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Abstract : 
This paper introduces modeling of the 
probabilistic dependence between different 
structures of power system devices, 
employing the “Copulas” analytical tool for 
correlating among multivariate outcomes. 
Copulas have become a popular analytical 
tool in multivariate modeling, where recently 
has been applied in many fields. Here, the 
basic properties and theorems of Copulas 
along with their contributions to Monte Carlo 
method are described. A case study has been 
performed on a distribution substation in 
Tehran, in which enormous information was 
gathered using an installed data logger. Then, 
investigation is carried out based on the 
measured data. The recorded data paves the 
way for pursuing further analysis that is 
associated with simulating statistical 
correlation between uncharacteristic 
harmonics and realistic unbalanced conditions 
for a voltage-source inverter at the point of 
common coupling (PCC). 
 
 

1. Introduction  
In power systems analysis, it is preferred to 
use completely analytical and deterministic 
methods anywhere possible; that is, the 
equations describing system models were 
solved either explicitly or numerically. In 
order to finding these solutions we often had 
to make simplifying assumptions and 
approximations, alluding at the same time to 
the possibility of obtaining more accurate 
results with the help of simulation methods. 
In fact, simulation methods can often be the 
only means of obtaining the solution to the 
system model, especially when the systems 
studied is large and complex or when the 
effects of certain sequences of events are of a 
particular interest or when the probability 
distributions, rather than only the means and 
variances, are required. 
Monte Carlo simulation as a numerical 
simulation is a process of selecting a set of 
values of system parameters and obtaining a 
solution of the system model for a selected 
set. By repeating the simulation process for 
different sets of system parameters, different 
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sample solutions are obtained. The key 
activity in the Monte Carlo simulation process 
is the selection of system parameters to obtain 
sample solutions; which is applied to 
problems involving random variables with 
known, modeled or assumed probability 
distributions. A sample from a Monte Carlo 
simulation is similar to a sample of 
experimental observations. Therefore, the 
results of these studies, as modeled samples, 
can then be used to study mathematical 
models of real-world systems, or for statistical 
studies. 
Systematic generation of the appropriate 
values of the random variables in accordance 
with the respective prescribed probability 
distribution is accomplished by first 
generating a uniformly distributed random 
number between 0 and 1 and then, through 
appropriate transformations, obtaining the 
corresponding random number with the 
specified probability distribution. However, 
one of the main difficulties associated with 
the application of the analytical methods in 
probabilistic power system studies is that the 
random variables are often not independent 
and that the joint probability distribution 
functions must be used. This introduces an 
additional difficulty in the already complex 
problems, and therefore the majority of 
analytical approaches assume independence 
of the random variables or somehow 
inaccurate dependencies through the 
correlations only. 
One of the main applications of copulas is in 
the Monte Carlo studies where a multivariate 
dependency structure exists [1]. Using of 
copulas fits the stochastic modeling of 
dependant chaotic variables and time series in 
power systems well. They can efficiently used 
to produce non-conventional multivariate 
distributions for Monte Carlo studies. On the 
other hand, the use of copulas for modeling 
purposes includes two straightforward steps. 
The first step is modeling the marginal 
distributions along with their correlation 
matrix and the second consists in fitting the 
proper copula. It should be mentioned that it 

is an obscure task to find a multivariate 
distribution and fit it to our data. The use of 
copulas is practical as some good software 
packages have already provided its complete 
implementation (such as [2], [3]). 
The concepts of stochastic analysis in power 
systems from the viewpoints of designing, 
planning and operation are rather modern 
phenomena. Generally speaking, there are 
four main circumstances that necessitate using 
of such methods: 

1) Generation, demand and configuration 
uncertainty mainly due to the prevalence 
of the renewable and distributed sources 
(e.g. [4], [5]); 

