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Abstract

Decisions made by the experts in the construction industry are usually approximate and contain some sort of imprecision. Classical linear

programming (LP) model optimize the decision making situation in a crisp environment. It is difficult to get an optimum decision with

imprecise information of the project environment using LP. In the construction industry, identifying optimum number of construction pieces

of equipment require experts’ knowledge. When certain degree of flexibility needs to be incorporated in the given model to get more realistic

results, fuzzy LP is used. But when the parameters on constraints and objective function are in a state of ambiguity then the extension

principle is best suited, which is based on personal opinions and subjective judgments. The objective of this paper is to identify the optimum

number of pieces of equipment required to complete the project in the targeted period with fuzzy data. A realistic case study has been

considered for optimization and LINGO6 has been used to solve the various non-linear equations.

q 2003 Elsevier Ltd. All rights reserved.
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1. Introduction

Decision making in construction industry is very

complex and requires deep knowledge of various

construction management techniques. Operations Research

(OR) techniques are widely used under such circumstances

through appropriate mathematical models. Of all the models

of OR Linear Programming (LP) is widely used in the

construction industry. In LP models, all the information

pertaining to the problem is expressed in terms of linear

constraints on the decision variables where the data is

precise. Many project managers arrive at feasible decisions

using this model.

The construction industry is clearly affected by market

conditions, i.e. by ups and downs in construction activity

and by the size and the type of the construction projects

undertaken. It is also affected by technological innovation in

fields such as materials, metallurgy, mechanical systems,

electronic sensing and hydraulic controls. The industry

focuses on the continuous improvement of its products by

introducing advanced technology [1]. In addition, the

success of any construction project depends on the

efficiency and economy achieved in the construction

phase of the project. The economy of the project is

dependent on accurate and elaborate analysis in early stages

of construction. But in real project, activities must be

scheduled under limited resources, such as limited crew

sizes, limited equipment amounts, and limited materials [2].

The presence of large number of interacting variables

creates a problem for optimization. Decisions are mainly

based on the conceptual understanding of the project by the

experts and are usually vague. Therefore, consideration of

imprecise and vague information becomes an important

aspect in the decision making process. In view of

uncertain environment prevailing in the construction

industry, the ability to arrive at an optimal decision is

most important for its success. Hence, decisions in the

construction industry are to be taken only after evaluating

the feasibility of an alternative with respect to various

criteria affecting its outcome.

The traditional quantitative methods of assessing the

feasibility of an alternative such as payback period, rate of

return, and benefit cost analysis evaluate the project from

the aspect of monitory costs and benefits. But many

0965-9978/$ - see front matter q 2003 Elsevier Ltd. All rights reserved.

doi:10.1016/S0965-9978(03)00111-X

Advances in Engineering Software 35 (2004) 27–33

www.elsevier.com/locate/advengsoft

* Corresponding author.

E-mail addresses: vsskumar@hd2.dot.net.in (V.S.S. Kumar),

eshwar_konkati@rediffmail.com (K. Eshwar).

http://www.elsevier.com/locate/advengsoft


non-quantitative factors and approximate numbers such as

availability of labor, weather conditions, and number of

equipments also influence the construction project.

The above methods fail to incorporate the necessary

qualitative parameters and uncertainty in decision making

and thus it is difficult to get an optimum decision in

construction industry for optimal deployment of machinery.

These uncertainties can be accommodated into the

analysis using Artificial Intelligence techniques such as

fuzzy sets, neural networks, and expert systems.

The successful application of fuzzy logic reflects the true

situation of the real world, where human thinking is

dominated by approximate reasoning. Hence to obtain

optimality, hybrid optimization techniques are used for

incorporating flexibility in decision making. Fuzzy LP

makes it possible to accommodate these intangible factors

in a most systematic way. The objective function is

characterized by its membership value and so are the

constraints. In fuzzy LP, the decision maker establishes a

satisfaction criterion rather than just maximizing or

minimizing the objective function. Here, each of the

constraints is modeled as a fuzzy set with their respective

membership values.

The aim of this paper is to introduce the approximate

numbers into the analysis for optimal decisions. This is done

by incorporating flexibilities in the coefficients of the

objective function and constraints for an optimal value.

The approach described in this paper is intended to illustrate

the practicability of applying fuzzy LP with fuzzy

parameters to civil engineering problems and the potential

advantages of the resultant information.

