Asynchronous SAN Switching
under Multicast Traffic

Andrea Bianco *, Luca Giraudo *, Alessandra Scicchitano *
* Dip. di Elettronica, Politecnico di Torino, Italy, Email: {name.surname}@polito.it
t 1IBM Research, Zurich Research Laboratory, 8803 Riischlikon, Switzerland, Email: {als}@zurich.ibm.com

Abstract— Multicast traffic in Storage Area Networks (SANs)
enables applications such as disaster recovery, remote data
replication and distributed multimedia systems, in which a server
access concurrently multiple storage devices or, conversely, multi-
ple servers access data on a single device. Thus, an asynchronous
loss-less switching architecture devised for SANs is described, and
its performance under multicast traffic is studied. Simulations
are used to analyze switch performance under various traffic
patterns and schedulers. Although most of the simulations refer
to a specific switch architecture, performance results highlight
interesting general trends in flow controlled asynchronous archi-
tectures. These architectures could be used effectively also in a
more traditional data switching and routing scenario. In this case,
multicast support becomes essential to support multimedia QoS
aware applications and protocols heavily relying on the broadcast
property of LANs.

I. INTRODUCTION

High-speed packet-switched networks, named Storage Area
Networks (SANSs), are replacing direct connections between
servers and storage resources. Indeed, SANs provide more
flexibility, overcome the performance, scalability, reliability
and management problems of the traditional Directly Attached
Storage (DAS) paradigm, and enable consolidation and vir-
tualization of storage resources. To ensure reliability, loss-
free operation is envisioned. Both buffer-to-buffer and end-to-
end flow-control mechanisms are proposed in Fibre Channel
standards [1] to control the rate at which frames are received
from upstream nodes to avoid frame losses and reordering.

Multicast support in SANs enables critical applications such
as disaster recovery, in which a server stores multiple copies
of the same data at geographically distant sites (similar to
RAID-1 mode), and distributed multimedia systems [2], in
which multiple servers access data (typically video streams)
stored in a central repository and deliver it to their local pool
of users [3].

In this paper we present a switch architecture designed
for SANS, and study its performance under multicast traffic.
Multicast packets are characterized by their fanout set, i.e.,
by the set of output ports (destinations) to which they are
directed. The packet fanout is defined as the number of
different destinations of a multicast packet, i.e., the cardinality
of the fanout set. All the packets arriving to the same input
and with the same fanout set identify a multicast flow. Unicast
traffic is not given special attention, i.e., it is considered as a
particular case of multicast traffic with fanout 1.

The presented architecture was previously introduced in [4],
[5]: it employs backpressure to achieve lossless behavior. The

978-1-4244-1982-1/08/$25.00 ©2008 IEEE

switch is fully asynchronous, since asynchronous behavior
provides significant advantages in terms of scalability, cost
and simplicity [6]. Indeed, traditional input-queued switches
operate in a synchronous fashion: time is divided in intervals
of equal size called time-slots and modules (line-cards, fab-
ric, scheduler) have a common time reference. Variable-size
packets are segmented into fixed-size data units called cells,
transferred through the switching fabric within a time-slot
and reassembled at the output line-cards. In an asynchronous
switch, on the contrary, line-cards and the switching fabric
run on independent clock domains. As such, global clock
distribution is not needed, thus avoiding a very complex
task especially when the system is distributed over multiple
racks. Furthermore, no synchronized transmission through the
switching fabric is required and variable-length packets can
be supported natively, without the need for segmentation and
reassembly buffers. Finally, fabric arbitration is simplified be-
cause output contentions can be solved independently, without
employing complex centralized scheduling algorithms.

II. SYSTEM ARCHITECTURE

The switch is composed by a buffered switching fabric, and
a given number of line-cards, comprising input and output
buffers, as shown in Fig. 1. Every line-card is composed
by an input port and an output port (port multiplexing is
not considered for simplicity). Line-cards receive packets and
store them in input buffers. The switching fabric transfers
(multicast) packets from the line-card input buffer to the
line-cards hosting the destination output ports, exploiting its
intrinsic multicast capability. Switching fabric I/O links are
not oversubscribed nor constitute a bottleneck. Backpressure
control signals regulate buffer access to avoid data loss.

