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The most effective chassis control system for improving vehicle safety during severe brak-
ing is anti-lock braking system (ABS). In this paper, a nonlinear optimal controller is ana-
lytically designed for ABS by the prediction of the wheel slip response from a continuous
nonlinear vehicle dynamics model. A new reference model for the wheel slip, which con-
siders the effects of variations of tire normal load and tire/road condition, is proposed to be
tracked by the controller. The main properties of the designed controller are evaluated and
discussed by considering the important practical aspects of the slip control problem. The
performed analysis along with the simulation results indicate that the designed controller
with different special cases can successfully cope with the strong nonlinearity and realistic
uncertainties existing in vehicle dynamics model. Meanwhile, a compromise between
tracking accuracy and control energy can be easily made by the regulation of the weighting
ratio, as a free parameter in the optimal control law.

� 2012 Elsevier Ltd. All rights reserved.
1. Introduction

Recently, the development of chassis control systems for improving vehicle active safety has generated considerable
interest in research community and automotive industries. Among these systems, the anti-lock brake system (ABS) is used
to directly control the longitudinal dynamics of vehicle during braking (Furukawa and Abe, 1997).

The basic function of an ABS is to prevent the wheel form locking, and to regulate the longitudinal slip of the wheel at its
optimum value in order to generate the maximum braking force. This permits the vehicle to achieve the shortest stopping
distance during braking and at the same time improves the vehicle directional control and stability indirectly. In another
application, since the ABS can regulate the longitudinal force acting independently on each wheel, it is used in the lower
layer of vehicle dynamic control (VDC) system. In this system, the vehicle braking force is transversely distributed between
the left and right wheels in a way that the external yaw moment required for stabilizing vehicle lateral dynamics is gener-
ated (van Zanten et al., 1998; Mirzaei et al., 2008). This strategy known as differential braking can be provided by the main
parts of common anti-lock braking system.

The hard nonlinearities and modeling uncertainties existing in vehicle dynamics are the two main difficulties arising in
the design of ABS controller. The first one is as a result of tire force saturation and the next one is mainly due to variations of
road condition and vehicle parameters such as mass, center of gravity of the vehicle. Also, the un-modeled dynamics ne-
glected in the course of modeling together with other practical limitations are considered as the un-structured uncertainties.
A suitable controller for the ABS should successfully handle the nonlinearities and uncertainties existing in the vehicle mod-
el. On the other hand, the control law of ABS should be found in a way that the calculated control input, i.e. braking pressure,
could be regulated easily so that one can keep it to the lowest possible value.
. All rights reserved.
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It is concluded from the above discussion that a non-linear controller with suitable robustness should be designed in an
optimal way for the ABS. Many researchers have frequently applied the sliding mode control methods to ABS because of their
potential to cope with nonlinearities and intrinsic robustness (Lin and Hsu, 2003; Unsal and Kachroo, 1999; Drakunov et al.,
1995; Lee and Zak, 2002; Kazemi et al., 2000; Harifi et al., 2008; Park et al., 2006; Zheng et al., 2006; Song et al., 2007; Buck-
holtz, 2002). In these methods, the optimization is not used as the main procedure in finding the control law. Also, the chat-
tering phenomenon is the undesirable effect of the sliding control in practice. Different techniques are introduced to reduce
the chattering (Unsal and Kachroo, 1999; Harifi et al., 2008; Slotine and Li, 1991). In these methods, the discontinuous con-
trol law is smoothed to achieve a trade-off between control bandwidth and tracking precision. Also, some approaches such as
higher order sliding mode controls (HOSM) can reduce the chattering and provide the higher accuracy than the conventional
sliding modes. But they require higher control efforts and also the derivative of the control input is appeared in the derived
control law (Bartolini et al., 1998).

In the following, the most important control methods used for the anti-lock braking systems are reviewed. Unsal and
Kachroo (1999) used the sliding mode control to regulate the wheel slip at its optimum value. In their study, a PI-like con-
troller was used near the switching surface instead of sign function to reduce chattering. Harifi et al. (2008) designed a slid-
ing mode controller for ABS and used the integrated switching surface instead of sign function to reduce chattering. In this
work, they had to find the proper bound of parametric uncertainties used in the designed control law. In another work, a
fuzzy controller combined with the sliding mode control was introduced to reduce the dependency of controller on vehicle
model (Lin and Hsu, 2003). Lee and Zak (2002) proposed a genetic neural fuzzy ABS controller that consists of a non-deriv-
ative neural optimizer and fuzzy-logic components. The non-derivative optimizer finds the optimal longitudinal wheel slip
and then the fuzzy components compute the brake torque to track the optimal longitudinal wheel slip.

There are fewer optimal control laws for the ABS in the literature. Petersen (2003) designed a controller using gain sched-
uled LQR design method. A predictive optimal wheel slip controller based on a linearized vehicle model which was discret-
ized via a bilinear transformation has been presented by Anwar and Ashraf (2002). These methods apply the linearized
vehicle models and use on-line numerical optimization in finding the control law, whereas the use of non-linear model
can broaden the valid range of operations as well as improve the accuracy of the controller. Also, numerical computation
methods need online dynamic optimization and are not easy to solve and implement.

Generally, application of classic optimal control theories to the non-linear system requires that the derived non-linear
two-point boundary value (TPBV) problem or Hamilton–Jacobi–Bellman (HJB) partial differential equations are solved. It
is very difficult or even impossible to find an analytical solution for these problems.

In this paper, an optimal predictive approach is applied to design a nonlinear model-based controller for braking pressure.
The proposed optimal control method is based on the predictive concept introduced by Lu (1995) for continuous nonlinear
systems. In this method, a pointwise minimization performance index that penalizes the tracking error at the next instant,
yet is not excessive, is used to find the current control input. The method analytically leads to a closed-form control law
which is suitable to implement and the online numerical computations in optimization are not required (Lu, 1995; Mirzaei
et al., 2008; Eslamian et al., 2007). In the development of this approach for the ABS, authors have already designed a non-
linear controller with increased robustness to track a constant wheel slip during braking for all road conditions (Mirzaeine-
jad and Mirzaei, 2010). In this earlier work, the weighting term of the control input is not included in the performance index
to be minimized. In this case, referred to the cheap control, no limitation on the control input is assumed and the control law
is obtained by minimizing only the tracking errors.

