 MySQL servers
each, which are used for I/O purposes. The MySQL servers are
configured with default settings.

The benchmark regards two different operators and
orthogonal use cases:

• use case A “compute intensive”: OPH_APPLY applies
a reduce_all_max array-based primitive on a 500GB
datacube. The datacube is partitioned in 64 fragments
with 10^4 tuples (each tuple stores a 10^5-element
array). Each tuple is reduced to a single element (the
maximum element of the array) through the
reduce_all_max primitive. The operator generates an
output datacube of about 14MB in size. The runs
involve from 1 to 64 parallel processes.

• use case B “I/O intensive”: OPH_PUBLISH runs on a
2.5GB datacube. The datacube is partitioned into 64
fragments consisting of 500 tuples each one. Each
tuple stores a 10^4-element array. The full datacube is
published on a 5GB set of HTML pages (the HTML
tags and the different way the data is stored – ASCII
characters in HTML files instead of binary data in a
database table - double the datacube size). The runs
involve from 1 to 64 parallel processes.

The two use cases share the same fragmentation and
distribution settings at the node level. More specifically:

§ = 4 (number of DBMSInstances/IOnode)
ß = 2 (number of databases/DBMSInstance),
μ = 1 (number of fragments/database)

We define the absolute fragmentation index Fi = §*ß*μ as
the total number of fragments per I/O node, which is equal to 8
in both use cases. We plan in future work to study how
changing Fi impacts performance: this topic is out of the scope
of this paper for page limit issues.

Table II shows the execution time and the efficiency for the
first use case. Efficiency is always more than 95%. As an
additional test, doubling the datacube input (1TB) and the
number of nodes in the infrastructure (24 in total), the
efficiency is about 94% on 128 cores.

Table III presents the results for the second use case. In this
case the efficiency is always more than 92%, even though the
generated output is quite different in size (366 times bigger
than in the previous use case).

Fig. 6 summarizes the results from Tables II and III. Even
though the two use cases are quite different in terms of output
size and processing needs, they behave in a similar manner and
scale linearly. This is due to several factors:

• the distributive nature of the two use cases, which
helps in having a large number of sub-tasks working in
parallel without strong communication needs or issues;

• the low number of fragments does not introduce a high
overhead both in the distribution and execution tasks.

• the analytics framework design which guides the
operators implementation through seven well defined
interfaces (see Section III.B) and fits perfectly
distributive tasks like the ones in the two use cases.

Table IV shows the different behaviour of the two operators
in terms of I/O. We see that the aggregate throughput of the I/O
nodes is small in the OPH_APPLY use case (less than
1MB/sec) due to the compute intensive nature of the use case
and the small output generated. Conversely, aggregate I/O is
much higher in the OPH_PUBLISH use case (due to the
massive I/O to generate the HTML output) and it scales
linearly with the number of cores (up to 100MB/sec with 64
parallel processes, see Fig. 7).

TABLE II. USE CASE A (OHP_APPLY) EXECUTION TIME AND
EFFICIENCY RESULTS

#cores Use Case A time (sec) Efficiency
1 1647.87 1.00
2 824.01 1.00
4 412.40 1.00
8 206.21 1.00
16 103.44 1.00
32 52.43 0.98
64 27.18 0.95

TABLE III. USE CASE B (OPH_PUBLISH) EXECUTION TIME AND
EFFICIENCY RESULTS

#cores Use Case B time (sec) Efficiency
1 3157.41 1.00
2 1578.33 1.00
4 790.76 1.00
8 398.71 0.99
16 199.22 0.99
32 101.74 0.97
64 53.89 0.92

TABLE IV. THROUGHPUT RESULTS RELATED TO THE TWO USE CASES

#cores Use Case A
(MB/sec)

Use Case B
(MB/sec)

1 0.01 1.59
2 0.02 3.18
4 0.04 6.35
8 0.07 12.58

16 0.14 25.19
32 0.28 49.32
64 0.54 93.11

Fig. 6. OPH_APPLY and OPH_PUBLISH efficiency in the two use cases.
The chart is not meant to compare the efficiency of the two operators, but

rather to show they have a similar behavior in terms of scalability.

7

We note that the current tests and cluster configuration use
the compute nodes to run the parallel operators only. I/O
servers were just triggered by processes running on the
compute nodes. In future work, we will also evaluate
performance when using a different cluster configuration
named super-node, in which all cluster nodes participate in
both I/O and compute tasks.

Thus, each node will be used to run the operators as well as
to host the I/O servers. Preliminary results on a four-node
cluster configuration are really promising and show that the
compute and I/O node difference is basically functional rather
than physical (this means the I/O and compute functionalities
can coexist on the same node).

Fig. 7. The OPH_APPLY and OPH_PUBLISH throughput in the two use
cases.

IV. CONCLUSIONS AND FUTURE WORK

The Ophidia analytics framework, a core part of the
Ophidia research project, has been presented. As discussed in
this work, the analytics framework is responsible for
atomically processing, transforming and manipulating array-
based data, by providing a common way to run on large
clusters analytics tasks applied to big datasets. The paper has
highlighted the design principles, the algorithm and the most
relevant implementation aspects associated to the Ophidia
analytics framework. Besides a comprehensive list of the most
relevant operators, three of them have been also presented in
detail (OPH_APPLY and OPH_PUBLISH for the data part,
OPH_CUBE_ELEMENTS for the metadata part). We have
also presented some promising experimental results involving
two operators (OPH_APPLY and OPH_PUBLISH) executing
in a real cluster environment.