A. Line-cards

Line-cards contain two separate buffering stages for mul-
ticast packets entering and exiting the switch, named respec-
tively In-module and Out-module. The In-module memory is
organized as a single FIFO queue. Each position in the queue is
dimensioned for a maximum transfer unit (MTU). If a smaller
packet is enqueued, the residual part of that memory portion
remains unusable. This choice potentially results in inefficient
use of the In-module memory when dealing with small-size
packets, but the buffer management policy can be implemented
using simply one counter. Normally this is not a major issue,
because line-cards can host a moderately large amounts of

158

Authorized licensed use limited to: UNIVERSITY PUTRA MALAYSIA. Downloaded on September 7, 2009 at 10:03 from IEEE Xplore. Restrictions apply.

Switching Fabric

e

HEEH

In Module Out Module . In Module Out Module
— n
1 1 L 1
I } I |
input ports output ports input ports output ports
Line-Card 1 Line-Card N .
Fig. 1. Switch architecture: components and communications channels

memory. The Out-module stores multicast packets received
from the switching fabric in a buffer organized as a single
FIFO queue. This very fast memory is accessed “per-byte”,
hence the number of available positions depends on the size
of enqueued packets.

B. Switching fabric

The switching fabric consists of a crossbar with no internal
buffers in crosspoints, but with a small single on-chip high-
speed FIFO queue at each input and output. Buffers in the
switching fabric are needed due to the fully asynchronous
switch behavior. The crossbar may have a moderate internal
speed-up K to mitigate the effect of Head-of-the-line (HOL)
blocking of FIFO queues; however, in the simulation analysis,
we consider K = 1. Fabric output queues are larger than fabric
input queues to sustain temporary overload conditions. Both
input and output queues are accessed per-byte to maximize
space efficiency.

Each fabric output has a fabric scheduler that controls ac-
cess from fabric inputs. When an input wants to be connected
to an output, it sends a request to the corresponding output
fabric scheduler. The output scheduler sends grants to inputs.
In case multiple inputs request the same output, the output
scheduler solves the contention according to a round-robin (or
random) policy.

The crossbar has an internal multicasting capability: it can
replicate a packet to multiple outputs at the same time with
no extra cost. The asynchronous behavior poses different
challenges with respect to synchronous slotted switching when
dealing with multicast traffic. In synchronous switching, de-
cision are taken synchronously by all output schedulers at
time slot boundaries. As such, no output remains unnecessarily
idle if enough traffic is available at inputs. When considering
asynchronous behavior, output schedulers make independent
decisions at different times. However, some sort of grant
synchronization at inputs can be useful, to avoid sending
multicast packets only according to a multi-copy scheme,
i.e.. as independent unicast packets. Indeed, the multi-copy
approach is known to be an inefficient scheduling technique.
For example, when considering as an admissible traffic pattern

a single broadcast flow in overload at a given input, the multi-
copy approach gives a maximum throughput of 1/N. On the
other hand, waiting to gain access to all the intended outputs
before transmitting a packet can be counterproductive, because
it forces outputs that have already granted access to stay idle
while the other outputs become free.

To exploit the benefits of crossbar replication without
compromising efficient usage of output ports, the formerly
proposed scheduling scheme [5] was based on three phases:

o Waiting phase: every input sends a request for every
output in the fanout set of the HoL packet stored in the
fabric input buffer. Each input collects the grants received
from the outputs until a timeout 7" expires;

o Multicast transmission phase: After timeout expiration,
each input sends the multicast packet to every output that
granted its request, using the internal multicast capability
of the crossbar;

e Unicast transmission phase: If the input has not received
the grants from all outputs during the waiting phase, it
sends an individual copy of the packet to the remaining
destinations as soon as each output grants the request.