But, in the present study, the expensive control approach is considered. In this case, to achieve a minimum control effort
and to make a compromise between the tracking error and control input, a complete optimization problem is defined. In this
way, a weighted combination of tracking error and control expenditure is considered to be penalized in the performance in-
dex. Therefore, the optimal control law can be adjusted to keep the tracking error within the admissible range through the
minimum control effort. At the rest, the main properties of the derived control law are analyzed and its different special
cases are discussed. Following the performed analysis, the robustness of the proposed controller with respect to the impor-
tant realistic uncertainties existing in practice is investigated. In this way, the effects of un-modeled dynamics and uncertain
control gain due to fading the actuator dynamics are considered.

In another contribution of this study, a new reference model compatible with braking conditions is proposed for the
wheel slip to be tracked by the controller. In this reference model, the variations of tire normal load and tire/road condition,
which affect on the peak value of braking force, are considered. Also, according to the practical considerations, the new ref-
erence model is presented in a way that the slip controller is only active at the physical limits in which the wheel slip is
beyond a threshold. As long as the slip resulting from the braking action of the driver is below the threshold, there is no con-
trol action. Tracking this model can generate the maximum braking force during braking on different roads and reduce the
vehicle stopping distance remarkably.

It should be noted that the actual wheel slip is difficult to determine accurately due to a lack of practical means for di-
rectly measuring the linear speed of the tire center. Therefore, in many cases, the tire wheel slip is calculated from the esti-
mated linear speed of the tire center and the measured angular speed of the tire, using various estimation methods (Ray,
1997; Gustafsson, 1997; Unsal and Kachroo, 1999). The estimation of road friction coefficient is also required to use in
ABS controllers. The error caused by the estimation leads to some uncertainties which will be considered in the performance
evaluation of the designed control system.
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At the end of this paper, the effectiveness of the proposed controller in tracking the variable reference model is compared
with a sliding mode controller, reported in the literatures, through simulations of various maneuvers.

2. System modeling

2.1. Wheel dynamics and tire force model

Basically, vehicle wheel dynamics is described by a quarter vehicle model as shown in Fig. 1. This model has been fre-
quently used to design the controller for ABS (Unsal and Kachroo, 1999; Anwar and Ashraf, 2002; Park et al., 2006; Anwar,
2006; Mirzaeinejad and Mirzaei, 2010). The longitudinal velocity of the vehicle and the rotational speed of the wheel con-
stitute the degrees of freedom for this model.

The governing equations for the motions of the wheel model are as follows:
_V ¼ �Fx

mt
ð1Þ

_x ¼ 1
It
ðRFx � TbÞ ð2Þ
where R is the wheel radius, It is the total moment of inertia of the wheel, V is the longitudinal velocity of the vehicle, x is the
angular velocity of the wheel, Tb is the braking torque and Fx is the longitudinal tire force. Finally, mt is the total mass of the
quarter vehicle given by
mt ¼
1
4

mvs þmw ð3Þ
In the above equation, mvs is the vehicle sprung mass and mw is the wheel mass. The longitudinal force acting on the tire
depends on its normal load which has two components: a static component owing to the distribution of the vehicle mass,
and a dynamic component owing to the load transfer during braking. Therefore, the tire normal load in the quarter model is
given as follows:
Fz ¼ mtg �
mvshcg

2l
€x ¼ mtg � FL ð4Þ
where l is the wheelbase, hcg is the height of the sprung mass c.g. and FL is the dynamic load transfer. In practice, the tire
normal load is calculated by measuring the longitudinal acceleration €x. But, in simulation study, Fz is calculated by substi-
tuting (1) into (4) and solving a nonlinear algebraic equation numerically.

During the braking, V > Rx and the wheel longitudinal slip is calculated as
k ¼ V � Rx
V

ð5Þ
Differentiating Eq. (5) with respect to time gives the derivative form
_k ¼
_Vð1� kÞ � R _x

V
ð6Þ
Substituting (1) and (2) into (6) yields
_k ¼ � 1
V

Fx

mt
ð1� kÞ þ R2Fx

It

" #
þ RKb

VIt

� �
Pb ð7Þ
Fig. 1. Wheel free body diagram during braking.
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In the above equation, the braking torque can be simply related to the pressure of the master cylinder with the formula
Tb = KbPb in which Kb is the braking system gain (Yi et al., 2000). This coefficient is uncertain due to fading effects of the actu-
ator dynamics.

Eqs. (1) and (7) constitute the governing equations of motion in the state space form. The vehicle velocity V and the wheel
longitudinal slip k are the two state variables while Pb is the braking pressure which must be determined from the control
law. In deriving the above equations, the effects of pitch and roll are neglected and straight-line braking with no steering is
considered.

The longitudinal force Fx is described as a function of the longitudinal slip. If the longitudinal slip is small, the relationship
between the longitudinal force and slip is linear, but with a further increase of the slip, the longitudinal force reaches a max-
imum at the certain value of the slip specified by tire-road adhesion and is saturated beyond that. In this case, the dynamic
behavior of the vehicle will be non-linear. It is found that the saturation property of the tire force, as a basic cause of non-
linear characteristics of vehicle motion, is the main reason of vehicle unsafe motions. The tire normal force as well as the
road coefficient of friction strongly affect on the tire longitudinal force behavior.

In the present study, to account for the saturation property of the tire force, the non-linear Dugoff’s tire model based on
the friction ellipse idea has been used (Smith and Starkey, 1995). In this model, the relation for longitudinal force of tire is as
follows
Fx ¼
Cik

1� k
f ðSÞ ð8Þ
where
f ðSÞ ¼
Sð2� SÞ if S < 1
1 if S > 1

�

and
S ¼
lFz 1� erV

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þ tan2 a

p� �
ð1� kÞ

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
C2

i k
2 þ C2

a tan2 a
q

Here, Ci is the tire longitudinal stiffness, Ca is the cornering stiffness of the tire, l is the road coefficient of friction, and er is
the road adhesion reduction factor. It should be noted that the straight-line braking with no steering is considered here and
therefore a very small value for slip angle a will be assumed.
2.2. Reference model for wheel slip

The wheel slip reference model, which will be tracked by the ABS controller, should be selected in a way that the max-
imum braking force is achieved during hard braking on various roads. It is known that the longitudinal tire force is a non-
linear function of the wheel slip. Meanwhile, the normal load of tire and the road coefficient of friction strongly affect on the
behavior of tire force and its maximum value.