2. Construction equipment

Construction industry comprises of broad range of

equipment which include scrapers, graders, hydraulic

excavators, trenchers, pipe layers, etc. Depending upon the

type and nature of the construction jobs, various equipments

and tools are required at different point of time during the

execution period. These equipments can be accommodated

by hiring, buying or by transferring from other sites. It is

important to estimate exactly, the number of equipments to

be bought, hired and number of equipments that can be

adjusted from the other sites. Normally, experts’ qualitat-

ively judge the number of equipments required and hence

there is every possibility that the estimated numbers may

increase or decrease at the site. Optimally deploying these

equipments, preparing an equipment schedule or equipment

calendar is an important task of the project manager, such that

the construction manager may have no difficulty in arranging

the equipments for the purpose at the right time and the work

will not be held up because of lack of any equipment. It must

be remembered that non-availability of the appropriate

equipment or extra idle equipments/tools on the site may lead

to financial loss and delays. Hence, the knowledge of various

equipments and their usage on the site is necessary and proper

planning of them will always fetch good results. The number

and the capacity of the equipment is entirely dependent on the

nature and the size of the project.

3. Literature review

In construction industry, optimal deployment of

machinery plays a significant role. Even though

conventional quantitative techniques are efficient enough

for getting optimal decisions, they have their own drawbacks.

Fuzzy set theory was developed by Zadeh in 1965 for

analyzing thedecisionproblems involvingfuzzy information.

Since then, more than 5000 publications have highlighted the

concept and diversified the use of fuzzy set theory.

Bellman and Zadeh [3] developed a decision theory based

on fuzzy goals and constraints. In their opinion decision is the

confluence offuzzy goals and Constraints. Zadeh [4] outlined

the rules of fuzzy set interpretation of linguistic hedges. He

presented systematic conversion of qualitative factors into

membership grades for decision analysis. Sasikumar and

Mujumdar [5] stated that the imprecisely defined goals and

constraints are represented as fuzzy sets in the space of

alternatives. Ayyub and Haldar [6] developed a method for

estimating the duration of construction activities based on

fuzzy set models, and the factors affecting the activity

duration. In subsequent years, decision methodologies are

developed for selecting and designing construction strategies

using approximate reasoning. Wang et al. [7] have evaluated

a competitive tendering methodology using fuzzy set theory.

Lorterapong [13] proposed the fuzzy network scheduling

(FNET) model in which a fuzzy heuristic method was

developed to solve the resource constraint project-schedul-

ing problem under uncertainty. Kumar et al. [8] applied fuzzy

set theory to working capital requirement. Skibniewski and

Armijos [9] adopted LP approach to construction equipments

and labor assignments. Mohan [10] used fuzzy LP for

optimal crop planning for irrigation system dealing with the

uncertainty and randomness for the various factors affecting

the model.

Tanaka and Asai [11] have formulated a fuzzy LP

problem and considered the ambiguity of parameters.

Cross and Cabello [12] applied fuzzy set theory to

optimization problems, where multiple goals exist.

They have solved a multi-objective LP problem with

fuzzy parameters for borrowing/lending problem. It is

found that several methods have been suggested for

including non-quantitative variables into the decision

making process. But very few people have incorporated

the complete fuzziness in to the problem. A civil

engineering problem comprise mostly of complete fuzzy

data, which have to be incorporated to arrive at optimal

decisions.

In this paper, the scope has been expanded to include

applications in civil engineering projects where optimal
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equipment allocation is required with ambiguity for the

number of equipments to be bought or rented in

the construction industry. The approach described in this

paper illustrates the practical applications of fuzzy LP with

fuzzy parameters to civil engineering problems and the

potential advantages of the resultant information.

4. Fuzzy numbers

Fuzzy numbers are defined by fuzzy sets which are

convex single-point and normal. Two special classes of

fuzzy numbers are used in practice, i.e. triangular and

trapezoidal. If ~A is a fuzzy number then the membership

values can be given as

m ~AðxÞ ¼ m ~Aðx; a; b; cÞ ¼

x 2 a=b 2 a if a # x # b

c 2 x=c 2 b if b # x # c

0 if x . c or x , a

8>><
>>:

If triangular

m ~AðxÞ ¼m ~Aðx;a;b;c;dÞ

¼

x2a=b2a if a# x# b

1 if b# x# c

d2 x=d2 c if c, x# d

0 if x. d or x, a

8>>>>><
>>>>>:

