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Abstract: Signal and noise behaviours of 
microwave transistors are modelled through the 
neural network approach for the whole operating 
ranges including frequency, bias and 
configuration types. Here, the device is modelled 
by a black box whose small-signal and noise 
parameters are evaluated through a neural 
network based upon the fitting of both of these 
parameters for multiple bias and configuration. 
The concurrent modelling procedure does not 
require the solving of device physics equations 
repeatedly during optimisation, and by this type 
of modelling the signal (S) and noise (N) 
parameters can be predicted not only at a single 
operation frequency around the chosen bias 
condition for a configuration, but at the same 
time for the whole operation frequency band for 
the same operating conditions, with good 
agreement compared to the measurements. 

1 Description of the work 

In this work the signal-noise neural network in [l] is 
extended to include bias condition (VDs, IDS) and con- 
figuration type (CT) so that performance parameters of 
the device can be generalised not only at a single oper- 
ation frequency around the trained bias condition, 
which may be named single frequency generalisation 
(SFG), but at the same time in the whole operation fre- 
quency band around an untrained bias condition, 
which may be named as whole frequency band general- 
isation (WFBG). The same performance measures as 
[l]  are also utilised for this model. The literature for 
the transistor modelling is given extensively in [l]. 
Applications of the neural networks in the microwave 
circuits reported in literature include automatic imped- 
ance matching [2], microstrip circuit design [3], micro- 
wave circuit analysis and optimisation [4] and, most 
recently, modelling of monolithic microwave integrated 
circuit (MMIC) passive elements [5] and simulation and 
optimisation of interconnects in high-speed VLSI 
circuits. The multide bias-configuration signal-noise 
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neural network is described in the second Section in 
detail, and worked examples and conclusion are given 
in the last Section. 

2 
neural network 

2.1 Structure of the network 
A neural network is a simplified mathematical model 
of a biological neural network. It consists of a collec- 
tion of interconnected neurons. Let: 

Multiple bias and configuration signal-noise 

2 = [ 2 1  2 2  ' . '  2,It (1) 

Y = [Yl Yz . . .  YPlt (2) 
respectively, be input and output vectors of n and p 
dimensions, in the signal-noise neural network, x is a 4- 
dimensional vector containing frequency f k ,  bias condi- 
tion (VDs, IDS) and configuration type (CT), y is a 12- 
dimensional vector which gives S- and N-parameters. 
The relationship between x and y is multidimensional 
and nonlinear. To model such a multidimensional non- 
linear relationship, a three-layer neural network is 
employed, which has n processing nodes (PN) in the 
input layer, p PNs in the output layer, and q PNs in the 
hidden layer, as shown in Fig. 1. Let: 

b p )  ] (4) 

hidden (ayer output Layer 
Fig. 1 Multibias and configuration .signal-noise neural network 
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be vectors representing the kth sample of the input and 
output, respectively, k = 1, 2, ..., N, where N,9 is the 
total number of the data samples. The weighting 
matrix between the hidden and input layer is W, and 
between the hidden and output layer is V, which can be 
expressed as: 

w =  [wl w, . . .  Wh . . .  W,] (5) 

V =  [VI V' * * *  Vh * ' *  V,] (6) 

Wh = [ w l h  W 2 h  ' ' _  Wth . ' .  WnhIt (7 )  

v, = [ v-j v,, ' .  ' v,J (8) 

where W, vector is the weighting vector between the 
hth hidden node and the input layer: 

5 is the weighting vector between the,jth output node 
and the hidden layer: 

The signal resulting from the hidden layer to the j th 
output node can be expressed in the form of: 

4 

@,j(x,w,y,0) x v h j g h ( x , w h , 0 h )  (9) 
h = l  

and the net output of the ith output node is obtained 
as follows: 

where gh and& are the basis functions for the hth hid- 
den node and the j th output node, respectively, which 
are the sigmoid type of nonlinear functions in our 
application, and gh(x, Wh, 0,) can be expressed in the 
following form: 

Y , ( Z , W v , , Q , T , , @ j )  =T,jfj(@, +@,I (10) 

1 
Sh(? W h , Q h )  = 

1 + exp (- (c i=l x t w t h )  - O h )  

(11) 
In eqns. 14 and 15, Oj and 0, are the thresholds of the 
jth output and hth hidden nodes, respectively. 