The timeout is used to obtain a “grant synchronization” ef-
fect at inputs: inputs waiting for grants from outputs belonging
to the multicast packet fanout set may better exploit the fabric
multicast capability if more outputs grant the request during
timeout expiration. Indeed, the larger the number of received
grants, the smaller the number of transmissions required to
transfer a multicast cell to the outputs in the fanout set.
On the other hand, while waiting for timeout expiration, no
transmission occur: thus, the timeout value must be carefully
set to balance these two effects on performance. In other
words, strictly enforcing a no-fanout splitting policy, i.e.,
a multicast packet is transferred only once, when all the
outputs in the fanout set are available, may induce performance
degradation due to blocking. On the other hand, splitting the
multicast packet in too many transmissions, when using a
fanout splitting policy, increases too much the load on the
switching fabric, thus, reducing performance.

The modification we propose to enhance switch perfor-
mance is to substitute the unicast transmission phase with
a number of multicast transmission phases until the multi-
cast packet is fully transmitted. This modification requires a
minor complexity increase, and provides significant benefits.
Note that no timeout expiration is necessary after the first
multicast transmission phase, since inputs aggregate grants
received from outputs during the packet transmission time.
Furthermore, the adoption of the multicast transmission phase
only, permits, as shown later, to avoid the use of the timeout
to synchronize grants, a parameter whose value should be set
properly to obtain good performance.

This scheduler is named round robin scheduler in the
remainder of the paper, since multiple requests received by
an output scheduler while the output is engaged in a packet
transmission are served according to a round robin order. It
is well known that round-robin (or random) schedulers do not
perform particularly well, since no information on the relative

1589

Authorized licensed use limited to: UNIVERSITY PUTRA MALAYSIA. Downloaded on September 7, 2009 at 10:03 from IEEE Xplore. Restrictions apply.

importance or urgency of packets is used when selecting the
input to which the request is granted. A better solution can
be to use some “weighted” metric when sending requests
from inputs and when selecting the input to which to issue
the grant at outputs. Examples of weighted schedulers defined
for synchronous switches are LQF (Longest Queue First) [8]
for unicast traffic,c WBA (Weight Based Arbiter) [9] and GS
(Greedy Scheduler) [10] for multicast traffic. One natural
choice of weight is the queue length (LQF), since the longer
the queue the higher the input load; the scheduler tries to favor
highly-loaded inputs to improve performance. However, since
the maximum queue length is finite, this weight is significant
only when losses are not experienced, i.e., in low-medium
loads. On the contrary, all the queues experiencing losses have
constant queue length, independently from their congestion
level and the queue length metric would not help in this
scenario. When presenting WBA, several metrics were pro-
posed and compared. Given the similar performance provided
by the various metrics, we choose the weight equal to the
number of inputs minus the packet fanout plus the packet age
(measured as the difference between the current time minus
the time at which the packet entered the queue). Indeed, packet
age, although being a complex metric to be managed, permits
to discriminate packets experiencing long starvation periods.
Moreover, taking into account also the packet fanout permits to
favor multicast packets with large fanout sets, packets known
to be more difficult to schedule. Finally, we also considered
the GS weight, the product of the queue length by the actual
fanout size of the packet at the head of the queue. In contrast
with the WBA metric, the GS metric does not require any
packet delay computation.

However, two major differences can be highlighted in asyn-
chronous switching with respect to the more traditional syn-
chronous scenario. First, in synchronous switches, all outputs
receive weight information at the same time, at slot boundaries,
from all inputs. As such, coordination among output selectors
can be envisioned to optimize packet selection. Indeed, since
all outputs make an input selection in each time slot, it is
more likely that several outputs select the same input request
if the associated weight is much larger than other weights.
Second, due to the packet segmentation process at inputs and
to the cell-based packet transfer in the switching fabric, several
requests with different weights are sent for a given packet
in consecutive time slots, until the multicast packet is fully
extracted from the input queue. None of these two properties
hold in asynchronous switches, since each output selects a
new request independently, when a packet transmission ends,
and the request is issued only once, when the packet reaches
the head of the corresponding FIFO queue. As such, weighted
metrics could be less effective than in the synchronous case.