Fig. 2 shows the variations of the longitudinal tire force versus the wheel slip for different normal loads and surfaces. As
seen in Fig. 2a, for a given surface, with increase in the value of normal load, the peak value of tire force increases and shifts
to the right. The same results are found in Fig. 2b for different friction coefficients with a certain normal load. It is concluded
that the location of optimum wheel slip depends on the braking conditions.
Fig. 2. Longitudinal tire force versus the wheel slip: (a) for different normal loads with l = 0.8 (b) for different surfaces with Fz = 6000 N.
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During the braking, according to Eq. (4), the longitudinal acceleration causes normal load to shift from the rear to the
front tires. Because of this dynamic load transfer, the normal load of the front tire, which is under study, increases and con-
sequently affects on the optimum value of the wheel slip.

In many of the previous studies, the reference value of the wheel slip has been considered as a constant value between 0.1
and 0.2, typically 0.15 (Harifi et al., 2008; Anwar and Ashraf, 2002; Mirzaeinejad and Mirzaei, 2010). In the present study, in
order to consider the effects of variations of normal load and friction coefficient, the optimum value of the wheel slip is cal-
culated instantaneously by differentiating the longitudinal force described by the simplified Dugoff’s tire model with respect
to the wheel slip. In this way, the optimum wheel slip, kopt , can be found in terms of the tire normal load Fz and the road
friction coefficient l by online solving the following algebraic equation:
@Fx

@k

����
k¼kopt

¼ 0) ð2� SÞð1� erUkÞ � ð2� 2SÞð1� erUk2Þ ¼ 0 ð9Þ
Note that in derivation of the above equation, the simplified Dugoff’s tire model described by Eq. (8) with no slip angle is
used. According to the Dugoff’s model, S < 1 describes the nonlinear behavior of the tire force with respect to the wheel slip.
The ABS controller will be active in this limit.

In the algebraic equation (9), the value of S is calculated in terms of the estimated values of l and Fz. Therefore, in order to
identify the optimal slip as a function of the friction coefficient, the road friction coefficient is first estimated from the mea-
sured vehicle data and then Eq. (9) is used. Because of the estimation error, the friction coefficient should be considered as an
uncertain parameter. Note that different methods have been developed to estimate the friction coefficient (Ray, 1997;
Gustafsson, 1997).

Fig. 3 illustrates the variation of optimum wheel slip, derived by the above equation, versus the normal load for two dif-
ferent surfaces.

In practice, the slip controllers are usually only active at the physical limits in which the wheel slip is beyond a threshold,
typically ktr ¼ 0:1. As long as the slip resulting from the braking action of the driver is below the threshold, there is no control
action. In order to implement this feature and in order to include the transient response for the reference model of the wheel
slip and to prevent a large tracking error at the beginning of the control action, the following first order system is considered
as a desired model for the wheel slip
kdðtÞ ¼ kopt þ ðktr � koptÞe�aðt�tcÞ ð10Þ
where kopt is the instantaneous optimum wheel slip, a = 20 is the time constant of the first order system (Harifi et al., 2008),
ktr is the slip threshold and tc is the time corresponding to ktr . During the braking, the designed controller will be active at
time tc when the wheel slip reaches ktr:

As a result, the desired braking system equipped to the controller will have the following response for the wheel slip dur-
ing braking
kdðtÞ ¼
kðtÞ when k < ktr

kopt þ ðktr � koptÞe�aðt�tcÞ when k P ktr

�
ð11Þ
3. Control system design

3.1. Development of the control law

The nonlinear vehicle system dynamics described by Eqs. (1) and (7), can be written in the state space form by consid-
ering wheel slip as the output of the system
Fig. 3. Variation of optimum values of the wheel slip versus normal load for different surfaces.
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_x1 ¼ f1ðxÞÞ ð12Þ

_x2 ¼ f2ðxÞ þ
RKb

Itx1
Pb ð13Þ

y ¼ x2 ð14Þ
where x ¼ ½Vk�T is the state vector and y is the output. Pb representing the braking pressure is the control input. The non-
linear tire model given in Eq. (8), has been incorporated in f1 and f2.

The purpose of control system is to maintain the wheel slip, x2 ¼ k, close to the desired response with the minimum brak-
ing pressure as the control energy. To achieve this aim, an optimal nonlinear control law should be developed for the design
of wheel slip tracking controller. In this way, the nonlinear response of wheel slip for the next time interval, kðt þ hÞ, is first
predicted by Taylor series expansion and then the current control Pb(t) will be found based on continuous minimization of
predicted tracking error. The predictive period h is a real positive number.

In order to find the current control, a pointwise minimization performance index that penalizes the tracking error at the
next instant, yet is not excessive, and the current control expenditure is considered (Lu, 1995; Mirzaei et al., 2008)
J ¼ 1
2

w1½kðt þ hÞ � kdðt þ hÞ�2 þ 1
2

w2 P2
bðtÞ

h i
ð15Þ
where w1 > 0 and w2 P 0 are weighting factors indicating the relative importance of the corresponding terms.
First approximate kðt þ hÞ by a kth-order Taylor series at t
kðt þ hÞ ¼ kðtÞ þ h _kðtÞ þ h2

2!
€kðtÞ þ � � � þ hk

k!
kðkÞðtÞ ð16Þ
Now, the key issue is to choose the order k in a way that is suitable for the purpose of controller design on the basis of
predictions. The expansion order, which specifies the highest order derivative of output used in the prediction, is determined
by the control order plus the relative degree of the nonlinear system.

According to Eqs. (12)–(14), the system dynamics has the well-defined relative degree, q ¼ 1; which is determined as the
lowest order of the derivative of output k in which the input Pb first appears explicitly (Slotine and Li, 1991).