If trapezoidal

Triangular fuzzy numbers (TFN) can have equal spread on

either side as shown in Fig. 1 for which p is the centroid and

c is the spread. The membership values for such fuzzy

parameter ‘approximately p’ with center p and spread/width

c is given as

m ~AðaÞ ¼ min
j

½mAj
ðajÞ� ð1Þ

where

m ~Ai
ðajÞ¼

12
lpj2ajl

cj

 !
; pj2cj#aj#piþci andcj.0

0; otherwise

8>><
>>:

or in a vector form ~A ¼ ð ~A1; ~A2;…; ~AnÞ can be represented as
~A ¼ {p; c} where p ¼ ðp1; p2;…; pnÞ

t and c ¼ ðc1; c2;…; cnÞ
t

5. Extension principle

The principle of fuzzifying crisp function is called

Extension Principle. It is a basic identity that allows

extending the domain of a function from crisp points to

fuzzy sets in a universe. Let a relation y ¼ f ðxÞ between one

independent variable x and one dependent variable y; where

f is of analytic form and x; y are deterministic. This relation

is a single-input and single-output process, where

the transfer function represents the mapping provided by

the general function, where

f as x ! f ðxÞ! y

But in a typical case if x is a fuzzy variable, and function f

may or may not be fuzzy, then the mapping has to be

extended.

Let X; Y are two universes and ~A; ~B; are two fuzzy sets in

X and Y ; respectively, and f be a function from crisp set X to

crisp set Y such that f : X ! Y : When f is a one-to-one

mapping, then

m ~BðyÞ ¼ m ~A½f
21ðyÞ�; y [ Y

If f is not one-to-one then membership value is

m ~BðyÞ ¼ max
x[f21ðyÞ

m ~A½f
21ðyÞ�; y [ Y ð2Þ

where f21ðyÞ denotes the set of all points x [ X such that

f ðxÞ ¼ y:

For example, if ‘ £ ’ denote general multiplication, then

the multiplication between the two fuzzy numbers ~A; ~B

denoted by ~A £ ~B on universe Z; then using the extension

principle

m ~A£ ~BðzÞ ¼ _
x£y¼z

ðm ~AðxÞ ^ m ~BðyÞÞ ð3Þ

where ‘ _ ’ denotes the supremum of the set. If more than

one of the combinations of the input variables X1; X2 are

mapped to the same variable in the outer space Y ; i.e. if the

mapping is not one-to-one, then take the maximum

membership grade of the combination mappings to the

same output variable, which can be shown as

m ~AðX1;X2Þ ¼ max
Y¼f ðX1;X2Þ

½min{m1ðX1Þ;m2ðX2Þ}� ð4Þ

Eqs. (3) and (4) develop a procedure for extending crisp

domains to fuzzy domains.

6. Fuzzy optimization

The classical LP model is defined as
Maximize Z ¼ CX ð5Þ
Subject to AX # b X $ 0Fig. 1. Fuzzy parameter (approximately p).
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Here, X ¼ kx1; x2;…; xnl
T is a vector of variables,

A ¼ ½aij�; where i [ Nm and j [ Nn is a constraint matrix,

and b ¼ kb1; b2;…; bnl
T is a right hand side vector. The

optimal values for these problems can be achieved by

graphical method or with simplex methodology. Eq. (5) is

very effective as far as the constraints and their coefficients

are crisp, but in many practical situations, the constraints are

not crisp and do not have a precise value rendering them to be

given some flexibility (Fig. 2). Hence to incorporate these

vague factors into the mathematical equations, fuzzy LP is

used. The generalized fuzzy LP is shown as

Maximize
Xn

j¼1

~CjXj ð6Þ

Subject to
Xn

j¼1

~AijXj & ~Bi; i [ Nn; Xj $ 0 ðj [ NmÞ

where ~Aij; ~Bi and ~Cj are fuzzy numbers and Xj are variables

whose states are fuzzy numbers ði [ Nm; j [ NnÞ: Here &

denotes the ordering of fuzzy numbers or approximately less

than or equal to. The fuzziness can be in the availability

of resources, coefficients of objective functions, coefficients

of the constraints, or combination of the three basic types.

