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Abstract—The load analysis for the distribution system and
facilities has relied on measurement equipment. Moreover, load
monitoring incurs huge costs in terms of installation and main-
tenance. This paper presents a new model to analyze wherein
facilities load under a feeder every 15 min using meter-reading
data that can be obtained from a power consumer every 15 min or
a month even without setting up any measuring equipment. After
the data warehouse is constructed by interfacing the legacy system
required for the load calculation, the relationship between the
distribution system and the power consumer is established. Once
the load pattern is forecasted by applying a clustering and clas-
sification algorithm of temporal data-mining techniques for the
power customer who is not involved in automatic meter reading,
a single-line diagram per feeder is created, and power-flow cal-
culation is executed. The calculation result is analyzed by using
various temporal and spatial analysis methods, such as the In-
ternet geographic information system, single-line diagram, and
online analytical processing.

Index Terms—Automatic meter reading (AMR), data mining,
geographic information system (GIS), meter reading data, power
load analysis, spatiotemporal.

I. INTRODUCTION

S INCE today’s power industry is in the process of shifting
toward deregulation and a more competitive system, the

efficient operation of the power system is becoming increas-
ingly important. The concept of competition as introduced in
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the power market requires exploring more progressive and ef-
ficient system operation to expand social welfare and to reduce
the electricity bill.

Even though massive investments are made in new distribu-
tion lines and in the operation of equipment, an imbalance in
power-supply equipment, such as power outages due to exces-
sive investment or a lack of investment, low-voltage areas, and
unused power equipment are predicted depending on the area.
This problem stems from the considerable difficulty in checking
the load which changes every moment, checking the section
with the maximum load of the distribution line, and checking
the equipment/load information of the individual transformer.
In addition, the current load analysis method uses the monthly
or yearly maximum load of the transformer and almost the same
correction coefficient [1].

According to the data on South Korea’s distribution system
and major equipment, there are 7 000 distribution lines with a
total route length of 390 000 km, 7 600 000 poles, 1 700 000
transformers, and 120 000 switches. Monitoring the load of the
section under the distribution line or individual transformers
which are continually changing every moment would be very
difficult due to the huge scale of equipment [2]. Although some
switches and transformers are equipped with load measurement
equipment, attaching this equipment to all facilities is practi-
cally impossible. Developing new technology for temporal and
spatial load pattern analysis is required to replace the existing
method of installing measurement equipment and showing the
measured values.

In this paper, we propose a new load pattern analysis model
for power facilities every 15 min using meter-reading data
without attaching measurement equipment. First, we extract
the customer, facility, meter reading, transformer, and feeder
measurement data from legacy systems. Afterward, a load
pattern analysis model data warehouse is constructed, and the
relationship between the distribution facilities and the customer
is then established. The load pattern for customers who are
not involved in AMR is then predicted. A single-line diagram
(SLD) for each distribution feeder is created, and the power
flow is calculated.

Customers who are not involved in AMR are classified into
high-voltage and low-voltage categories. Each 15-min load pat-
tern is then predicted using AMR data for the high-voltage cus-
tomers or using transformer wireless load monitoring data for
the low-voltage customers. There are some techniques which
are applied, such as clustering, classification and temporal data-
mining algorithm [3], [4]. We also propose a data-mining frame-
work for the non-AMR load pattern prediction and describe data
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Fig. 1. Structure of the spatiotemporal load-analysis model.

preprocessing and outlier detection, the representative load pat-
tern generation through clustering including the methodology to
define the number of classes, the classification model, and the
results after the performance evaluation of the classifiers. Our
approach is able to represent the difference and diversity per
day in the clustering process and to predict the load pattern of
non-AMR customers in a classification model, avoiding the data
distortion and reproducibility problems of the conventional load
pattern research.

To enable users to perform an efficient, multifaceted anal-
ysis, we have developed spatial and temporal load pattern
analysis models, such as an Internet GIS load analysis, a
single-line diagram load analysis for each distribution feeder,
and a multidimensional load analysis using online analytical
processing techniques.