On the other hand, to achieve a small control effort, the control order should be selected as low as possible. In this paper,
the control order is limited to be zero so that the control effort will be a constant in the prediction interval
d
ds

Pbðt þ sÞ ¼ 0 for s 2 ½0; h� ð17Þ
This selection, i.e. zero control order, makes the derivatives of control input disappear in the prediction of the output and
obtains relatively adequate performance for non-linear systems with lower relative degree (Lu, 1995; Chen et al., 2003). Gen-
erally, the control order is considered as a design parameter which makes a compromise between performance and input
energy requirements.

Therefore, with the above reasoning, the first-order Taylor series is sufficient for the expansion
kðt þ hÞ ¼ kðtÞ þ h _kðtÞ ð18Þ
Substituting Eq. (13) into (18) yields
kðt þ hÞ ¼ kðtÞ þ h f2 þ
RKb

VIt
Pb

� �
ð19Þ
Note that the arguments of function may be frequently dropped through the rest of paper for simplicity of notations.
The desired wheel slip can be expanded in the same manner as before
kdðt þ hÞ ¼ kdðtÞ þ h _kd ð20Þ
Now, the expanded performance index can be obtained as a function of control input by substituting equations (19) and
(20) into (15). The necessary condition for optimality is
@J
@Pb
¼ 0 ð21Þ
which leads to
PbðtÞ ¼ �
VIt

RKb

j
h
½ðk� kdÞ þ hðf2 � _kdÞ� ð22Þ
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where
j ¼ 1

1þ b VIt
RhKb

� �2 ð23Þ
and b is the weighting ratio
b ¼ w2

w1
P 0 ð24Þ
3.2. Evaluation of the optimal control law

In this section, the stability of the closed loop system is investigated along with the other properties of the designed con-
troller. Meanwhile, the important roles of the free parameters, the predictive time h and the weighting ratio b, in the control
law (22) are demonstrated. The dynamic performance of the controller is extremely sensitive to the value of these
parameters.

From Eqs. (23) and (24), it is found that 0 6 j 6 1. This coefficient, referred to as reduction factor, provides the possibility
of reducing the braking pressure by increasing the weighting ratio b. When b =1, then j = 0 and Pb = 0. This case is consid-
ered as the expensive control and corresponds to the vehicle with no brakes. In contrast, the cheap control is related to the
case of b = 0 in which j = 1 and there is no reduction in control input.

In order to derive the closed loop system dynamics and analyze its stability in the presence of some modeling uncertain-
ties, the control law (22), which is based on the nominal model, is applied to the actual model (13):
_k ¼ f2 þ g
�j
hĝ
ððk� kdÞ þ hðf̂ 2 � _kdÞÞ

	 

ð25Þ
where
g ¼ RKb=VIt ð26Þ
Note that the symbol ‘‘^’’ denotes the nominal model. Deviation of f2 and g in the actual model from f̂ 2 and ĝ in the nom-
inal model can be a result of uncertainties in vehicle model and road condition.

Eq. (25) is rewritten as
ð _k� _kdÞ þ
g
ĝ

j
h
ðk� kdÞ ¼ ðf2 � f̂ 2Þ þ 1� g

ĝ
j

� �
ðf̂ 2 � _kdÞ ð27Þ
Hence, the tracking error dynamics of the wheel slip is obtained as follows
_eþ g
ĝ

j
h

e ¼ ðf2 � f̂ 2Þ þ 1� g
ĝ
j

� �
ðf̂ 2 � _kdÞ ð28Þ
where e is the current tracking error of the wheel slip
e ¼ k� kd ð29Þ
The right hand side of Eq. (28) arises from both modeling uncertainty and reduction factor. These terms will always lead
to some tracking errors. As a special case, when there is no reduction in control input nor modeling uncertainty, i.e.
j ¼ 1; f � f̂ ¼ 0; g=ĝ ¼ 1, the tracking error dynamics of the wheel slip is obtained as follows
_eþ 1
h

e ¼ 0 ð30Þ
It is clear that the closed-loop system is linear and exponentially stable for any h > 0.
This version of the derived control law naturally leads to a special case of input/output linearization. According to error

dynamics (30), as the initial wheel slip tracking error is zero, the perfect tracking of the wheel slip is maintained for all
t 2 ½0; tf �.

In studying the stability of the system in the presence of modeling uncertainties and reduction factor as the perturbed
terms in Eq. (28), it is desirable to prove the boundedness of the error signal. In this way, since the unperturbed system de-
scribed by Eq. (30) is linear and asymptotically stable, the system will be totally stable. The concept of total stability char-
acterizes the ability of a system to withstand bounded persistent disturbances (Slotine and Li, 1991). It should be noted that
the reduction factor j, related to the free parameter b, is intentionally used to decrease the control input at the cost of some
admissible tracking error. The value of this factor can be decreased to some extent, otherwise the perturbed term of Eq. (28)
is more increased and therefore the wheel slip cannot follow the behavior of reference model adequately and the controller
performance is lost.

Now, the upper and lower bounds of the error signal in the presence of the perturbed terms in Eq. (28) are found. Accord-
ing to Eqs. (7) and (13), the function f2 which has the main role in the perturbed terms is expressed as
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f2ðxÞ ¼ �
1
V

Fx

mt
ð1� kÞ þ R2Fx

It

" #
ð31Þ
As it is considered, f2 is mainly affected by the tire force Fx which is defined as a saturated function. Deviation of f2 from the
nominal model f̂ 2 can be as a result of uncertainties in vehicle model and road condition. However, since the tire force Fx is
played a major role in the dynamic behavior of the vehicle, the error in estimating f2 is mainly influenced by the estimated
friction force F̂x. If the estimation error on Fx is assumed to be bounded, the error of the function f2 can be constrained (Zheng
et al., 2006). It should be noted that the velocity V is decreased during braking and consequently the function f2 is increased
according to Eq. (31). As a result, when the vehicle speed approaches zero, f2 tends to infinity. In order to prevent this problem
and to limit the function f2, the control action is usually conducted up to the point where the vehicle velocity is near to 5 m/s
(Lin and Hsu, 2003). After that the ABS will be inactive and the ordinary braking system is performed to stop the vehicle.