2) measurement inaccuracy (e.g. [6]); 
3) modeling and forecasting uncertainty 

(e.g. [7], [8]); 
4) uncharacteristic and parametric 

aggregate uncertainty (e.g. [9], [10]). 
The accurate deterministic modeling of such 
circumstances is not trivial [11] and a 
quantitative or a qualitative uncertainty 
modeling is required. Dealing with these 
uncertainties in power systems refer to a vast 
amount of research work, many related to 
reliability studies farther ahead (e.g. see the 
bibliographies in [12]). Recently, more 
attention is focused on the uncertainties due to 
the prevalence of the renewable and 
distributed resources in the deregulated 
environment. With regard to uncertainty 
studies addressing parametric and aggregate 
aftermath or complex dependence structures 
in power systems, there are fewer papers, and 
these mainly consider uncertainties using case 
study experiments [13] or assume simplifying 
presumptions [14]. 
Relevant methods to the stochastic 
uncertainty analysis combine deterministic 
simulation techniques with stochastic 
analyses. These do not consider uncertainties 
in parameter values, and neglect the modeling 
of dependence structures between parameters 
of an integral system. While these studies are 
important in their own right, they lack 
adequate accuracy addressing the parametric 
uncharacteristic uncertainties related to the 
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operation of power electronic devices in 
interaction with each other and the 
distribution network.   
In this context, the use of an integrated 
deterministic and probabilistic simulation 
algorithm may be the forthcoming solution if 
the stochastic dependence structures are 
modeled in addition to the deterministic 
dependence in a system with its interacting 
devices [22]. Therefore, the key point of such 
an analysis is the modeling of stochastic 
dependence that can be suitably done using 
the copulas. The basics for such an analysis 
are introduced in this paper. 
In the following sections, the main theorems 
and procedures for using copulas are 
presented. The discussions are followed by a 
case study which includes the use of copulas 
in a Monte Carlo simulation for estimating the 
correlation between uncharacteristic current 
THD produced by a voltage-source inverter 
(VSI) and the levels of exchanged reactive 
power when a realistic unbalance exists at the 
point of common coupling (PCC). 

2. Principles of Copulas and Dependence 

2.1. Basic Definitions 

According to [1], copulas are “functions that 
join or couple multivariate distribution 
functions to their one-dimensional marginal 
distribution functions” or equivalently in 
terms of mathematical representation [15], a 
copula is a function C of n variables on the 
unit n-cube [0,1]n with the following 
properties: 

1) The range of C is the unit interval [0,1];  
2) C(u) is zero for all ( )1, , nu u=u K  in 

[0,1]n for which at least one coordinate 
equals zero; 

3) ( ) kC u=u if all coordinates of u are 1 
except the k-th one; 

4) C is n-increasing in the sense that for 
every a ≤ b in [0,1]n the measure baCΔ  
assigned by C to the n-box 

1 1, , ,n na b a b⎡ ⎤ ⎡ ⎤⎡ ⎤⎣ ⎦ ⎣ ⎦⎣ ⎦= × ×a b L is 

nonnegative, i.e. 
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where, n is the number of dependent 
outcomes that should be modeled and all 
marginal distributions of the random vector 

( )1, , nu u=u K  are uniform. It can be 

illustrated from the definition that copulas 
have many useful properties, such as uniform 
continuity and existence of all partial 
derivatives. 

To complete the construction of copula, a 
set of arbitrary marginal distribution functions 
can be assumed and therefore, the C defines a 
multivariate distribution function evaluated at 
x1, x2, …, xn as: 

 
( ) ( ) ( )

( )
1 1 2 2

1 2

, , ,

                 , , ,

n n

n

C F x F x F x

F x x x

⎡ ⎤
⎢ ⎥⎣ ⎦

= ⋅

K

K
 (2) 

Sklar [16] showed that any multivariate 
distribution function F can be written in the 
form of (2) that is using copula 
representation. He also showed that if the 
marginal distributions are continuous, then 
there is a unique copula representation. The 
aforementioned statements are the key 
theorem of copulas referred to as Sklar’s 
theorem and clarify the relations of 
dependence and the copula of a distribution. It 
should be mentioned that constructing 
multivariate distributions without the concept 
of copula has some drawbacks such as (1) 
necessarily a different family is needed for 
each marginal distribution, (2) extension to 
more than just the bivariate case are not clear, 
and (3) measures of association often appear 
in the marginal distributions. The use of 
copulas, however, does not suffer from these 
drawbacks.  

2.2. Correlation Measures 

To continue with the concepts of applying 
copula fits to the simulation of dependency, a 
brief reminding of correlation and its 
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measures seems to be necessary. The familiar 
form of correlation is the Pearson’s pairwise 
linear coefficient and defined as 

 ( ) 2 2

cov ,
,

X Y
X Y

X Y
ρ

σ σ

⎡ ⎤⎣ ⎦

⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦
= ⋅  (3) 