If the facilities under the distribution line can be analyzed
over time and in detail as described before, it enables the ability
to check exactly when and what section or equipment experi-
ences how much overload, voltage drop, or power loss. More-
over, in the case of outage or fault, the load conditions can be
analyzed at that time for the corresponding line. We can also
increase or decrease the load at a specific time or simulate how
the load changes over time by transferring it to other equipment;
thus, enabling the enhancement of efficiency of facility opera-
tion or the optimum load system. We can also make a more accu-
rate investment in facilities by checking the load of the existing
line to determine when expansion is necessary for new equip-
ment.

This load pattern analysis model makes it possible to improve
the efficiency of facility operation and plan as follows:

1) generating optimal facility relocation based on load char-
acteristics;

2) prioritizing maintenance target facilities;
3) creating basic and verifiable reports for the biannual plan;
4) creating analysis reports for the point of outage or failure

time;
5) improving the calculation method of transformer com-

pound load;
6) developing load simulation modules for distributed

generation.

II. MODEL OVERVIEW

The overall structure of the temporal and spatial load anal-
ysis model is presented in Fig. 1. Data for load calculation in-
clude customer, facility, meter reading, transformer measure,
and feeder measure. Meter-reading data are active power and
reactive power information every 15 min for high-voltage cus-
tomers. Facility data are GIS spatial information for the distri-
bution system and facilities. Transformer measurement data of
the wireless load monitoring system are the voltage and cur-
rent information measured at the small number of critical trans-
formers. Feeder measurement data are active power and reactive
power information measured at the load out area of the substa-
tion feeder.

These data are transformed depending on the configuration
and form of connection information data base and loaded after
data cleansing is processed (e.g., data extraction from the oper-
ating system, deletion of rows without any data, and data input
of analog data using the relationship between data).

In developing this model, applying information technology is
essential. We use Internet GIS which can be used in the web en-
vironment considering user convenience. We also use the data
warehouse as well as the online analytical-processing technique
to connect the mass storage remote meter-reading data per 15
min of 135 000 high-voltage customers with contract power of
more than 100 kW, which makes up 70% of the total distribution
load, and to calculate and analyze the load every 15 min. Data
mining is a technique that explores the previously unknown
knowledge [3]; it is applied to the prediction of the transformer
load pattern and customers who are not covered by AMR. We
describe the detailed load calculation process and method in
Section III.

III. LOAD CALCULATION PROCESS AND METHOD

Actual power consumers are divided by AMR and voltage in
the section of the distribution system. Depending on the meter-
reading frequency and method, customers who are actual power
consumers are classified into AMR customers, and customers
who are not covered by AMR and low-voltage customers as
shown in Table I.
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TABLE I
CUSTOMER BY METER READING

Fig. 2. Load calculation process.

Here, the high-voltage customer is defined as a customer
using the code whose contract type is classified into a high
voltage and power supply of more than 3.3 kV with the
single-phase, two-wire system. There is no basic differences
between the AMR customer and non-AMR customer, because
the non-AMR customer is classified by not installing the
communication modem according to location or intention of a
customer. A low-voltage customer refers to the customer who
is neither covered by AMR nor classified as a high-voltage cus-
tomer. Customers who are in a parent-subsidiary relationship
are excluded since their meters are read individually.

In the case of an AMR customer, power consumption is read
every 15 min. For the non-AMR high-voltage customer and
low-voltage customer, however, power consumption is read on a
monthly basis; hence, there is the need to calculate the load pat-
tern every 15 min to match the timing of remote meter-reading
data. We develop a process that generates a load profile every
15 min by using the clustering and classification data-mining
technique. Load patterns are created based on AMR data for
non-AMR high-voltage customers or transformer wireless load
monitoring system data for low-voltage customers. Once a 15
min-based load pattern is created for each customer, a single-
line diagram is generated per distribution system section; each
customer load supplying power to each section is then aggre-
gated. Afterward, the apparent power, current, voltage, and loss
for the line and section are obtained by calculating the power
flow, and the statistical information is produced. The load cal-
culation process described before is shown in Fig. 2.

A. Load Pattern Calculation of Non-AMR High-Voltage
Customer and Transformer

The process wherein the representative load profile is cre-
ated through cluster analysis using AMR load data for each

Fig. 3. Calculation process for the load pattern of the non-AMR high-voltage
customer.

high-voltage customer or monthly load pattern for the non-AMR
high-voltage customer is forecasted as shown in Fig. 3.