We plan in future work to develop an extended set of
parallel operators to support new scientific use cases. Array-
based primitives extensions, a data analytics query language
and an optimized query planner will be considered to support
more complex operators and dataflow driven requests. A
comprehensive analytics benchmark will be also defined and
implemented to further evaluate the performance of the system.

ACKNOWLEDGMENTS
This work was supported in part by the Italian Ministry of

Education, Universities and Research (MIUR) under contract

GEMINA and in part by the U.S. Department of Energy,
Office of Science through grant DE-AC02-06CH11357.

REFERENCES
[1] S. Fiore and G. Aloisio, “Special section: Data management for

eScience”. Future Generation Computer System 27(3): 290-291 (2011).
[2] Julio Saez-Rodriguez, Arthur Goldsipe, Jeremy Muhlich, Leonidas G.

Alexopoulos, Bjorn Millard, Douglas A. Lauffenburger, and Peter K.
Sorger, “Flexible informatics for linking experimental data to
mathematical models via DataRail”. Bioinformatics 24, 6 (March 2008),
pp. 840-847, 2008, doi-10.1093/bioinformatics/btn018
http://dx.doi.org/10.1093/bioinformatics/btn018.

[3] William Hendrix, Isaac Tetteh, Ankit Agrawal, Fredrick Semazzi, Wei-
keng Liao, and Alok Choudhary, “Community dynamics and analysis of
decadal trends in climate data”, (ICDM Climate 2011).

[4] Rob Latham, Chris Daley, Wei-keng Liao, Kui Gao, Rob Ross, Anshu
Dubey and Alok Choudhary, “A case study for scientific I/O: improving
the FLASH astrophysics code”. Comput. Sci. Disc. 5 (2012) 015001.

[5] J. Dongarra, P. Beckman, et al., “The International Exascale Software
Project roadmap”. International J. High Performance Computing Apps.
25, no. 1, pp. 3-60 (2011), ISSN 1094-3420 doi:
10.1177/1094342010391989.

[6] G. Aloisio and S. Fiore, “Towards exascale distributed data
management”, International J. of High Performance Computing Apps.
23, no. 4, pp. 398-400 (2009) doi: 10.1177/1094342009347702.

[7] J. Taylor, Defining eScience http://www.nesc.ac.uk/nesc/define.html.
[8] Climate Data Operators (CDO) - https://code.zmaw.de/projects/cdo.
[9] C. S. Zender, “Analysis of self-describing gridded geoscience data with

netCDF Operators (NCO)”, Environmental Modelling & Software, 23,
no. 10–11, pp. 1338–1342, 2008.

[10] P. Tsai and B.E. Doty, “A prototype Java interface for the Grid Analysis
and Display System (GrADS)”, in Fourteenth International Conference
on Interactive Information and Processing Systems, Phoenix, Arizona,
1998.

[11] The NCAR Command Language (Version 6.0.0) [Software]. (2012).
Boulder, Colorado: UCAR/NCAR/CISL/VETS. http://dx.doi.org/
10.5065/D6WD3XH5.

[12] B. Smith, D. M. Ricciuto, P. E. Thornton, G. M. Shipman, C. A. Steed,
D. N. Williams, M. Wehner, “ParCAT: Parallel Climate Analysis
Toolkit”, ICCS2013, pp. 2367-2375

[13] R. L. Jacob, J. Krishna, X. Xu, T. Tautges, I. Grindeanu, R. Latham, K.
Peterson, P. B. Bochev, M. Haley, D. Brown, R. Brownrigg, D. G. Shea,
W. Huang, D. Middleton, “ParNCL and ParGAL: Data-parallel Tools
for Postprocessing of Large-scale Earth Science Data”, ICCS2013, pp.
1245-1254.

[14] J. Han and M. Kamber, “Data mining: Concepts and Techniques”,
Morgan Kaufmann Publishers, 2005.

[15] M. Golfarelli. “The DFM: A conceptual model for data warehouse”, in
Encyclopedia of Data Warehousing and Mining (2nd Edition), John
Wang (Ed.), IGI Global, pp. 638-645, 2008.

[16] K.E. Taylor, R. J. Stouffer, and G. A. Meehl, “An overview of CMIP5
and the experiment design”, Bulletin of the American Meteorological
Society 93, no. 4, pp. 485-498 (2012), doi:10.1175/BAMS-D-11-
00094.1.

[17] R. K. Rew and G. P. Davis, “The Unidata netCDF: Software for
scientific data access”, in 6th Int. Conference on Interactive Information
and Processing Systems for Meteorology, Oceanography, and
Hydrology, American Meteorology Society, pp. 33-40, February 1990.

[18] S. Fiore, A. D'Anca, C. Palazzo, I. Foster, D. Williams, G. Aloisio:
“Ophidia: toward big data analytics for eScience”, ICCS2013, pp. 2376-
2385.

[19] GNU Libtool - The GNU Portable Library Tool. http://www.gnu.org/
software/libtool/

[20] The GNU Scientific Library (GSL) http://www.gnu.org/software/gsl/.
[21] Satish Balay, Jed Brown, Kris Buschelman, William D. Gropp, et al.,

PETSc web page http://www.mcs.anl.gov/petsc, 2012.

8

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