2.2 Determination of the network matrix P 
If parameters of the network architecture are denoted 
by the matrix P,  the network parameter matrix P will 
have n x q + p x q + q + p elements which consist of 
weighting factors between the input and hidden layers 
and the hidden and output layers, the local memories 
of the hidden and output nodes, respectively. The train- 
ing process can be defined as computation of the net- 
work parameter matrix P so that the error function 
which is: 

(12) 
is minimised, where y,(k) and by) are, respectively, the 
predicted and measured values of the j th output node 
at the training frequency J;,. This type of training 
process is also called backpropagation, which is 
available in the two types of algorithms: 'on-line' 
training where neural network parameters are updated 
after each sample presentation, and 'off-line' training 
where neural network parameters are updated after all 
samples are presented. In this work, we chose the 'on- 
line' training approach, since it is more efficient in 
most cases. The update equations for V,,, W2,, 0, can 
be given as follows: 

and similar equations can be written for OJ and rJ .  In 
eqns. 23 and 24 q and CI are positive valued between 0 
and 1, learning rate and momentum, respectively. In 
this work, a simple program is used to search their 
optimum values depending on the type of the worked 
transistor where the strategy is to determine optimum 
values for a and q, to ensure rapid convergence to the 
satisfied performance measures of the model. Thus we 
start with any set for the network parameters and then 
repeatedly change each parameter by an amount pro- 
portional to the related sensitivity terms such as 

a)?p)  d E ( k )  d E ( k )  
_ _ _ _ _ _  avh, ' awth ' d0h 

according to updated equations and assume that the 
training is completed when the error fails to decrease 
any further. The network parameters are then the final 
set of values of Vhj, Wfh, e,, rJ and OJ. By defining the 
sensitivities of the network with respect to V,,, Wfh, 0, 
can be given as follows, after letting 2, and 5 be 
defined as: 

z h  = g h ( Z , W h , e h )  

r - 
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, NE219 
BFQ71 

BFR28 
NE02135 

where &(2) and 4(3) represent local gradients at individ- 
ual nodes in the second and third layers, respectively, 
and using (9.3) and (9.5) they can be expressed as: 

PI 

3 Worked examples and conclusion 

In the foregoing Sections a neural-based technique is 
described for modelling of signal and noise behaviour 
of microwave transistors over their operation frequency 
band, biasing ranges and configuration types. In the 
work, this multiple bias-configuration neural network 
model has been applied to many transistors for which 
the manufacturer's characterisation data is used as the 
training data. The results show that the predicted 
parameters are generally in good agreement with the 
desired parameters. 

500 i terat ion 

1000 
2 0.01 

0.001 -00 - , 
3 4 5 6 7 8 9 10 11 1 2 1 3 1 1  

hidden layer nodes 

Fig. 2 
Iteration number IS taken as parameter 

Vuriution of neural network with truining error 

Fig.5 
E , ,  = 0.019730, E*, = 0.035988, E , ,  = 0.049394, Ez2 = 0.071714, E, = 0.044207 