Finally, also multicast schedulers like MRR cannot be
easily used in an asynchronous scenario. Indeed, MRR is
based on the idea of keeping, in all outputs, a common
pointer (a modulo N counter) to inputs. The pointer is used
to preferentially grant, according to a round-robin scheme,
requests incoming from inputs in a given time slot. This

common reference clearly favors the possibility of selecting
the same input at many outputs, thus preserving as much as
possible the no-fanout splitting property of the scheduler. This
scheduler cannot be used in asynchronous switches, since no
coordination can be easily enforced among outputs.

To summarize, besides the round-robin scheduler, three
weighted schedulers running on three different metrics are also
studied:

o LQF metric: each request contains the length of the FIFO
queue at the corresponding input;

o WBA metric: the weight is equal to the number of inputs
minus the cell fanout plus the packet age;

o GS metric: the weight is the product of the queue length
by the actual fanout size of the cell at the head of the
queue.

C. Control mechanisms for lossless delivery

To support lossless delivery, the switch adopts an internal
backpressure mechanism that regulates access to buffers to
prevent overflow. When the buffer occupancy overcomes a
high threshold, a backpressure signal is activated to block
packet transmissions from upstream buffering stages. When
the buffer occupancy becomes smaller than a low threshold,
the backpressure signal is deactivated and transmission can
restart. In case of persistent congestion, all the buffers in
the data path eventually fill-up and the backpressure signal
propagates back to the source(s).

Four backpressure signals are available:

1) from the Out-modules to the fabric output queues;

2) internally to the fabric, from fabric output queues to
fabric input queues;

3) from fabric input queues to the In-modules;

4) from the In-module to the input ports.

Backpressure prevents packet losses: however it is not
selective, i.e. it blocks all flows, even those which are not
responsible for congestion. In [4] we illustrated the benefits
achieved by controlling individually unicast flows with cen-
tralized arbitration. The same result cannot be easily obtained
for multicast, because the number of possible flows traversing
the switch grows exponentially (rather than quadratically) with
the number of ports N. This implies that switch resource can
be hardly assigned per-flow. In particular, both on the ingress
and egress side of line-cards packets are stored in a single
FIFO queue, regardless of their fanout set.

III. PERFORMANCE RESULTS

We show performance results based on simulation runs
exploiting a proprietary simulation environment developed in
C language. Statistical significance of the results are assessed
by running experiments with an accuracy of 1% under a
confidence interval of 95%.

Unless otherwise specified, we refer to a switch with NV =
16 input and output ports, where all input and output lines
run at the same data rate, normalized to 1, and no internal
speedup is available. When backpressure is enabled, the high

160

Authorized licensed use limited to: UNIVERSITY PUTRA MALAYSIA. Downloaded on September 7, 2009 at 10:03 from IEEE Xplore. Restrictions apply.

Old scheduler New scheduler
2 0
2 uniform —>— 3
= minimum ---6--- 2
; maximum ---0--- :
S] tri40-20-40 o 8
3 tri 33-33-33 e S
“ Z

0.5 1
Normalized Output Load

0.5 1
Normalized Output Load

Fig. 2. Performance comparison between the old and the new switching fabric scheduler

threshold, which triggers the backpressure signal, is set to the
buffer size, the low threshold is set to 80% of the buffer size.

The average amount of offered traffic at each input (output)
is called the input (output) load. Input (output) loads are
normalized to line rates: a load equal to 1 means a fully
utilized input (output) line. The traffic at the input of a switch
is said to be admissible if no input load is larger than 1, and
no output load is larger than 1.

We first consider Bernoulli arrivals with uniform multicast
traffic distribution, both in terms of input/output port distri-
bution and fanout distribution. In other words, all 2V — 1
multicast flows, including unicast as a special case, are equally
likely. As a consequence, when multicast traffic saturates the
inputs, the normalized output load is equal to 8, given the
average multicast fanout size of N/2. The uniform multicast
traffic is admissible only when the input load is smaller than
0.125, for N = 16.