Basic information of the AMR high-voltage customer and
load data every 15 min are extracted from the constructed load-
analysis data warehouse. Since errors and outlier data in the col-
lected data can cause serious performance deterioration, pro-
cessing the data for data cleansing is essential. In case there are
less than 96 data per day or less than 1 for the daily total of
active power in raw AMR data, these data are excluded. The
minimum AMR active power measured every 15 min is 0.08
kWh for a streetlight as contract power; if it is less than 1 kWh,
it is considered not to be read. In addition, in data cleansing for
the processing of the outlier self-organizing feature map (SOM),
the clustering algorithm is applied [5]. In terms of the configura-
tion matrix, if the data object included in a 10 10 cluster (100
clusters) is less than 1, it is considered outlier and consequently
excluded.

If the daily power consumption vector is constructed with
weekdays and holidays separated as in the existing load profile
research [3], [4], analyzing the load pattern—which changes ev-
eryday—is difficult because the same loads on weekdays at the
beginning or the end of the month are generated. Therefore, in
this paper, the total monthly load every 15 min is reformulated
for each customer as one vector as shown in

(1)

where is the load vector, is the customer, is the interval
(every 15 minutes: 96 points),

If raw load data are used as is, clustering is generated ac-
cording to the power consumption distribution. Therefore, clus-
tering analysis should be performed after normalization. There
are many clustering algorithms. We use the k-means algorithm
due to a simple and fast in large database. Once a number of
clusters are created as a result of the cluster analysis, model
classification of each class is executed. Classification is used to
enable the description tool to distinguish the objects of different
classes and prediction of unknown class labels. In other words,
each cluster is classified according to the AMR customer prop-
erties; when a non-AMR customer is inputted, the class label



SHIN et al.: SPATIOTEMPORAL LOAD-ANALYSIS MODEL FOR ELECTRIC POWER DISTRIBUTION FACILITIES 739

is predicted. Here, customer property information includes the
contract type, contract power, power user type, industrial type,
supply type, and monthly meter-reading value; they are used as
input variables of the classifier. There are several types of classi-
fiers: decision tree, Bayesian classifier, neural network, support
vector machine (SVM), and rule-based classifier [5]–[8].

In this paper, the decision tree classifier is used considering
its performance. The decision tree is made up of a set of nodes
that classify the past realizations of the objective variable. Each
classification is achieved by separation rules according to the
numerical or categorical values of the explanatory variables.
The classification rules of each node are derived from a math-
ematical process that minimizes the impurity of the resulting
nodes, using the available learning set. The main advantage of
the decision tree is the easy interpretability of the results and
the supply of probability values without assuming normal dis-
tributions [7]. Non-AMR high-voltage customers’ load predic-
tion is performed by allocating the monthly pattern class using
the C4.5 decision tree. This predicted pattern is the load pattern
with normalization. Therefore, it should be reverted to the ini-
tial load capacity as follows:

(2)

where

reverted active power;

normalized active power;

point of time, n: all point of time;

monthly reading value of a non-AMR customer.

Remote meter reading of low-voltage customers is carried out
experimentally for only residential customers. Thus, that data
cannot be used to create load patterns at the moment because
there is not enough data and not for all types of customers, such
as commercial, educational, and agricultural, etc. Therefore, in
this paper, load patterns per transformer are created by using
the transformer wireless load monitoring system data mea-
sured every 30 min and property information for low-voltage
customers as supplied by the corresponding transformer. The
creation of load pattern for the transformer is very similar to
that one of non-AMR high-voltage customers; the represen-
tative load pattern is created by using the current data of the
transformer wireless load monitoring system, and the load for
the unmeasured transformer is predicted. Property information
for the transformer and customer for the construction of the
classification model includes the electric light number, power
number, load area property, transformer capacity, customer’s
contract power, application of electricity, low/high voltage, and
monthly power consumption.

B. SLD Creation and Power-Flow Calculation

An SLD is generated by formulating the sections in the ex-
tracted equipment diagram data and to calculate the total load
per line and power flow. The section’s power source side and
load side are determined by searching the section where the
distribution system loops and by comparing the existing equip-
ment diagram, high-voltage system process diagram, and line

diagram. The section loads are totaled by including the load in
the preceding section in the case of the terminal supplying power
directly to high-voltage customers from underground multi-cir-
cuit switches. The algorithm generating the SLD is the ternary
tree recursive method; when there is no automatic load transfer
switch (ALTS) or section information for the lower part and un-
derground transformer, the switches are open after the root node
is generated from substation circuit-breaker (CB) information,
and the section at the branch point of the multicircuit switch is
isolated; then, the ternary tree is generated while moving the
pointer to the equipment on the upper-level power source side.