From the discussion above, it is found that during the control action, there exist constant F > 0 and g > 0 such that
jf2 � f̂ 2j 6 F; jf̂ 2 � _kdj 6 g ð32Þ
Also, according to Eq. (26), the error of g is mainly due to the uncertainty in the actuator coefficient Kb. The uncertainty in
the other parameters of g can deviate it from the nominal model. With definition of p as a percentage of the uncertainty of g
g ¼ ĝ � pĝ ) g
ĝ
¼ 1� p ð33Þ
Applying (32) and (33) into the error dynamics (28) and solving the first-order differential equations with zero initial con-
dition, similar to (Mirzaei et al., 2008), implies that the tracking error is bounded within
�em 6 eðtÞ 6 em for all t P 0 ð34Þ
where
em ¼
F

jð1� pÞhþ
1

jð1� pÞ � 1
� �

hg ð35Þ
According to the above equation, the tracking error for the negative sign of p will be greater than that for the positive p.
This means that when the actual g is less than the nominal ĝ, the tracking error increases.
By using (23), the bound of tracking error (35) can be stated in terms of the weighting ratio b
em ¼
1

1� p
b
h

� �
VIt

R

� �2

ðF þ gÞ þ hðF þ gpÞ
" #

ð36Þ
Eq. (36) shows that a combination of h and b/h affects on the wheel slip tracking error. In fact, the tracking error can be con-
trolled by regulation of the free parameters h and b. Another combination of h and b/h is found in the time constant of the
closed-loop system. According to the error dynamics (28), the term of time constant includes the following term
h
j
¼ hþ b

h
VIt

RKb

� �2

ð37Þ
The inverse of the above term, i.e. j/h, is also seen as the controller gain in Eq. (22). Therefore, it is concluded that the
dynamic performance of the controller including tracking accuracy, tracking rate (or time constant) and control energy
strongly depends on both h and the ratio of b/h. It should be noted that the controller performance is more sensitive to b/
h than h in the beginning of braking because of the large value of (VIt/R)2. During braking, while the velocity V approaches
zero, the value of (VIt/R)2 is gradually reduced and consequently the effect of b/h on the tracking error will be decreased
based on Eq. (36). This subject will be further investigated in simulation studies.

Now, the effects of model uncertainties and weighting ratio on the wheel slip tracking error are discussed separately.
First, suppose F – 0, p – 0 and b = 0. In this case, the bound of tracking error owing to modeling uncertainties is
em ¼
h

1� p
ðF þ gpÞ ð38Þ
It is found that the error can be controlled by regulation of the free parameter h. A high degree of robustness in the pres-
ence of some modeling uncertainties is achievable through small value of h. Therefore, in order to decrease the tracking error
in the absence of the weighting ratio b, the value of h should be decreased.

In another case, suppose b – 0 and F = 0, p = 0.
In this case, the tracking error owing to reducing the control input via the weighting ratio a is as follows
em ¼
b
h

VIt

R

� �2

g ð39Þ
It is seen that the tracking error depends on the ratio of b/h. Hence, the free parameters b and h must be regulated
simultaneously.
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4. Simulation results

Simulation studies are conducted to evaluate the performance of the proposed controller in tracking the new reference
model. The parameters of the vehicle model employed for computer simulation are given in Table 1.

The vehicle is considered to move at a speed of 90 km/h along a straight path on a flat dry road (l = 0.8). Fig. 4 shows the
vehicle responses with and without control during braking. It is supposed that there is no modeling uncertainty. Also, the slip
threshold considered in Eq. (11) is equal to ktr ¼ 0:1 and the controller is active only when the wheel slip reaches this value.
As long as the slip resulting from the braking action of the driver is below the slip threshold, there is no control action.

The results of Fig. 4 indicate that when a hard braking is applied to the vehicle without ABS, the wheel becomes locked
and its angular speed becomes zero within a short period of time (about 0.7 s), while the linear speed of the tire center V is
not zero and is only reduced from 25 m/s to 20 m/s. Therefore, the vehicle begins to slide and consequently results an unsafe
condition. In contrast, Fig. 4c illustrates that for the controlled vehicle when the slip reaches the threshold value (ktr ¼ 0:1),
the controller becomes active and the wheel slip follows the response of the proposed reference model perfectly. This allows
the wheel angular speed to closely follow the vehicle speed without locking (Fig. 4b). Note that, no modeling uncertainty is
assumed in this case and the weighting ratio is given zero. Therefore, since the initial wheel slip tracking error is zero,
according to error dynamics (30), the obtained response coincides with the desired response so that the wheel slip tracking
error is zero and the perfect tracking is achieved (Fig. 4d). Also, Fig. 4e compares the braking pressures for the controlled and
un-controlled vehicle.

In order to illustrate the effectiveness of the new reference model, proposed for the wheel slip to be tracked by the con-
troller, the results are compared with those obtained by the previous reference models in which the optimum value of the
wheel slip is considered constant, typically kopt ¼ 0:15 (Harifi et al., 2008; Mirzaeinejad and Mirzaei, 2010), irrespective of
normal load variations during braking and road conditions. The designed controller in tracking both reference models is ac-
tive at the physical limit (beyond ktr ¼ 0:1). The simulation results on a dry road (l = 0.8) are compared in Fig. 5. As seen in
Fig. 5a, the optimum value of the front wheel slip is increased during braking because of the normal load transfer. Therefore,
by tracking the variable reference model, the maximum brake force is applied to the wheel at any time during braking. This
fact is illustrated in Fig. 5b. As it is seen, the stopping time is considerably reduced and leads to a reduction of about 1.5 m for
the stopping distance. Note that, in the absence of modeling uncertainty and weighting ratio, the designed controller follows
both reference models perfectly without any tracking errors (Fig. 5c), but with different control inputs (Fig. 5d). The perfor-
mance indexes of the controller including the integral values of squared tracking error and control energy for different ref-
erence models are represented in Table 2. Tire/road conditions will also affect on the optimum values of the wheel slip
during braking. Therefore, selecting a constant value for optimum wheel slip for different roads will not lead to the maxi-
mum longitudinal force during braking at any time. In contrast, consideration of the proposed reference model compatible
with the variation of tire normal loads and tire/road conditions improves the controller performance in generating the max-
imum forces during braking.