We also examine a Bernoulli arrival process in a gathered
scenario, where the traffic is gathered over few active input
ports (M = 5) and equally distributed over all N = 16
output ports, with a fanout set chosen according to a non-
uniform binomial distribution, with mean fanout h,, = 3.66.
More precisely, the probability P of choosing a fanout set
of size f is Py = N/hm () (Am/N)! (1 — hyn/N)N=1. This
is a traffic pattern well known to be hard to schedule [10].
Indeed, when all inputs are equally loaded, the maximum
sustainable traffic leads to a normalized input load which
is at most 1/E(f], E[f] being the average packet fanout
size. If instead the traffic is gathered among few inputs, the
normalized input load for sustainable traffic can approach 1,
so that the efficiency in serving packets queued at the inputs
becomes important on performance. Note that the considered
gathered traffic scenario is far from being unrealistic. Multicast
applications often generate sustained and long-lasting flows,
that may only engage few inputs and several outputs at a given
router or switch.

Five packet size distributions are considered:

« constant packet size, all packets of minimum size (mTU,

minimum transfer unit of 120 bytes),
o constant packet size, all packets of maximum size

(MTU=2000 bytes),

« uniform packet size, ranging from mTU to MTU

« trimodal packet size (120 bytes, 1040bytes, 2000 bytes)

with probability 40%, 30%, 40% respectively,

« trimodal packet size (120 bytes, 1040bytes, 2000 bytes)

with probabilities 33%, 33%, 33% respectively.

We first show the performance benefit of the newly proposed
multicast round robin fabric scheduler; backpressure is acti-
vated among all buffering stages. Fig. 2 clearly shows that the
new scheduler outperforms the old scheduler. Constant packet
size permit to obtain higher throughput mainly thanks to a
better efficiency in the use of input fabric FIFO queues. In-
creasing the packet size variance by using trimodal or uniform
distributions worsen performance. This is a peculiar behavior
of asynchronous architecture, whereas cell-based synchronous
switches suffer less this impairment, thanks to the packet
segmentation process at input ports.

No timeout
= i T e R
E‘ 0.9 //
() pd
g 075 ey
é —]
o 0.6
S uniform ——
= 0.45 minimum ----- 0o
£ maximum - Qe
o tri 40-20-40 o
Z 0.3 1 tri 33-33-33 —=—

0.3 045 0.6 0.75 0.9 1.05 1.2 1.35 1.5
Normalized Output Load

Fig. 3. Performance when no timeout is adopted in the fabric scheduler

Fig. 3 shows that when adopting the new multicast sched-
uler, the initial timeout used to synchronize grants is not
needed. Indeed, whereas performance for trimodal and uni-
form traffic distributions are not modified, since the perfor-
mance limitation is due to the inability of filling up input fabric
FIFO queues, performance increase significantly, reaching
about 90% of link capacity, when using fixed size packets.
Indeed, when using fixed size packets, due to the buffering

161

Authorized licensed use limited to: UNIVERSITY PUTRA MALAYSIA. Downloaded on September 7, 2009 at 10:03 from IEEE Xplore. Restrictions apply.

stage at fabric input, inputs tend to synchronize packet trans-
missions. For example, when a broadcast packet is scheduled
for transmission, all output ports become free at the same time.
Being all the packets of the same fixed size, all successive
transmissions become exactly synchronized, increasing switch
performance. If a timeout expiration is used in the first phase
of the multicast scheduling algorithm, this synchronization
effect is partially lost, since each multicast packet requires a
different number of transmissions to be completely transferred
to the outputs belonging to the fanout set. In summary, using a
timeout in the scheduling phase either does not provide perfor-
mance advantages or worsen performance. Thus, no timeout
is used in the multicast scheduling phase when adopting the
round robin scheduler.

0.45
g
g
Z 03 | uniform —»— : i /]
B minimum_ - 4
Z maximum -0 /;
& tri 40-20-40 —=—
: tri 33-33-33 ——
T 015 - v
[= W ~
. &N
g fdj"%

0 b o=4o &

0O 2 4 6 8 10 12 14 16
Matching size

Fig. 4. Matching size distribution in overload under uniform traffic

Again, the asynchronous architecture suffers the increase on
the packet size variance due to the independent behavior of
schedulers at output ports. This is confirmed by the “matching”
size distribution shown in Fig. 4. No matching can be defined
in an asynchronous architecture. However, we periodically
sample the switching fabric configuration counting the num-
ber of active input/output connections: we call this number
matching size. The scheduler difficulty in creating large size
matching is clearly increasing with increasing variance in the
packet size distribution. Thus, the saturation throughput is
directly tied to the variance of the packet size distribution.