Once the SLD for each section is created, the load for each
section is aggregated. If the loads supplied from the section
to the AMR customer, non-AMR high-voltage customer, and
transformer are aggregated, the section load per time zone is
created, and power flow is calculated.

Power flow is calculated to obtain voltage, system loss, and
power flow at the specific feeder and sections. In other words,
line or transformer loss and the voltage phase angle of each bus
are obtained by using the reactive power flow and power in the
load power, reactive power, and distribution system [9]–[11].
Due to its operating characteristics, the distribution system has
a radial structure. That is why tree-structured calculation is used.
In this paper, the case with the main feeder is only explained by
applying the Forward Sweeping method. Since the case with the
lateral branch line is calculated by using the ternary tree method,
the application is the same as the case of the main feeder. The
following equation can be derived from the electrical equivalent
model of the distribution system:

(3)

In other words, current flowing in the number 1 bus and
the number 2 bus is the same as the value obtained by dividing
the difference in the two buses’ voltages by the impedance value
of the number 1 branch; the power passing the number 2 bus is
the value obtained by multiplying the voltage of the number 2
bus by the current flowing into the number 2 bus. The voltage
equation for the number 2 bus can be obtained by using (3)

(4)
According to (4), obtaining the voltage of the next available

bus, the active and reactive power of the bus as well as the
voltage of the preceding bus should be available. The voltage of
the preceding bus can be easily obtained, since it is the voltage
of the substation load out area. On the other hand, the power
passing the corresponding bus can be obtained from (5). In other
words, power flowing into the number 2 bus is the sum of the
load for the number 2 bus , the load for all of
the next available buses , and power loss of all branches
except the number 1 branch . Accordingly, to obtain the
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Fig. 4. Load analysis using Internet GIS.

power, the loads of all buses and power loss of all branches ex-
cept the number 1 branch should be available. Power loss can
be obtained by using

(5)

According to (5), to obtain the power loss of branch, the
voltage of bus should be available. If we go back to the
first equation, the voltage of the bus is obtained from the
power of the bus, which can be obtained from the loss of all
branches, which, in turn, can be obtained from the voltages of
all buses. Since it is a matter of circulation, the initial power loss
value of all branches is first set to zero; the power of the
bus is then obtained, and, finally, the voltage of the bus is
derived. This process will continue until the last bus is reached.
After the values for the last bus are obtained, the values are ob-
tained from the beginning. If the difference in loss falls within
the error range, the process is completed.

IV. DEVELOPMENT OF THE LOAD-ANALYSIS MODEL

Internet GIS load analysis is a module wherein facilities
drawing as well as load conditions and statistics for the feeder,
section, and transformer in various time zones can be analyzed
on a web browser. As shown in Fig. 4, the daily maximum
load for the three distribution lines is displayed by section with
the power-load density and section apparent power with color
differentiation. In spatial analysis, the selection of load time is
possible only at a specific point of time; here, time refers to the
fixed time, with the day, week, and month denoting the time
of maximum load during the period. Through the temporal
and spatial load analysis, the equipment diagram shows the
combination of equipment, load, and demonstration methods. If
a line is selected, checking the load conditions of neighboring
lines is easy. If a section is selected, the load distribution of
the section within the line can be analyzed. If a transformer is
selected, the transformer load within the area can be analyzed
depending on the colors or object size.

Fig. 5. Load analysis using the SLD.

Load density uses three-step brightness. Facilities with a high
level of load are shaded. Therefore, it is useful in checking the
area with a high level of load when the reduced scale is adjusted.
In addition, the high/low-voltage ratio and ratio by contract type
for facilities load can be displayed by using the pie chart and
bar chart on the facilities, thus enabling statistical and spatial
analysis.