6.1. Fuzzy linear programming with fuzzy parameters

Classical LP can be shown as

max
x

atx ¼ atxp

Subject to Ax # b and x $ 0
The goals are transferred into constraints and the LP model

of the problem can be:

a01x1 þ a02x2 þ · · · þ a0nxn $ b0 goal

a11x1 þ a12x2 þ · · · þ a1nxn $ b1 Constraint

..

.

ai1x1 þ ai2x2 þ · · · þ ainxn $ bi goal

..

.

am1x1 þ am2x2 þ · · · þ amnxn $ bm Constraint

ð7Þ

assuming all parameters to be fuzzy in the above equation

the problem changes to

~Y0 ¼ ~B0x0 þ ~A01x1 þ ~A02x2 þ · · · þ ~A0nxn * 0

~Y1 ¼ ~B1x0 þ ~A11x1 þ ~A12x2 þ · · · þ ~A1nxn * 0

..

.

~Yi ¼ ~Bix0 þ ~Ai1x1 þ ~Ai2x2 þ · · · þ ~Ainxn * 0

..

.

~Ym ¼ ~Bmx0 þ ~Am1x1 þ ~Am2x2 þ · · · þ ~Amnxn * 0

ð8Þ

where x0 ¼ 1 and * shows the fuzzified version of $

(interpreted as almost positive).

In vector form, Eq. (8) can be written as ~Y ¼ ~Ax $ 0

where

~A ¼

~A0

~A1

..

.

~Am

8>>>>>>>><
>>>>>>>>:

9>>>>>>>>=
>>>>>>>>;
¼

~B0; ~A01;…; ~A0n

~B1; ~A11;…; ~A1n

..

.

~Bm; ~Am1;…; ~Amn

8>>>>>>>><
>>>>>>>>:

9>>>>>>>>=
>>>>>>>>;

ð9Þ

and

~Aj ¼ ð ~Bj; ~Aj1;…; ~AjnÞ ¼ {pj; cj}

where pj ¼ ðpj0; pj1;…; pjnÞ
t and cj ¼ ðcj0; cj1;…; cjnÞ

t are

the center and the spread values of the variables considered

to be fuzzy in nature. The membership function for which is

given by Eq. (10) [11]

mYi
ðyÞ¼

8>>>>>>>>><
>>>>>>>>>:

12

����y2Xn

i¼1
pixi

����Xn

i¼1
cilxil

; xi–0

1; xi¼0;y¼0

0; xi0;y–0

9>>>>>>>>>=
>>>>>>>>>;

ð10Þ

~Yi is almost positive and is denoted by ~Yi*0; i.e.

~Yi*0,mYi
ðyÞ#12h;

Xn

i¼1

pixi$0

where ðhÞ is the degree by which ~Yi*0 and the larger the ðhÞ

the stronger the meaning of ‘almost positive” and is shown

in Fig. 3. If Y ¼0; then the membership value becomes:

m ~Y0
ð0Þ¼12

Xn

i¼1
p0x0Xn

i¼1
c0lx0l

ð11Þ

ad m ~Ym
ð0Þ¼12

Xn

i¼1
pmxmXn

i¼1
cmlxml

; wherexi.0 ð12Þ
Fig. 2. Fuzzy number with flexibility.

K. Eshwar, V.S.S. Kumar / Advances in Engineering Software 35 (2004) 27–3330



The above Eqs. (11) and (12) can be equated to

ðp02hc0Þ
tx$0or ð13Þ

ðpm2hcmÞ
tx$0

Therefore, the problem is reduced to finding the largest

degree that is compatible with Eq. (13) and evaluates h and x:

Hence the fuzzy mathematical programming problem

with complete fuzziness is

max h ¼ hp ð14Þ

subject to ðpj 2 hcjÞ
tx $ 0 ðj ¼ 0;…n; 0 # h # 1Þ

The solution of xp ensures that fuzzy inequalities satisfies

with a degree of more than hp:

7. Case study

A case study of Sri Ram Sagar Project constructed across

Godavari River at Nizamabad district, Andhra Pradesh, India

is considered in this paper. The project was estimated to be

around US$ 3.56 million, where 25% was estimated for

construction equipment, out of which 15% was contractor’s

profit. Since the ambiguity exists in the project environment,

contractor does not have an exact estimate of the number of

pieces of equipment required. The approximate number of

pieces of equipment required at the site, approximate cost,

approximate availability, rent and the approximate number

of days to be hired, etc. are as shown in Table 1, where ,
means approximate, with flexibility as given in the sub

column (Fl). The objective is to identify the exact number of

equipments to be bought/rented.

