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Abstract: Signal and noise behaviours of
microwave transistors are modelled through the
neural network approach for the whole operating
ranges including  frequency, bias  and
configuration types. Here, the device is modelled
by a black box whose small-signal and noise
parameters are evaluated through a neural
network based upon the fitting of both of these
parameters for multiple bias and configuration.
The concurrent modelling procedure does not
require the solving of device physics equations
repeatedly during optimisation, and by this type
of modelling the signal (S) and noise (N)
parameters can be predicted not only at a single
operation frequency around the chosen bias
condition for a configuration, but at the same
time for the whole operation frequency band for
the same operating conditions, with good
agreement compared to the measurements.

1 Description of the work

In this work the signal-noise neural network in [1] is
extended to include bias condition (Vyg, Ipg) and con-
figuration type (CT) so that performance parameters of
the device can be generalised not only at a single oper-
ation frequency around the trained bias condition,
which may be named single frequency generalisation
(SFG), but at the same time in the whole operation fre-
quency band around an untrained bias condition,
which may be named as whole frequency band general-
isation (WFBG). The same performance measures as
[1] are also utilised for this model. The literature for
the transistor modelling is given extensively in [1].
Applications of the neural networks in the microwave
circuits reported in literature include automatic imped-
ance matching [2], microstrip circuit design [3], micro-
wave circuit analysis and optimisation [4] and, most
recently, modelling of monolithic microwave integrated
circuit (MMIC) passive elements [5] and simulation and
optimisation of interconnects in high-speed VLSI
circuits. The multiple bias-configuration signal-noise
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neural network is described in the second Section in
detail, and worked examples and conclusion are given
in the last Section.

2 Multiple bias and configuration signal-noise
neural network

2.1 Structure of the network
A neural network is a simplified mathematical model
of a biological neural network. It consists of a collec-
tion of interconnected neurons. Let:
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respectively, be input and output vectors of n and p
dimensions, in the signal-noise neural network, x is a 4-
dimensional vector containing frequency f;, bias condi-
tion (Vps, Ips) and configuration type (CT), y is a 12-
dimensional vector which gives S- and N-parameters.
The relationship between x and y is multidimensional
and nonlinear. To model such a multidimensional non-
linear relationship, a three-layer neural network is
employed, which has n processing nodes (PN) in the
input layer, p PNs in the output layer, and ¢ PNs in the
hidden layer, as shown in Fig. 1. Let:
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Fig.1 Multibias and configuration signal-noise neural network
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be vectors representing the kth sample of the input and
output, respectively, £ = 1, 2, ..., N, where N, is the
total number of the data samples. The weighting
matrix between the hidden and input layer is W, and
between the hidden and output layer is V, which can be
expressed as:

W=[W, Wy - W, - W,] (5)

=V Vo s Vo K] (6)
where W), vector is the weighting vector between the
Ath hidden node and the input layer:

Wy =[Win, Way - Wi Wanl© (7)
V; is the weighting vector between the jth output node
and the hidden layer:

Vi=[Vi; Ve - Vgl (8)
The signal resulting from the hidden layer to the jth
output node can be expressed in the form of:

q
= Vason(z, Wa,0r)  (9)
h=1

and the net output of the ith output node is obtained
as follows:
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where g, and f; are the basis functions for the Ath hid-
den node and the jth output node, respectively, which
are the sigmoid type of nonlinear functions in our

application, and gu(x, W, 6;) can be expressed in the
following form:

gn(x, Wh,0,) =
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In eqns. 14 and 15, ©; and 6, are the thresholds of the
Jjth output and Ath hidden nodes, respectively.

2.2 Determination of the network matrix P

If parameters of the network architecture are denoted
by the matrix P, the network parameter matrix P will
have n x ¢ + p X ¢ + g + p elements which consist of
weighting factors between the input and hidden layers
and the hidden and output layers, the local memories
of the hidden and output nodes, respectively. The train-
ing process can be defined as computation of the net-
work parameter matrix P so that the error function
which is:

E<P>=§ ““é{%i( )1

(12)
is minimised, where y* and b{® are, respectively, the
predicted and measured values of the jth output node
at the training frequency f,. This type of training
process 1s also called backpropagation, which is
available in the two types of algorithms: ‘on-line’
training where neural network parameters are updated
after each sample presentation, and ‘off-line’ training
where neural network parameters are updated after all
samples are presented. In this work, we chose the ‘on-
line’ training approach, since it is more efficient in
most cases. The update equations for V;, W, 6, can
be given as follows:

k -
v — e +a (VP - vED) (3)
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and similar equations can be written for ©; and 7;. In

eqns. 23 and 24 n and « are positive valued between 0
and 1, learning rate and momentum, respectively. In
this work, a simple program is used to search their
optimum values depending on the type of the worked
transistor where the strategy is to determine optimum
values for ¢ and 7, to ensure rapid convergence to the
satisfied performance measures of the model. Thus we
start with any set for the network parameters and then
repeatedly change each parameter by an amount pro-
portional to the related sensitivity terms such as