Now, the robustness of the designed controller in the presence of some modeling uncertainties is evaluated. In this re-
spect, it is assumed that the uncertainties have risen out of 10% uncertainty in total mass of the vehicle and 10% uncertainty
in the friction coefficient. Considering the previous maneuver, the effect of this structured uncertainty is seen in Fig. 6 for
different values of the prediction time h. The result indicates that the wheel slip tracking error due to modeling uncertainty
is reduced with the decrease of prediction time h as stated by Eq. (39). Also, Fig. 6b shows that the braking pressure is in-
creased with the decrease of prediction time h. The performance indexes of the controller including the integral values of the
squared tracking error and control energy for different values of h are represented in Table 3.

In another simulation study, the previous condition is repeated but on a slippery road (l = 0.4). The same results as before
can be seen in Fig. 7. It is considered that the braking pressure for the slippery road is achieved much less than for the dry
road. For this reason, the sensitivity of the control signal to the free parameter h in the slippery road is less than the dry road.

It should be noted that, in the presence of uncertainties, the transient error is gradually increased because of the increas-
ing behavior of the uncertainty term in Eq. (28). In order to limit the function f2 and consequently the uncertainty term
ðf2 � f̂ 2Þ during braking, the control action is conducted up to the point where the vehicle velocity is near to 5 m/s.
Table 1
Parameters of the quarter vehicle model and the Dugoff tire model.

Wheel radius, R 0.326 m
Wheel base, l 2.5 m
Center of gravity height, hcg 0.5 m
Wheel mass, mw 40 kg
1=4 of vehicle sprung mass, 1=4 mvs 415 kg
Total moment of inertia of wheel, It 1.7 kg m2

Tire longitudinal stiffness, Ci 50,000 N/rad
Cornering stiffness of the tire, Ca 30,000 N/unit slip
Road adhesion reduction factor, er 0.015
Slip angle, a 0



Fig. 4. Simulation results during braking with and without control: (a) wheel and vehicle speed (uncontrolled), (b) wheel and vehicle speed (controlled) (c)
wheel slip (d) wheel slip tracking error (e) braking pressure.
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In order to take into account the effect of the other practical uncertainties, 10% uncertainty in the wheel slip and 10%
uncertainty in the actuator gain kb are considered in addition to the previous parametric uncertainties. The first uncer-
tainty is as a result of estimating error of the wheel slip and the second one is due to the fading effect of the actuator
dynamics. The extra effect of these uncertainties in the tracking error and control energy on the dry road is evaluated
in Fig. 8. As it is expected, the tracking error can be reduced with the decrease of prediction time h. The related results
are represented in Table 4.

In the previous simulations, the weighting ratio b was taken to be zero and the special case of the controller (cheap con-
trol) was considered. To investigate the influence of the weighting ratio on the controller performance, Fig. 9 shows the
wheel slip tracking errors and braking pressures for different values of b. Here, it is assumed that there is no modeling uncer-
tainty, i.e. F = 0, p = 0.



Fig. 5. Comparison of the controller performance in tracking the two different reference models on dry road: (a) variable optimum wheel slip (b)
longitudinal tire force (c) wheel slip tracking error (d) braking pressure.

Table 2
Comparison of the controller performance with different reference models on dry road.

Optimum wheel slip kopt ¼ variable (Present study) kopt ¼ 0:15

R tf

0 P2
bdt � 10�6 4.231 3.971R tf

0 ðk� kdÞ2dt � 108 1.984 2.971

Stopping distance (m) 39.43 41.07
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Fig. 9a illustrates that when b = 0, the wheel slip tracking error is zero and the perfect tracking is achieved according to Eq.
(30). But, based on Eq. (39), with any increase in b, for a fixed h, the braking pressure decreases and the wheel slip tracking
error increases. The performance indexes of the controller for different values of b and a fixed h are compared in Table 5. On
the other hand, Table 6 explains that with the increase in h, for a fixed b, the braking pressure increases and the wheel slip
tracking error decreases. These results confirming Eq. (39) demonstrate that the dynamic performance of the controller
strongly depends on the ratio of b/h. It is seen in Fig. 9, the influence of b/h is gradually decreased during braking because
the velocity V is decreased and consequently the amount of (VIt/R)2, which is the coefficient of b/h in Eq. (39), is reduced. The
same results can be seen on a slippery road (l = 0.4) in Fig. 10. It is considered that the sensitivity of the control signal to the
weighing ratio b in the slippery road is much less than the dry road.

In continuation of simulation studies, the performance of the proposed controller in the presence of both modeling uncer-
tainty and weighting ratio is investigated. Fig. 11 shows the simulation results achieved in the presence of uncertainty for
different values of b. The performance indexes are represented in Table 7.



Table 3
Controller performance for different values of h in the presence of uncertainties in vehicle mass and friction
coefficient (b = 0).

h 0.002 0.006 0.01R tf

0 P2
bdt � 10�6 4.22 4.17 4.14R tf

0 ðk� kdÞ2dt � 104 1.55 13 35

Stopping distance (m) 39.51 39.65 39.82

Fig. 7. Effect of prediction time h on the controller performance on slippery road in the presence of uncertainties in the friction coefficient and vehicle mass:
(a) wheel slip tracking error, (b) braking pressure.

Fig. 6. Effect of prediction time h on the controller performance on dry road in the presence of uncertainties in the friction coefficient and vehicle mass: (a)
wheel slip tracking error, (b) braking pressure.
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Generally, to adjust the controller, the prediction time h is firstly selected in a way that the best tracking with a smooth
braking pressure is achieved for b = 0. Then, by increasing the weighting ratio b, the control input can be decreased at the
cost of some tracking error. In this way, some control input limitations can be satisfied smoothly. It should be noted that
in order to decrease the control input, the value of weighting ratio can be increased to some extent, otherwise the wheel
slip cannot follow the behavior of reference model adequately and the controller performance is lost. It is found that when
the input computed from the control law with a suitable value of weighting ratio exceeds the control bounds, the use of max-
imum control value can be the best choice which minimizes the performance index.