7.1. Formulation of the problem

Let xi be the variable representing the number of pieces

of equipment to be bought and yi are the number of pieces of

equipment to be rented, where i ¼ 1; 2;…; 11: Here, x1

represents the number of batching and mixing plants to be

bought, and y1 represents the number of batching and

mixing plants to be rented. Here, cost of equipment is

fuzzy and appropriate flexibility is incorporated using

Eq. (14).

Batching and mixing plant costs ,US$ 100,000 with a

flexibility of US$ 14,584. Using Eq. (14), the cost of buying

the equipment is expressed as ð100 000 2 14 584Þx1:

Since the number of days for renting equipment is fuzzy

or rather approximate, the approximate cost incurred for

renting each equipment is found by multiplying the fuzzy

number of days with the crisp amount of rent of equipment

per day. For example, if the number of days of hiring

batching and mixing plant equipment is ,60 with a crisp

amount of rent per day as US$ 104, then the expected

amount without giving flexibility is , 60 £ 104 ¼, 6240;

whereas if a flexibility of 7 days is considered, then the

flexible rent can be up to 7 £ 104 ¼ 728: Hence taking 6240

as centroid and 728 as the spread, which can be expressed

using Eq. (14) as ð6240 2 728hÞy1:

Similarly, other values are found by keeping the budget

within the range by incorporating the flexibility of US$

20,834. The problem is formulated as follows.

Fig. 3. Explanation of ~Y:

Table 1

Details of equipments with expected values (Ev) and flexibilities (Fl)

A B C D E F

Ev Fl Ev Fl Ev Fl Ev Fl

Batching and mixing plant ,3 1 ,100,000.00 14,584.00 104.00 ,4 1 ,6240 728

Transit mixers ,12 2 ,14,584.00 2604.00 20.80 ,14 2 ,1248 208

Compressor ,2 1 ,6250.00 1042.00 16.70 ,4 1 ,1503 251

Rippers ,10 2 ,9375.00 1563.00 12.50 ,9 2 ,375 63

Dozers ,1 0 ,10,417.00 3125.00 16.70 ,3 1 ,1503 167

Excavators ,3 1 ,41,667.00 6250.00 83.30 ,4 1 ,5000 833

Tractors ,4 1 ,8334.00 2187.50 62.50 ,5 2 ,11,250 1250

Crushers ,1 0 ,20,834.00 3646.00 62.50 ,3 1 ,1875 313

Diesel road rollers ,2 0 ,8334.00 1042.00 6.25 ,3 1 ,750 125

Pavers ,3 1 ,10,417.00 2292.00 20.80 ,4 1 ,1248 208

Tankers ,5 1 ,4167.00 1146.00 10.40 ,5 1 ,1877 156

A: Type of equipment; B : minimum number required; C : cost of each equipment ($); D : Rent of each equipment per day ($); E : number of equipments

that can be hired; F : duration of service (days); Ev: expected numbers; Fl: flexibility.
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The objective function

ð356000220834hÞ2ðð100000214584hÞx1

þð62402728hÞy1þð1458422604hÞx2þð12482208hÞy2

þð625021042hÞx3þð15032251hÞy3þð937521563hÞx4

þð375263hÞy4þð1041723125hÞx5þð15032167hÞy5

þð4166726250hÞx6þð50002833hÞy6

þð833422187:5hÞx7þð1125021250hÞy7

þð2083423646hÞx8þð18752313hÞy8

þð833421042hÞx9þð7502125hÞy9þð1041722292hÞx10

þð12482208hÞy10þð416721446hÞx11

þð18722156hÞy11Þ$0

7.2. Equipment constraints

From Table 1, the number of batching and mixing plants

are around 3 with a flexibility of 1 and the number to be

hired should not be below 4 with a flexibility of 1.