AE®  gE®)  gE®

OV, ' OWy Ly
according to updated equations and assume that the
training is completed when the error fails to decrease
any further. The network parameters are then the final
set of values of Vj;, Wy, 6, T; and ©,. By defining the
sensitivities of the network with respect to Vy;, Wy, 6,

can be given as follows, after letting Z, and F; be
defined as:
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where 8, and 6% represent local gradients at individ-

ual nodes in the second and third layers, respectively,
and using (9.3) and (9.5) they can be expressed as:

(y; — b)) T F;(1 = Fy)

(22)

N
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j=1
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3 Worked examples and conclusion

In the foregoing Sections a neural-based technique is
described for modelling of signal and noise behaviour
of microwave transistors over their operation frequency
band, biasing ranges and configuration types. In the
work, this multiple bias-configuration neural network
model has been applied to many transistors for which
the manufacturer’s characterisation data is used as the
training data. The results show that the predicted
parameters are generally in good agreement with the
desired parameters.
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In the following subsections, two worked examples
are presented (Tables 1 and 2) with the performance
measures of the neural network models, where amount
of the data used for the training is optimised for each
bias condition against the error and iteration number.
A worked example is also given in [1]. Fig. 2 gives var-
iations of the hidden nodes of the neural network
against the training error, the iteration number taken
as the parameter, in our model, which is taken to be
equal to the number of output nodes, which is almost
optimum. The graphs in Fig. 2 also show how rapid
the training error converges, since the error settles
down in the range of 0,01 within 500 iterations. Figs. 3
and 4 give variation of the training time with respect to
the iteration number for the various types of transistor,
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Fig.5 S-parameter—frequency variations for Vg =8V, I = 20mA at the common collector configuration of the transistor NE219 (WFBG)

Epp = 0.019730, Ey; = 0.035988, E;, = 0.049304, Ey = 0.071714, E, = 0.044207
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Table 1: Multiple bias and configuration signal neural network model for

the transistor NE219 common collector and common emitter configuration

Operation frequency bandwidth: 2-6 GHz
Operation bias conditions

Configuration Bias voltage Vg, V

Bias currents I, mA

8 10

cC

CE

SFG
E,=0.050105
Eqq = 0.027857
Eq = 0.037930
Eqp = 0.037051
Eyp = 0.097582
Fig.7
E;=0.73243
Fqq = 0.045472
Ey = 0.034876
Eqy = 0.061781
Eay = 0.150743

not given

20

WFBG

E, = 0.044207
Eqq = 0.019730
£,7=0.035988
Eqp = 0.049394
Eyy =0.071714
Fig. 5
E,=0.065140
Fq1=0.039773
Eoq = 0.044730
Eqy = 0.060726
E»y =0.115331

not given

30

SFG
E,=0.032068
E;1=0.016128
E,1 = 0.036308
E,» =0.029213
E,, = 0.046625
not given
E,=0.058195
E,4=0.028880
Erq = 0.032119
Eq, = 0.042287
F,y = 0.0129495
Fig. 8

Table 2: Multiple bias and signal-noise neural network model for the tran-

sistor NE02135 at the common emitter configuration

Operation frequency bandwidth: 0.1-4GHz

Operation bias conditions

Bias voltage Vg V

Bias currents /¢, mA

10.0 5.0 10.0
SFG WFBG
E;=0.041287 E;=0.079736
Eq, =0.033850 E71=0.034377
E,, =0.044067 E;1=0.056279
E,,=10.043720 E;; = 0.097377
£,y =0.043512 Eyy = 0.130912
F;=0.030823 = NMDA
F; =0.102794 F, = NMDA
F3=0.123793 F3 = NMDA
f;=0.085804 = NMDA
Fig. 9 Fig. 11

20.0
SFG
E,=0.037003
Eqq = 0.023597
Eyq = 0.043421
E;p = 0.046626
E,, = 0.034370
F; = 0.023949
F, = 0.052824
F = 0.096364
Fy=0.057712

not given

30.0

SFG

E, = 0.044565
E;1 =0.018405
Eyq =0.049997
Eq; = 0.067227
E,; =0.042631
F=0.01918
F, =0.07685
F3 =0.0659
F;=0.0539
Fig. 12

Extrapolated values of noise parameter for Ve =

data available

where it should be noted that, once the neural network
has been trained, it responses at once to the desired
input. The generalisation process can be considered in
two categories.