S-purumetev-frequency vuriutionsfor VcE = SV, I ,  = 20nzA ut the 

0 10000 20000 30000 40000 50000 60000 
iterotion number 

Fig.3 Vuriution of training time with respect to iterution number 

k 0.1 
a 4 
2 001 

!! 0 001 0 20 000 40 000 60 000 80 000 

iteration number 

Fig.4 
NE02135 

Vuriamn of truining error with respect to iteration number for 

In the following subsections, two worked examples 
are presented (Tables I and 2) with the performance 
measures of the neural network models, where amount 
of the data used for the training is optimised for each 
bias condition against the error and iteration number. 
A worked example is also given in [l]. Fig. 2 gives var- 
iations of the hidden nodes of the neural network 
against the training error, the iteration number taken 
as the parameter, in our model, which is taken to be 
equal to the number of output nodes, which is almost 
optimum. The graphs in Fig. 2 also show how rapid 
the training error converges, since the error settles 
down in the range of 0,01 within 500 iterations. Figs. 3 
and 4 give variation of the training time with respect to 
the iteration number for the various types of transistor, 

common collector configuration of the trunsistor NE2I9 ( WFBG) 

IEE Proc.-Cirtuits Devices Syst., Vol. 145, No. 2, April 1998 113 



Table 1: Multiple bias and configuration signal neural network model for 
the transistor NE219 common collector and common emitter configuration 

0 perat ion frequency bandwidth : 2-6 G Hz 

Operation bias conditions 

Configuration Bias voltage VC-, V Bias currents IC, m A  

8 

cc 

CE 

10 

SFG 

Et = 0.050105 

€11 = 0.027857 

€21 = 0.037930 

€12 = 0.037051 

€22 = 0.097582 

Fig. 7 

Et = 0.73243 

€11 = 0.045472 

€21 = 0.034876 

€12 = 0.061781 

€22 = 0.150743 

not given 

20 

WFBG 

Et = 0.044207 

€11 = 0.019730 

€21 = 0.035988 

€12 = 0.049394 

€22 = 0.071714 

Fig. 5 

Et= 0.065140 

€11 = 0.039773 

€21 = 0.044730 

€12 = 0.060726 

€22 = 0.115331 

not given 

30 

SFG 

Et = 0.032068 

€11 = 0.016128 

€21 = 0.036308 

€72 = 0.029213 

€22 = 0.046625 

not given 

Et = 0.058195 

€11 0.028880 

€21 = 0.0321 19 

€12 = 0.042287 

€22 = 0.0129495 

Fig. 8 

Table 2: Multiple bias and signal-noise neural network model for the tran- 
sistor NE02135 at the common emitter configuration 

Operation frequency bandwidth: 0.1-4GHz 

Operation bias conditions 

Bias voltage VC,, V 

10.0 5.0 10.0 20.0 30.0 

SFG WFBG SFG SFG 

Bias currents I ,  mA 

Et = 0.041287 Et = 0.079736 E, = 0.037003 E, = 0.044565 

€11 = 0.033850 €11 = 0.034377 €71 = 0.023597 €11 = 0.018405 

€21 = 0.044067 €21 = 0.056279 €21 = 0.043421 €21 = 0.049997 

€12 = 0.043720 €12 = 0.097377 €12 = 0.046626 €12 = 0.067227 

€22 = 0.043512 €22 = 0.130912 €22 = 0.034370 €22 = 0.042631 

Fl = 0.030823 FI = NMDA FI = 0.023949 F1 = 0.01918 

F2 0.102794 F2 = NMDA F2 = 0.052824 F2 = 0.07685 

F3 = 0.123793 F3 = NMDA F3 = 0.096364 F3 = 0.0659 

Ft = 0.085804 Ft = NMDA Ft = 0.057712 Ft = 0.0539 

Fig. 9 Fig. 11 not given Fig. 12 

Extrapolated values of noise parameter for Vc- = IOV, IC = 30mA are used. NMDA = no measured 
data available 

where it should be noted that, once the neural network 
has been trained, it responses at once to the desired 
input. The generalisation process can be considered in 
two categories. 