This correlation has some shortcomings to 
measure the strength of dependence other than 
the linear case: (1) it is not ideal for a 
dependence measure of heavy-tailed marginal 
distributions; (2) zero correlation for a joint 
distribution with a non-linear relationship 
may not reflect its dependence other than for 
the multivariate normal case; and (3) it is not 
invariant under non-linear scale transforma-
tions. Instead, a rank correlation coefficient, 
such as Kendall's τ or Spearman's ρ, is more 
appropriate to fulfill the desirable character-
istics of a measure of dependence. 
Spearman’s rank correlation has been used in 
the succeeding analysis which is given by 
 ( ) ( ) ( )( ), ,X YS X Y F X F Yρ ρ=  (4) 

where, ( )XF X  and ( )YF Y  are the 
distribution functions of the random variables 
X and Y respectively. It should be mentioned 
that for the jointly normal distribution, 
Spearman's rank correlation is almost 
identical to the linear correlation; however, 
this is not true when transformations apply. 
The performance of the Pearson’s linear 
correlation versus the Spearman’s rank 
correlation is illustrated in Fig. 1, where their 
values are shown with different deterministic 
transformations. It is obvious that the rank 
correlation provides a more desirable measure 
of dependence than the linear correlation. 
Note that there is a deterministic relationship 
and a good measure should equal one in any 
case (Pearson’s ρ completely fails in the 3rd 
extremely non-linear case). 

2.3. Modeling of Stochastic Dependence 

There are various situations in the 
applications of power system analysis where 
we might wish to simulate dependent random 
vectors and arrangements (as evidenced by 

Monte Carlo algorithms). Examples of such 
applications are in the noise modeling, 
reliability studies, materials and natural 
phenomena uncertainty, risk assessment, 
complex modeling and etc. Randomly 
behaving variables of such circumstances may 
be assumed completely dependent, linearly 
correlated, superposed, or completely 
independent; the most appropriate choice is 
influenced by several factors such as the 
characteristics of the system and the required 
accuracy. In the power system problems, 
anyhow, many cases involve high levels of 
dependency. Therefore, it is very tempting to 
approach the problem in the following way: 

1) Estimate matrix of pairwise rank 
correlations, 

2) estimate marginal distributions, 
3) combine this information using a copula. 
To perform a simulation, therefore, the 

following information should be specified 
from the measured or calculated data: 

1) the copula family and any required shape 
parameters, 

2) the rank correlations among variables, 
and 

3) the marginal distributions for each 
variable. 

It should be mentioned that the copula is 
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Sign Relationship between axis Pearson’s ρ Spearman’s ρ 

• 5x 1.000 1.000 
+ 0.05 × x3 0.9308 1.000 
* Humps curve -0.4355 0.9806 
† Pre-specified ρ of 0.95 0.9522 0.9486 

 
Fig. 1. Comparison of different dependence 

measures. 
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assumed to be chosen by the modeler based 
on his experience, ease of use and analytical 
tractability. The most commonly used copulas 
are the Gaussian copula for linear correlation, 
Gumbel copula for extreme distributions, and 
the Archimedean copula and the t-copula for 
dependence in tail [1], [17]. Some popular 
copulas are shown in Fig. 2. 
Furthermore, a realistic correlation matrix 
must be positive semi-definite, real-valued, 
and symmetric. Proper modeling of such a 
matrix based on the realistic data is an 
important stage of the algorithm; specifically 
when there is some data misplacement or the 
values are noisy, unavailable, or inapt. There 
are practical methods to deal with the 
problems associated with the non-proper 
correlation matrices [18]. Anyhow, these 
methods generally apply to abnormal data 
recordings and become conspicuous in 
Gaussian copula construction algorithms. 

Another key point in a reliable dependency 
modeling is building the marginal distribu-
tions. One could fit a parametric model 
separately to each dataset, and use those 
estimates as the marginal distributions; 
however, a parametric model may not be 
sufficiently flexible. Instead, a nonparametric 

model to transform to the marginal distribu-
tions seems to be appropriate. Meanwhile, 
using empirical cumulative distributions 
results in a discrete representation which may 
not desirable for a continuous distribution. 
Therefore, it is advisable to apply a 
smoothing technique such as kernel 
smoothing or interpolate between the 
midpoints of the steps with a piecewise linear 
function. The general modeling structure 
based on copulas is illustrated in Fig. 3.  