In Fig. 5, the beneficial effect of backpressure is shown
when dealing with non-admissible traffic. Indeed, whereas
backpressure activation or deactivation makes no evident dif-
ference when the output load is below or close to 1, in
deep overload the absence of a backpressure mechanism in-
duces higher losses for trimodal packet size distributions (and
marginally higher losses for uniform packet size distribution).

This is a rather counter intuitive behavior. Indeed, when
backpressure is active, the packet size distribution in the input
FIFO buffers at fabric input is kept constant, regardless of
input load, since the source is blocked until 80% of the
buffer becomes available. This justifies why no differences are
evident when increasing the input load. On the contrary, when
backpressure is inactive, in deep overload, small packets have
a higher chance of being stored in input FIFOs at fabric inputs.

Indeed, when a small packet is transferred, only small packets
can be stored in the buffer; when a large packet is transferred,
it is enough to store few small packets in the buffer to prevent
the possibility of storing a new large packet. Thus, a large
number of small packets is stored in fabric buffers, and the
average size of packets stored in the input FIFOs decreases as
the load increases. This should intuitively lead to an increase
in throughput when backpressure is inactive, since the switch
should behave similarly to the case of fixed packet size, being
the packet size variance decreasing as the input load increases.

However, consider a case when a large packet is transferred
from a given input to a set of outputs, and suppose that
many small packets are stored in other input queues. Suppose
also that small packets are blocked due to contention. This
blocking behavior induces a significant throughput decrease,
since the transmission time of a large packet with respect to
the transmission time of a small packet is significant. In deep
overload, this event is more likely to occur with respect to
the case of variable packet size distribution, since many small
packets are stored in input buffers. Since performance losses
are more evident in this “blocking” scenario when inputs store
many small packets, this justifies the throughput decrease.

In summary, activating backpressure does not provide per-
formance penalties and helps stabilizing system performance
in overload. Thus, we activate the backpressure mechanism
in all subsequent simulations. To understand if the penalty
provided by the packet size variance is an intrinsic feature
of asynchronous architectures or if it depends on the adopted
scheduler, we run simulations with all the “weighted” sched-
ulers previously described. Results are reported in Fig. 6 as
delays normalized to the packet size, for uniform multicast
traffic. We report the results for the LQF scheduler, because
no difference were visible by varying the weight metric. The
weighted metric does not provide any benefit with respect to
the round-robin scheduler; sometimes, performance are even
worse, as with trimodal and uniformly variable packet size
in both delay and saturation throughput. This results confirms
similar observations presented in [10] for synchronous archi-
tectures. Performance advantages for more complex weighted
schedulers, such as the GS scheduler, are evident only when
using more than one FIFO queue at each input, a queue
architecture not studied in this paper. Besides, the same
general trend by which asynchronous architectures suffer for
the packet size variance is maintained.

The same conclusion can be drawn when examining the
switch under gathered traffic, in Fig. 7. As expected, in this
scenario the maximum achievable throughput is drastically
reduced. The general phenomenon of better performance for
fixed packet size is even highlighted by this traffic pattern.
Results not reported confirm that schedulers based on weighted
metrics do not provide evident benefits to switch performance.

IV. CONCLUSIONS

Asynchronous architectures suffer variability in packet size
distribution, which reduces switch performance both in terms
of throughput and delays. This general trend holds regardless

162

Authorized licensed use limited to: UNIVERSITY PUTRA MALAYSIA. Downloaded on September 7, 2009 at 10:03 from IEEE Xplore. Restrictions apply.