Although Internet GIS load analysis enables easier analysis
of the load for the system distributed in an actual geographic
space, checking the load of all sections for one distribution line
is difficult. Therefore, we have developed an SLD per feeder
in Active-X form so that the load in various time zones can be
analyzed for both line and section through SLD on the web.
Fig. 5 shows the SLD wherein one feeder is formulated with the
ternary tree and load for the line and section (current, voltage
drop, loss, power) is selectively demonstrated and analyzed by
changing the time using the time-change button such as “15
minutes ago,” “15 minutes later,” “same time yesterday,” or
“same time tomorrow.” Analyzing the load pattern every 15
min on the day, the monthly load pattern for the specific hour
and minute as well as the monthly load pattern using the daily
maximum load for the feeder and a specific section are also
possible.

System and facilities load analysis is a module for performing
multidimensional load analysis using the online analysis-pro-
cessing technique. For the feeder, section, and transformer, the
load pattern is analyzed using a table and a graph according to
various time zones (15 min, hour, day, week, month, same time
zone, latest) and load (load rate, apparent power, active power,
reactive power, current, loss, and voltage drop). The analysis is
done on a multidimensional basis, such as drill up/down wherein
table and graphs are adjusted from the level of summary to the
level of detail, pivoting is where time zones and the load axis are
changed for analysis, slice/dice is where the subset of multidi-
mensional array is created for analysis, and surfing is where the
forms and conditions of reports are changed using the mouse. In
case power outage or breakdown is inputted, the analysis is con-
nected to Internet GIS load analysis, SLD load analysis, feeder
analysis, and section analysis so that the load at the time of the
outage or breakdown can be analyzed.
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Fig. 6. Development environment.

In the status/statistics for the feeder and section, the load
ratio and apparent power are analyzed by high- and low-voltage
and contract type (residential, commercial, educational, indus-
trial, etc.); for the transformer, and analysis is carried out by
power and light and contract type. In addition, the maximum/av-
erage/minimum values for the load ratio and apparent power
and tables and graphs on the status/statistics at different time
zones can also be analyzed multidimensionally. It also includes
functions, such as load change simulation, where the load is in-
creased or decreased for the system and transformer, load lev-
eling simulation for the line, and load transfer simulation where
the load is transferred to the other transformer.

V. CASE STUDY ON THE LOAD PATTERN CLASSIFICATION

We describe the determinaton of the number of clusters and
the evaluation of classification model in the process of gener-
ating the load pattern for non-AMR high-voltage customers.
In our experiments, we compare our load calculation with the
existing measurement value. Also, experimental results show
that our load pattern calculation results using data-mining
techniques are statistically significant. We used real data from
the Gangnam Branch Office of Korea Electric Power Cor-
poration which supplies electricity to the Gangnam-gu and
Seocho-gu areas of Seoul city. There are 303 distribution lines,
8 112 sections, 7 089 transformers (including 471 transformers
measured by the wireless load monitoring system), 3 349 AMR
customers, 792 non-AMR high-voltage customers, and 277 337
low-voltage customers. We experimented with the acquired real
data from January to October 2007.

For the experiments, hardware was used in the GIS/DW
server and web server, and software was used Smallworld
for spatial analysis, Oracle for data warehouse, Hyperion for
online analytical processing, and Clementine and Weka for
data mining as shown in Fig. 6. The average elapsed time took
a total of 45 h from extraction, transformation, transportation
(ETT) to the power-flow calculation for processing monthly
data of the source system. Daily data, however, took 1 h, 30
min using semiautomatic processing modules.

In cluster analysis, determining the optimum number of
clusters is very important. Thus, we used the reproducibility
evaluation method to determine the number of clusters of the
AMR representative load pattern. Specifically, we applied
the method to utilize the data partitioning technique used in

Fig. 7. AMR representative load pattern for January.

TABLE II
REPRODUCIBILITY EVALUATION OF THE AMR LOAD PATTERN FOR JANUARY

supervised learning, such as neural network, decision tree
classification, and regression. Since the repetition of the same
clustering method is enabled by data partitioning, a repro-
ducibility evaluation can be performed. The following is the
reproducibility evaluation procedure as follows.

1) First, we partition the training data set into three parts.
The ratio is 4:4:2. The larger two data set was used as the
training set and the smaller one was used as a test set.

2) Second, run the k-means on two training data set to produce
Rule1 and Rule2.

3) Third, apply the Rule1 and Rule2 on the test set and pro-
duce a confusion matrix to evaluate the result. If the se-
lected number of clusters is optimal, the matrix will show
a strong homologous characteristic.