2.4. Simulation Algorithm 

For the simulation, it is a good idea to 
experiment with different copulas and 
correlations. The two main simulation 
strategies are the Archimedean and 
compounding methods [19]. Both methods 
can be easily implemented for more than two 
dimensions (multivariate case). Nonetheless, 
the compounding algorithms are computation-
ally more straightforward than the conditional 
distribution approach used in Archimedean 
methods. Meanwhile, it requires the 
generation of an additional variable which can 
be computationally expensive in applications. 
Regarding the fact that the power system 
problems typically require extensive calcula-
tions, addition of extra variables may not be 
acceptable. Therefore, as popularly used in 
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Fig. 2. Samples of different bivariate copula 
functions: (a) Gayssian copula; (b) t copula; 
(c) Clayton copula; and (d) Gumbel copula. 
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Fig. 3. Copula modeling structure. 
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most software [3], the Archimedean 
construction is used in this paper. One method 
is briefly as follows [19]: 

1) Generate independent uniform random 
numbers U1, U2, …, Un. 

2) Set ( )1
1 1 1X F U−=  and c0 = 0. 

3) For k = 2, …, n, recursively calculate Xk 
by 

 

( )
( )

( )

1 1

1( 1)
1

1( 1)
1

, ,k k k k

k
k k k
k

k

U F X x x

c F x

c

−

⎧ ⎫− − ⎡ ⎤⎨ ⎬− ⎢ ⎥⎣ ⎦⎩ ⎭
− −

−

=

Φ +Φ
= ⋅

Φ

K

 (5) 

This algorithm is to generate X1, X2, …, Xn 
having modeled distribution function of (1), 
the copula is 
 ( ) ( ) ( )1

1 2 1, , , , ,n nC u u u u u− ⎡ ⎤
⎢ ⎥⎣ ⎦

= Φ Φ + + ΦK L  (6) 

and ( ) ( )1 1k k kc F x F x⎡ ⎤⎡ ⎤
⎢ ⎥⎣ ⎦ ⎣ ⎦

= Φ + +Φ ⋅L  
Equation (6) defines a class of copulas known 
as Archimedean. The Archimedean represent-
ation allows us to reduce the study of a 
multivariate copula to a single univariate 
function. The function Φ is a generator of the 
copula and uniquely determines it.  
Given a dataset, choosing a copula to fit the 
data is an important but difficult problem. 
Since the real data generation mechanism is 
unknown, it is possible that several candidate 
copulas fit the data reasonably well or that 
none of the candidates fit the data well. When 
maximum likelihood method is used, the 
general practice is to fit the data with all the 
candidate copulas and choose the ones with 
the highest likelihood. Considering the 
maximum likelihood, the Frank copula is 
chosen in this paper because it fits the studied 
data well. 
The technique for random vectors can be 
applied for time series as well [20]. A moving 
window with a certain number of vectors is 
taken as a sample vector for a stationary time 
series. The marginal distributions and the 
copula are then estimated with this sample 
according to the above algorithm. 
In the following we demonstrate a novel 

application. First, the recorded three-phase 
active and reactive powers at a distribution 
substation in Tehran, Iran and their stochastic 
dependence are realistically modeled using a 
copula based on the algorithm proposed by 
[22]. Second, a Monte Carlo simulation is 
applied to a VSI for estimating the correlation 
between uncharacteristic harmonic distortion, 
levels of unbalance, and the exchanged 
reactive power at the PCC. 

3. Stochastic Dependency between 
Uncharacteristic Harmonics of a VSC and 
its Reactive Power Exchange 

In practice, any VSC-based applications such 
as static compensators, act as a source of 
producing harmonics for power systems. It 
could also interact with possible harmonic 
distortions and unbalances of the power 
network. These interactions would be 
complex, making the deterministic analysis of 
steady-state harmonic levels and full 
assessment of their dynamic behavior difficult 
tasks [9]. Therefore, it is required to pursue 
evaluation of these harmonic interactions 
through a suitable combination of measure-
ments and statistical simulation studies. Here, 
we present a novel methodology for analyzing 
such interactions. To demonstrate a practical 
application, a VSC with Selective Harmonic 
Elimination (SHE) is considered to be used as 
a reactive power compensator.  
Selective harmonic elimination techniques 
use pre-calculated switching angles based on 
assuming ideal conditions (e.g. fixed dc bus 
voltage). This method presents several 
advantages in comparison to the conventional 
carrier-based sinusoidal PWM schemes [21]. 
On the other hand, load-terminal harmonics 
and unbalance of the distribution system 
impose distortion on both dc and ac sides 
introducing additional uncharacteristic 
harmonics generated by the VSC. 
Considering the SHE, the pre-calculated 
chopping angles will not then be optimal 
under these conditions. Hence, the amount of 
uncharacteristic harmonics that is injected to 
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the distribution system stochastically depends 
on several factors such as operating 
conditions of the VSC [9]. 