In order to complete the simulation studies, the dynamic performance of the proposed controller in this study, is com-
pared with that of a sliding mode controller described in Appendix A. Because of the robust nonlinear characteristic of
the sliding control, the special case of the proposed controller with b = 0 (cheap control) is adopted for the comparison. It
should be noted that both controllers track the same reference models for the wheel slip.



Fig. 8. Effect of prediction time h on the controller performance in the presence of uncertainties in the friction coefficient, vehicle mass, wheel slip and
actuator gain: (a) wheel slip tracking error, (b) braking pressure.

Table 4
Controller performance for different values of h in the presence of uncertainties in vehicle mass, friction coefficient,
wheel slip and actuator gain (b = 0).

h (s) 0.002 0.006 0.01R tf

0 P2
bdt � 10�6 4.168 4.089 4.001R tf

0 ðk� kdÞ2dt � 104 24 72 140

Stopping distance (m) 39.77 40.12 40.57

Fig. 9. Effect of weighting ratio b on the controller performance on dry road in the absence of modeling uncertainties: (a) wheel slip tracking error, (b)
braking pressure.

Table 5
Controller performance for different values of b in the absence of uncertainty (h = 0.002 s).

b 0 1e�9 1.5e�9R tf

0 P2
bdt � 10�6 4.230 4.121 4.042R tf

0 ðk� kdÞ2dt � 104 0.0002 58 126

Stopping distance (m) 39.45 40.26 41.05
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Fig. 12 indicates a slightly larger tracking error for the sliding mode controller compared with the proposed controller
during braking on a dry road. Note that, the design parameters of the sliding controller are regulated in a way that the lowest



Table 6
Controller performance for different values of h in the absence of uncertainty (b = 1.5e�9).

h 0.002 0.006 0.01R tf

0 P2
bdt � 10�6 4.042 4.177 4.193R tf

0 ðk� kdÞ2dt � 104 126 15 5.44

Stopping distance (m) 41.05 39.75 36.61

Fig. 10. Effect of weighting ratio b on the controller performance on slippery road in the absence of modeling uncertainties: (a) wheel slip tracking error, (b)
braking pressure.

Fig. 11. Effect of weighting ratio b on the controller performance on dry road in the presence of modeling uncertainties: (a) wheel slip tracking error, (b)
braking pressure.

Table 7
Controller performance for different values of b in the presence of uncertainty.

b 0 1e�9 1.5e�9R tf

0 P2
bdt � 10�6 4.168 4.009 3.887R tf

0 ðk� kdÞ2dt � 104 24 149 247

Stopping distance (m) 39.77 41.11 42.36
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tracking error is achieved. With any suitable changes in the regulation parameters, the error for both controllers cannot be
decreased anymore and the responses begin to become oscillatory. The performance indexes of two controllers are also com-
pared in Table 8.



Fig. 12. Comparison of dynamic performances of the proposed controller and the sliding controller on dry road (l = 0.8): (a) wheel slip tracking error (b)
braking pressure.

Table 8
Comparison of dynamic performances of two controllers on a dry road.

Method Present study (b = 0) Sliding modeR tf

0 P2
bdt � 10�6 4.148 4.130R tf

0 ðk� kdÞ2dt � 104 16 17

Stopping distance (m) 39.70 39.72

Fig. 13. Comparison of dynamic performances of the proposed controller and the sliding controller on slippery road (l = 0.4): (a) wheel slip tracking error
(b) braking pressure.

Table 9
Comparison of dynamic performances of two controllers on a slippery road.

Method Present study (b = 0) Sliding modeR tf

0 T2
bdt � 10�6 1.9274 1.9273R tf

0 ðk� kdÞ2dt � 104 34.1 34.5

Stopping distance (m) 76.73 76.74
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Also, a comparison between the two controllers on a slippery road (l = 0.4) is presented in Fig. 13 and Table 9. The same
results as dry road can be seen in this maneuver too.
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5. Conclusions

An optimal nonlinear wheel slip tracking law is developed for ABS by the response prediction of a quarter vehicle model.
To find the optimum wheel slip used in the reference model, the tire/road condition and tire normal load variations at any
time during braking are considered. The proposed controller includes different features. It can handle the model nonlinear-
ities and practical uncertainties successfully. The optimality of the control law provides the possibility of regulating the brak-
ing pressure easily. Also, the control law is developed in an analytical form which is easy to solve and implement. The
method can be easily extended to the comprehensive vehicle models.

Appendix A

A1. Sliding mode control

A non linear braking pressure control law using sliding control theory was developed by researches as follows (Zheng
et al., 2006; Buckholtz, 2002):

The sliding surface, Ss, is defined as
Ss ¼ k� kd ð40Þ
Taking time derivative of Ss and using Eq. (13) yields
_Ss ¼ f2 þ
RKb

ItV
Pb � _kd ð41Þ
The best approximation P̂b of a continuous control law that would achieve _Ss ¼ 0 is thus
P̂b ¼ �
ItV

RK̂b

ðf̂ 2 � _kdÞ ð42Þ
In order to satisfy sliding condition regardless of the uncertainty on the model f2; a discontinuous term is added to P̂b:
Pb ¼ P̂b � ksat
Ss

/

� �
ð43Þ
k is selected as
k ¼ ItV
R
ðF þ gÞ; ð44Þ
where g is a strictly positive constant and / is a design parameter denoting the boundary layer thickness. The saturation
function can be defined as
sat
Ss

/

� �
¼

1; Ss
/ > 1;

Ss
/ ; �1 6 Ss

/ 6 1;

�1; Ss
/ < �1:

8>><
>>: ð45Þ
References

Anwar, S., 2006. Anti-lock braking control of a hybrid brake-by-wire system. Proceedings of the Institution of Mechanical Engineers Part D – Journal of
Automobile Engineering 220 (8), 1101–1117.