As a result of the reproducibility evaluation of AMR data
in January 2007, a cross-classified table is created as shown in
Table II. The value of 31 is selected as the lowest value of
percentage of data deviating from the mainstream. Fig. 7 shows
the representative load pattern of 31 clusters for AMR customers
in January.

For the class allocation of the load pattern for non-AMR high-
voltage customers, a classification model is created using the
cluster label generated as a result of cluster analysis and cus-
tomer property information. For the algorithm to create a model,
decision tree (C4.5), Bayesian network, Naïve Bayesian, and
SVM are used. In the evaluation of the classification model, the
10-fold cross validation method is applied. During the perfor-
mance evaluation, the confusion matrix expressed as True Pos-
itive (TP), True Negative (TN), False Positive (FP), and False
Negative (FN) is used and calculated as shown

Accuracy (6)
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Fig. 8. Performance evaluation of the non-AMR load pattern classification
model.

Fig. 9. Decision tree for AMR customers’ clusters.

As shown in Fig. 8, the accuracy ratio of the C4.5 algorithm is
95.52, the highest compared to other classification models. For
the non-AMR load pattern forecast model, the C4.5 decision
tree is selected.

Fig. 9 illustrates the partial result created by the decision tree
classifier using customer property information for AMR clusters
in January 2007. The customer information used here includes
contract type code, contract power, power usage code, indus-
trial class code, supply method code, area code, and a monthly
meter-reading value. As shown in the figure, the monthly meter-
reading information has become a critical factor in the classifi-
cation standard. Likewise, when non-AMR customer informa-
tion is inputted using a decision tree organized on a monthly
basis, the cluster is determined using the specific customer’s in-
formation. For example, from the inputted non-AMR customer
information, if the monthly meter-reading value (TOT KWH) is
larger than 89 722 kWH, contract power (CNTR PWR) is larger
than 12 500 kW, contract type code (CNTR CD) is the same or
less than 228, and the industrial class code (INDU CD) is larger
than 67 121, then Cluster 23 is assigned.

To verify the power-flow calculation data for the feeder, it is
compared with the feeder load data measured in the substation.
Fig. 10 compares the two values for 48 h at intervals of 1 h from
00:00 to 23:00 on February 2007.

To measure the similarity of the two values, cosine similarity
is calculated as shown

(7)

Here, is the vector’s dot product; it stands for
is the length of vector denoting

. A cosine similarity that nears 1 means that the
similarity is high. The actual calculation for the equation above
gives a result of 0.9996, which means that the calculation and
measurement values for the feeder load have high similarity. In

Fig. 10. Comparison of load calculation and measurement value.

addition, the average of the two values is 202 kW; the feeder
load value based on the power-flow calculation has a high
degree of accuracy if we assumed that substation measurement
values are expressed in 100-kW units.

VI. CONCLUSION

In this paper, we have developed a model wherein the load
of facilities under the distribution system line—which changes
every moment—can be analyzed using meter-reading data peri-
odically obtained from power consumers even without attaching
measuring equipment to all large-scale power facilities. For the
development of this model, data for the load calculation in the
legacy system were connected, the load pattern for non-AMR
customers was calculated by applying data mining, and power
flow was calculated. The load for feeder, section, and trans-
former can be analyzed using Internet GIS, SLD, multidimen-
sional tables and graphs, and simulation.

We have 135 000 high-voltage AMR customers and data
which include all types of contracted power, such as residential,
commercial, industrial, educational, and agricultural, etc. We
used real data of the Gangnam Branch Office of Korea Electric
Power Corporation (KEPCO) which also included all types
of contract power. We anticipate that the number of clusters
will be much more generated and the forecast accuracy will be
improved if all AMR customers are applied. According to our
experimental results, our approach is technically practical. The
impact of computational burdens is enormous. Nevertheless, it
can be solved with large database technology or a distributed
system. Our study goal is not a real-time application, but a
new load-analysis model. Despite being late one day, this
load pattern-analysis model makes it possible to improve the
efficiency of facility operation and plan.

Using the temporal and spatial analysis technique enables
checking of the current situation and problems, illustrative
demand analysis and load management, and checking of
spatial-load distribution and density property, as well as the
analysis of the relationship and effect between customers, fa-
cilities, load, and outages. We expect the model to contribute to
accurate power-line load analysis, efficient facilities operation,
and quality improvement of the power distribution system.
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