3.1 Single frequency generalisation (SFG)
This can be defined as the performance parameter
prediction at a single operation frequency of the
trained bias condition. In the work [1], the
interpolation and extrapolation capabilities of the
network are demonstrated in the error-frequency planes
over a fairly large operation bandwidth at a single bias
condition. In this work, the SFG procedure is applied
to a lot of bias conditions for the different
configuration types, and the same conclusion as [1] is
reached, which is that the network has a high
capability to interpolate between the data points used
for learning.
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Fig.8 S-parameter-frequency variations for Vg = 8V, Io = 30mA at common emitter configuration of transisior NE219
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Fig.9 S- and N-parameter—frequency variation for Vg = 10V, Ic = 5mA at the common emitter configuration of transistor NE02135 (SFG)
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Fig.11

s
S

0.5
N
512
4.0
s21 7
0.5
3.0
9 ) 3 0.05 010 [0415
|S21] [$12]

S-parameter—frequency variations for Vop = 10V, Ic = 10mA at the common emitter configuration of transistor NE02135 (WFBG)

O.W

s12 4.0

s21

05,
3.0

9 6 3 0.04 /0.0 J0o3
[s21] |s12]

Fig.12  S-parameter—frequency variations for Vg = 10V, I = 30mA at the common emitter configuration of transistor NE02135 (SFG)

3.2 Whole frequency band generalisation
(WFBG)

This can be defined as prediction of the unknown mul-
tidimensional performance parameter function for the
whole operation frequency band, which has eight signal
dimensions and four noise dimensions given by eqn. 2,

116

at an untrained bias condition. Fig. 6 gives the fre-
quency distribution of error for the whole frequency
band generalisation (WFBG) of the scattering parame-
ters at the bias condition Vg = 8V, I- = 10mA for the
common collector configuration given in Fig. 5. From
the examination of the WFBG processes, one can con-
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clude that the network can predict the multidimen-
sional performance parameter functions of the
transistor between the bias conditions.

In the Figs. 7-12 some predicted and target varia-
tions of the signal and noise parameters for the transis-
tors NE219 and NE02135 at the multiple bias-
configuration are given between the starting and stop-
ping frequencies supplied by the manufacturers, for the
purpose of comparison. In all the Figures, the curves
with dashed lines give the predicted variations, while
the solid curves are the target variations.

In this work, we have presented a nontraditional
approach to modelling of microwave transistors, so
that a multiple bias/configuration signal-noise neural
network model is obtained, which is shown to be capa-
ble of giving results in a good agreement with the
measured values. By exploiting the flexibility and gen-
erality of the neural network model, we have demon-
strated its use for the device characterisation for its
signal and noise performance over its whole operation
ranges including frequency, bias conditions of the pos-
sible configuration types. At the same time, results of

IEE Proc.-Circuits Devices Syst., Vol. 145, No. 2, April 1998

our work have demonstrated the feasibility and effi-
ciency of using neural networks in the practical interac-
tive design and optimisation methods for the physics-
based device modelling.

4 References

1 GUNES, F., GURGEN, F., and TORPI, H.: ‘Signal-noise neural
network model for active microwave devices’, IEE Proc., Circuit
Devices Syst., 1996, 143, (1), pp. 1-8

2 MANKUAN, V., and SHEILA, P.: ‘Automatic impedance
matching with a neural network’, IEEE Microwave Guided Wave
Lett., 1993, 3, (10), pp. 353-354

3 HORNG, T., WANG, C., and ALEXOPOULOS, N.G.: ‘Micros-
trip circuit design using neural networks’, MTT--S Int. Microwave
Symp. Dig., 1993, pp. 413416

4 ZAABAB, A H., ZHANG, Q.J., and NAKHLA, M.: ‘A neural
network modeling approach to circuit optimisation and statistical
design’, IEEE Trans. Microw. Theory Tech., 1995, 43, (6), pp.
1349-1358

5 CREECH, G.L., PAUL, J.B., LESNIAK, D.C., JENKINS, J.T.,
and CALCETERA, C.M.: ‘Artificial neural networks for fast and
accurate EM-CAD of microwave circuits’, IEEE Trans. Microw.
Theory Tech., 1997, 45, (5), pp. 794-802

6 VELUSWAMI, A., NAKHLA, SM., and ZHANG, Q.J.: ‘The
applications of neural networks to EM-based simulation and
optimisation of interconnects in high-speed VLSI circuits’, IEEE
Trans. Microw. Theory Tech., 1997, 45, (1), pp. 712-723

117