Incorporating these values in Eq. (14), the following

equations can be found
ð232hÞþðx12hÞþðy12hÞ$0 and ð42hÞ2ðy12hÞ$0
Therefore, the complete mathematical formulation after

incorporating the flexibilities, without any distinction

between the goals and the constraints with all integer values

except h is:

Maximize h

Subject to

ð356000220834hÞ2ðð100000214584hÞx1

þð62402728hÞy1þð1458422604hÞx2þð12482208hÞy2

þð625021042hÞx3þð15032251hÞy3þð937521563hÞx4

þð375263hÞy4þð1041723125hÞx5þð15032167hÞy5

þð416and6726250hÞx6þð50002833hÞy6

þð833422187:5hÞx7þð1125021250hÞy7

þð2083423646hÞx8þð18752313hÞy8þð833421042hÞx9

þð7502125hÞy9þð1041722292hÞx10þð12482208hÞy10

þð416721446hÞx11þð18722156hÞy11Þ$0

ð232hÞþðx12hÞþðy12hÞ$0 and ð42hÞ2ðy12hÞ$0

ð21222hÞþðx22hÞþðy22hÞ$0 and ð1422hÞ

2ðy22hÞ$0

ð222hÞþðx32hÞþðy32hÞ$0 and ð42hÞ2ðy32hÞ$0

ð21022hÞþðx42hÞþðy42hÞ$0 and ð922hÞ

2ðy42hÞ$0

21þðx52hÞþðy52hÞ$0 and ð32hÞ2ðy52hÞ$0

ð232hÞþðx62hÞþðy62hÞ$0 and ð42hÞ2ðy62hÞ$0

ð24 2 hÞ þ ðx7 2 hÞ þ ðy7 2 hÞ

$ 0 and ð5 2 2hÞ2 ðy7 2 hÞ $ 0

21þðx8 2hÞþ ðy8 2hÞ$ 0 and ð32hÞ2 ðy8 2hÞ$ 0

22 þ x9 þ ðy9 2 hÞ $ 0 and ð3 2 hÞ2 ðy9 2 hÞ $ 0

ð232hÞþðx102hÞþðy102hÞ$0 and ð42hÞ2ðy102hÞ$0

ð252hÞþðx112hÞþðy112hÞ$0 and ð52hÞ2ðy112hÞ$0

Solving the above non-linear inequalities, using LINGO6,

the value of h is found to be 0.67. The final results are

tabulated in Table 2. With fuzzy data, the optimal solution is

arrived with a satisfaction criterion of 0.67. This means that

all the constraints are satisfied with a satisfaction value of

more than 0.67. The optimal value for the budget constraint

is US$ 363767.13, and is in the specified range. This is as

shown in Fig. 4.

8. Discussions

Several important observations are made from the above

analysis. The objective value increases with the increase in

the width of the TFN. Even though this case study considers

only TFN, other types, such as trapezoidal fuzzy numbers

can also be incorporated. The decrease in the number of

pieces of equipment to be bought and an increase in the

number of equipment to be rented will surely decrease

the value of objective function. Because of the market

Table 2

The number of equipments brought ðXÞ/rented ðYÞ as calculated

Variable\equipments 1 2 3 4 5 6 7 8 9 10 11

Bought ðXÞ 1 2 0 5 0 1 6 0 0 1 3

Rented ðYÞ 4 13 4 8 3 4 0 3 3 4 4

Fig. 4. Fuzzy set of budget constraint with h ¼ 0:67:
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conditions they are not reduced. The equipments once

bought can be transferred to other sites whenever the need

arises in the project environment.

9. Conclusions

Construction operations involve many uncertain vari-

ables which are vague, qualitative, and approximately

defined in the project environment. With the advent of

fuzzy logic, incorporation of these uncertain variables

into the decision analysis has become much simpler.

This paper addressed the application of fuzzy LP with

fuzzy constraints that incorporates an efficient

computational technique for equipment deployment and

a more suitable model for modeling approximate

numbers. Compared with traditional LP and fuzzy LP

models, this method allows incorporating complete

fuzziness in the problem.

The proposed methodology for the optimal deploy-

ment of construction equipment is considered effective

and practical, since it considers approximate numbers,

which involve both technical and economical aspects for

obtaining optimal numbers. This methodology can be

implemented for the planning and design and in

construction phases of the project. The implementation

of the methodology in the planning and design phases

can determine the exact number of equipment to be

deployed. On the other hand, the implementation of the

methodology in the construction phase can assist to

achieve exact figures in every construction activity. The

results indicate that the equipments are not only

optimally deployed but also the uncertainty can be

handled successfully. Although this model considers only

equipments to be bought and rented, for the sake of high

precision, other cases such as transfer of equipments

from other sites can also be incorporated.
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