Backpressure off

Backpressure on

l T T T T T T] I
= =1 e —0]
2 2
S =
2 uniform —%— 2]
o
E minimum ---o--- é ¥
maximum --- -
E tri 40-20-40 - g]
5 tri 33-33-33 - =
£ £ -
s s
02 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
01 2 3 45 6 7 8 01 2 3 45 6 7 8
Normalized Output Load Normalized Output Load
Fig. 5. Backpressure effect
Round-robin scheduler LQF scheduler
100000 T 100000
> 10000 > 10000
8 1000 uniform —<— @ 1000
% minimum ---¢--- g
2 100 maximum ---0--- @ 100
= : tri 40-20-40 - 5
g L R tri 33-33-33 e E 10
2 1 . Zo 1
0. l H H H 0. l H H H
025 05 075 1 025 05 075 1
Normalized Throughput Normalized Throughput
Fig. 6. Packet delays for two different multicast schedulers
b [2] V.O.K.Li and W.Liao, “Distributed Multimedia Systems”, Proc. IEEE,
Roand:robin scheduler vol. 85, No. 7, pp 1063-1108, July 1997.
100000 [3] S.H. Gary Chan and F.Tobagi, Distributed Servers Architecture for

uniform —»— -
minimum ---e---
maximum ---0---
tri 40-20-40 o
tri 33-33-33 -

Normalized Delay

I

0.01

0.1 0.2 0.3 0.4 0.5 0.6
Normalized Throughput

Fig. 7. Packet delays for gathered traffic

of the considered scheduler and the multicast traffic pattern.
More complex schedulers based on “weighted” metrics do not
provide evident benefits in this scenario, where a single FIFO
queue is available. A moderate speedup helps in reducing [
this performance penalty. Backpressure mechanisms may be
beneficial to stabilize performance in overload and do not |
penalize switch performance in any of the examined scenarios.

REFERENCES

[1] R.W.Kembel and R.Cummings, “Fibre Channel: A Comprehensive In-
troduction”, Northwest Learning Associates, Tucson, AZ, 2000

163

4

—

5

—

6]

7
(8]

9]

10]

11]

Networked Video Services, IEEE/ACM Trans. Networking, Vol. 9, No.
2, pp. 125-136, April 2001.

A.Bianco, P.Giaccone, E.M.Giraudo, F.Neri, E.Schiattarella, “Perfor-
mance Analysis of Storage Area Network Switches”, IEEE Workshop
on High Performance Switching and Routing (HPSR 2005), Hong Kong,
May 2005.

A.Bianco, P.Giaccone, E.M.Giraudo, F.Neri, E.Schiattarella, “Multicast
Support for a Storage Area Network Switch”, IEEE Global Telecommu-
nications Conference (GLOBECOM 2006), San Francisco, November
2006.

M.Katevis, G.Passas, D.Simos, I.Papaefstathiou, N.Chrysos, *Variable
packet size buffered crossbar (CICQ) switches”, IEEE International
Conference on Communications (ICC 2004), Paris, France, June 2004.
M.Karol, M.Hluchyj, S.Morgan, “Input versus output queueing on a
space division switch”, IEEE Trans. Commun.,

N.McKeown, A Mekkittikul, V.Ananthaam, J.Walrand, “Achieving
100% Throughput in an Input-Queued Switch”, IEEE Transcations on
Communications, vol. 47, no. 8, pp. 1260-1267, Aug. 1999.
B.Prabhakar, N.McKeown, R.Ahuja, “Multicast scheduling for input-
queued switches”, IEEE J. Sel. Areas Commun., vol. 15, no. 5, pp. 855-
866, June 1997.

A.Bianco, P.Giaccone, E.Leonardi, F.Neri, C.Piglione “On the Number
of Input Queues to Efficiently Support Multicast Traffic in Input Queued
Switches”, HPSR’03, Torino, Italy, June 2003

L.Mhamdi and M.Hamdi, Scheduling Multicast Traffic in Internally
Buffered Crossbar Switches, 1IEEE International Conference on Com-
munications, I[CC’04. Paris, June 2004.

Authorized licensed use limited to: UNIVERSITY PUTRA MALAYSIA. Downloaded on September 7, 2009 at 10:03 from IEEE Xplore. Restrictions apply.