Anwar, S., Ashraf, B., 2002. A predictive control algorithm for anti-lock braking system. SAE paper 2002-01-0302.
Bartolini, G., Ferrara, A., Usai, E., 1998. Chattering avoidance by second-order sliding mode control. IEEE Transaction on Automatic Control 43 (2), 241–246.
Buckholtz, K.R., 2002. Reference input wheel slip tracking using sliding mode control. SAE Paper 2002-01-0301.
Chen, W.H., Balance, D.J., Gawthrop, P.J., 2003. Optimal control of nonlinear systems: a predictive control approach. Journal of Automatica 39 (4), 633–641.
Drakunov, S., Ozguner, U., Dix, P., Ashrafi, B., 1995. ABS control using optimum search via sliding modes. IEEE Transactions on Control System Technology 3

(1), 79–85.
Eslamian, M., Alizadeh, G., Mirzaei, M., 2007. Optimization-based non-linear yaw moment control law for stabilizing vehicle lateral dynamics. Proceedings

of the Institution of Mechanical Engineers Part D – Journal of Automobile Engineering 221 (12), 1513–1523.
Furukawa, Y., Abe, M., 1997. Advanced chassis control systems for vehicle handling and active safety. Journal of Vehicle System Dynamics 28 (2), 59–86.
Gustafsson, F., 1997. Slip-based tire-road friction estimation. Journal of Automatica 6, 1087–1099.
Harifi, A., Aghagolzadeh, A., Alizadeh, G., Sadeghi, M., 2008. Designing a sliding mode controller for slip control of antilock brake systems. Journal of

Transportation Research Part C 16 (6), 731–741.
Kazemi, R., Hamedi, B., Javadi, B., 2000. A new sliding mode controller for four-wheel anti-lock braking system (ABS). SAE Paper 2000-01-1639.
Lee, Y., Zak, S.H., 2002. Designing a genetic neural fuzzy antilock-brake-system controller. IEEE Transactions on Evolutionary Computation 6 (2), 198–211.
Lin, C.M., Hsu, C.F., 2003. Self-learning fuzzy sliding-mode control for antilock braking systems. IEEE Transactions on Control System Technology 11 (2),

273–278.
Lu, P., 1995. Optimal predictive Control of continuous nonlinear system. International Journal of Control 62 (3), 633–649.
Mirzaei, M., Alizadeh, G., Eslamian, M., Azadi, S., 2008. An optimal approach to non-linear control of vehicle yaw dynamics. Proceedings of the Institution of

Mechanical Engineers Part I – Journal of Systems and Control Engineering 222 (4), 217–229.



M. Mirzaei, H. Mirzaeinejad / Transportation Research Part C 24 (2012) 19–35 35
Mirzaeinejad, H., Mirzaei, M., 2010. A novel method for non-linear control of wheel slip in anti-lock braking systems. Journal of Control Engineering Practice
18 (8), 918–926.

Park, E.J., Stoikov, D., Luz, L.F.D., Suleman, A., 2006. A performance evaluation of an automotive magnetorheological brake design with a sliding mode
controller. Journal of Mechatronics 16, 405–416.

Petersen, I., 2003. Wheel slip control in ABS brakes using gain scheduled optimal control with constraints. Ph.D. thesis, Department of Engineering
Cybernetics, Norwegian University of Science and Technology.

Ray, L.R., 1997. Nonlinear tire force estimation and road friction identification: simulation and experiments. Journal of Automatica 10, 1819–1833.
Slotine, J.J.E., Li, W., 1991. Applied Nonlinear Control. Prentice-Hall, Englewood Cliffs.
Smith, D.E., Starkey, J.M., 1995. Effect of model complexity on the performance of automated vehicle steering controllers: model development, validation

and comparison. Journal of Vehicle System Dynamics 24 (2), 163–181.
Song, J., Kim, H., Boo, K., 2007. A study on an anti-lock braking system controller and rear-wheel controller to enhance vehicle lateral stability. Proceedings

of the Institution of Mechanical Engineers Part D – Journal of Automobile Engineering 221, 777–787.
Unsal, C., Kachroo, P., 1999. Sliding mode measurement feedback control for antilock braking systems. IEEE Transactions on Control System Technology 7

(2), 271–281.
Van Zanten, A., Erhardt, R., Landesfeind, K., Pfaff, G., 1998. VDC system development and perspective. SAE Technical Paper, 980235.
Yi, J., Alvarez, L., Horowitz, R., Canudas de wit, C., 2000. Adaptive emergency barking control using a dynamic tire/road friction model. In: Proceeding of the

39th IEEE Conference on Decision and Control, Sydney.
Zheng, S., Tang, H., Han, Z., Zhang, Y., 2006. Controller design for vehicle stability enhancement. Journal of Control Engineering Practice 14 (12), 1413–1421.



 

 

  

  

� مقا�، از �ی  �
ه مقا�ت ا �� ن سايت شده �� ��ه فاراي �� در  PDFكه #� فرمت  ميباشد ��

ان قرار � ايل ميتوانيد #� 6يک �� روی د3ه های ز��  گرفته است. اختيار -, عز�� از در صورت :�

اييد:سا�� مقا�ت  � استفاده :�   ن<�

  

  

  

  

  

  

  
  

  

  

ه شده از  �� � مقا�ت �� �
 ه فا ؛ مرجع جديد�� �� ت معت<� خار�B سايت �� �# ,Dن  

http://tarjomefa.com/
http://tarjomefa.com/%D8%AF%D8%A7%D9%86%D9%84%D9%88%D8%AF+%D9%85%D9%82%D8%A7%D9%84%D9%87+isi+%D8%A8%D8%A7+%D8%AA%D8%B1%D8%AC%D9%85%D9%87+%D8%B1%D8%A7%DB%8C%DA%AF%D8%A7%D9%86
http://tarjomefa.com/%D8%AC%D8%B3%D8%AA%D8%AC%D9%88-%D8%A8%D9%87-%D8%B1%D9%88%D8%B4-%D8%AA%D8%B1%D8%AC%D9%85%D9%87-%D9%81%D8%A7
http://isidl.com/

	Optimal design of a non-linear controller for anti-lock braking system
	1 Introduction
	2 System modeling
	2.1 Wheel dynamics and tire force model
	2.2 Reference model for wheel slip

	3 Control system design
	3.1 Development of the control law
	3.2 Evaluation of the optimal control law

	4 Simulation results
	5 Conclusions
	Appendix A
	A1 Sliding mode control

	References