3.1 Single frequency generalisation (SFG) 
This can be defined as the performance parameter 

trained bias condition. In the work [I], the 
interpolation and extrapolation capabilities of the 
network are demonstrated in the error-frequency planes 
over a fairly large operation bandwidth at a single bias 
condition. In this work, the SFG procedure is applied 
to a lot of bias conditions for the different 
configuration types, and the same conclusion as [I] is 1.5 2.0 2.5 3.0 3.5 L.0 L.5 5.0 5.5 6.0 
reached, which is that the network has a high frequency, GHz 

for learning. 

114 

0.11 - 

0.12 - 

0.10- 

prediction at a single operation frequency of the 

to between the data points used Fig.6 Error-fvequency &t&&jns,for V,, = S V ,  I = 2OmA at the 
common collector configuration of the transistor NE219 JkFBG)  
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Fig. 7 
E , ,  = 0.027857, Ell = 0.037930, EIZ = 0.037051, 

S-parameter-fiequency variationsjbr VcE = 8.0 V, I ,  = l 0mA at the common collector configuration of transistor NE219 
= 0.097582, E, = 0.050105 

Fig.8 
E , ,  = 0.028880 Ezl = 0.032119 E,, = 0.042287 

S-parameter-fvequency variationsfor' V,, = SV,  I ,  = 30mA at common emitter 
= 0.129495 E, = 0 058195 

configuration of transistor NE219 

1.0 

3 

hg.9 S- and N-parameter-frequency vuriution j b r  VcE = 10 V,  I ,  = 5mA at the common emitter conjigumtion ojtransistor NE02135 (SFG) 
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1 -  

0 .I 11, o--- - - 0  

0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 1.0 1.5 

c 
frequency,  GHz 

0.30 

0.251 

p 0.20 
P 
a, 0.15 

0.10 

0.05 

0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 L.0 L.5 
frequency,  G H z  

Fig. 10 Error-frequency distributionsfor VcE = 10 V,  I ,  = 5mA ut the common emitter conJgurution of trunsistor NE02135 (SFG) 

Fig. 11 S-parameter-j~equency vuriutionsfor VcE = 10 V,  I ,  = 10niA at the common emitter configurution of trunsistor NE02135 ( WFBG) 

Fig. 12 S-parumeter-JLequency variations fbr V ~ E  = 10 V,  I ,  = 30mA at the common emitter conJguration ojtrunsistor NE02135 (SFG) 

3.2 Whole frequency band generalisation 
(WFBG) 
This can be defined as prediction of the unknown mul- 
tidimensional performance parameter function for the 
whole operation frequency band, which has eight signal 
dimensions and four noise dimensions given by eqn. 2, 

at an untrained bias condition. Fig. 6 gives the fre- 
quency distribution of error for the whole frequency 
band generalisation (WFBG) of the scattering parame- 
ters at the bias condition VcE = 8V, Zc = lOmA for the 
common collector configuration given in Fig. 5.  From 
the examination of the WFBG processes, one can con- 
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dude that the network can predict the multidimen- 
sional performance parameter functions of the 
transistor between the bias conditions. 

In the Figs. 7-12 some predicted and target varia- 
tions of the signal and noise parameters for the transis- 
tors NE219 and NE02135 at the multiple bias- 
configuration are given between the starting and stop- 
ping frequencies supplied by the manufacturers, for the 
purpose of comparison. In all the Figures, the curves 
with dashed lines give the predicted variations, while 
the solid curves are the target variations. 

In this work, we have presented a nontraditional 
approach to modelling of microwave transistors, so 
that a multiple bias/configuration signal-noise neural 
network model is obtained, which is shown to be capa- 
ble of giving results in a good agreement with the 
measured values. By exploiting the flexibility and gen- 
erality of the neural network model, we have demon- 
strated its use for the device characterisation for its 
signal and noise performance over its whole operation 
ranges including frequency, bias conditions of the pos- 
sible configuration types. At the same time, results of 

our work have demonstrated the feasibility and effi- 
ciency of using neural networks in the practical interac- 
tive design and optimisation methods for the physics- 
based device modelling. 
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