The evaluation of this stochastic 
dependency should embrace all of the realistic 
uncertainties in the network. It should also 
reckon with the harmonics sensitivity to the 
non-optimal chopping angles. In this study, a 
Monte Carlo simulation based on the 
described copula approach is proposed to this 
problem. The emphasis is on the estimation of 
the degrees of dependence between a realistic 
voltage unbalance of the network, the 
produced uncharacteristic harmonics, and the 
reactive power operating point. 
The harmonic-domain model and topology of 
[9] is used here in order to provide the 
required calculation efficiency and accuracy. 
A schematic diagram of the network is shown 
in Fig. 4. The ac system on the high voltage 

side of the transformer is rated at 20 kV. Five 
chopping angles are used to control in steady 
state, thereby permitting the regulation of the 
fundamental component while eliminating the 
5th, 7th, 11th, and 13th harmonics. 
First, the three-phase active and reactive 
powers data, as simulated in [22], are used to 
estimate the statistical behavior of the voltage 
unbalance by a three-phase load flow 
calculation. The estimation result is shown in 
Fig. 5 which demonstrates a good conformity 
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Fig. 5. Recorded vs. simulated VUF% considering 
stochastic dependency in the system load. 
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Fig. 4. Recorded three-phase active and reactive powers by data logger  at 400 V substation of Alestom. 

 
Fig. 6.  Simulation of the penetrated uncharacteristic current THD based on 

the measured unbalanced powers by a surface plot. 
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with the measured data. The obtained 
accuracy is owing to the fact that the 
dependence structure of six powers is taken 
into account by a suitable copula.  
Then, The VSC-based compensated network 
of Fig. 4 is considered along with the 
simulated voltage unbalance. Furthermore, 
background harmonics are represented by 
voltage harmonic source obtained from field 
measurements. If the capacitance of the DC-
link capacitor is assumed 2 mF, the resultant 
current THD% is then calculated for all data 
as shown in Fig. 6. This is a surface plot in 
which the THD variation over various 
reactive power loadings is depicted for each 
observed VUF. Note that the diversity of 
various probable VUF’s, causing different 
THD’s, are also realistically modeled by the 
proposed procedure. 
It can be seen from Fig. 6 that a realistic 
voltage unbalance would not dramatically 
modifies the uncharacteristic THD of VSC ac 
current except for situations that the 
compensator absorbs relatively small amounts 
of reactive power; nonetheless, there are 
rather few observed higher VUF’s for which 
the uncharacteristic THD became very risky. 
To further clarify the estimated stochastic 
dependency, a pattern of variation for the 
correlation coefficient between the un-
characteristic current THD and the VUF is 
shown in Fig. 7. This correlation is around 

zero for very small reactive power loadings; 
conversely, it arises for higher amounts of 
reactive power absorption or generation. It is 
can be inferred from Fig. 7 the pattern of Fig. 
6 implicitly.  
It should also be noted that the THD is 
affected by changing the DC-link capacitance. 
Also, the power system equivalent impedance 
influences the THD under variation of the 
voltage unbalance percent. This analysis can 
be easily extended to include other realistic 
conditions. In this manner, a purely 
deterministic analysis will become more 
complex and the proposed stochastic simula-
tion would be more useful.  

4. Conclusion 

This paper suggests a new type of analysis 
related to the deterministic-stochastic 
dependencies in power system devices and 
signals with an emphasis on power electronic 
switching interaction with the network. In 
order to model stochastic dependencies in a 
multivariate Monte Carlo simulation, the 
copula theory has been proposed and briefly 
introduced. A case study is arranged based on 
the recorded data from a 20 kV/400 V 
distribution substation located in Tehran for a 
one week period. Firstly, the complete 
dependence structure of the three-phase active 
and reactive powers is modeled using a 
copula. As verified with the measured data, it 
demonstrated useful characteristics with a 
sufficient accuracy [22]. 

Secondly, a Monte Carlo simulation is 
implemented based on the described copula 
approach to estimate the degrees of 
dependence between a realistic voltage 
unbalance of the network, the produced 
uncharacteristic harmonics, and the reactive 
power loadings. The presented results are 
used to evaluate harmonic performance of a 
VSC-based compensator. Future work will 
focus on other possible applications and will 
be extended to include other realistic 
conditions.  
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Fig. 7. Variation pattern of the correlation between 
uncharacteristic current THD and the exchanged 

reactive power of the VSC. 
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