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Abstract— A traditional neuro-fuzzy system is transformed
into an equivalent fully connected three layer neural network
(NN), namely, the fully connected neuro-fuzzy inference systems
(F-CONFIS). The F-CONFIS differs from traditional NNs by its
dependent and repeated weights between input and hidden layers
and can be considered as the variation of a kind of multilayer NN.
Therefore, an efficient learning algorithm for the F-CONFIS to
cope these repeated weights is derived. Furthermore, a dynamic
learning rate is proposed for neuro-fuzzy systems via F-CONFIS
where both premise (hidden) and consequent portions are con-
sidered. Several simulation results indicate that the proposed
approach achieves much better accuracy and fast convergence.

Index Terms— Fully connected neuro-fuzzy inference
systems (F-CONFIS), fuzzy logic, fuzzy neural networks,
gradient descent, neural networks (NNs), neuro-fuzzy system,
optimal learning.

I. INTRODUCTION

NEURO-FUZZY systems have been applied to many
engineering applications in decades related to pattern

recognition, intelligent adaptive control, regression and density
estimation, systems modeling, and so on [1]–[6]. A neuro-
fuzzy system possesses characteristics of neural network (NN),
linguistic description and logic control [7]–[10]. Although the
significant progress has been made by combining different
learning algorithms with neuro-fuzzy system [11]–[16], there
are still problems that need to be solved for practical imple-
mentations for instance, finding the optimal learning rates for
both the premise and consequent parts to increase convergence
speed, or updating the parameters of membership functions
(MFs). In a neuro-fuzzy system, in general, the rule layer is
a product layer instead of a summing layer in a conventional
feedforward NN. As a result, it is not concise to apply learning
algorithms in turning premise parameters. Therefore, to design
a systematic learning for the neuro-fuzzy system, a traditional
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neuro-fuzzy system is reformulated as an equivalent fully
connected three-layer NN, i.e., the fully connected fuzzy infer-
ence systems (F-CONFIS) [17]. Though some literatures have
proved the functional equivalence between a fuzzy system and
a NN, they are nonconstructive [9]. The F-CONFIS provides
constructive steps to build the equivalence between a neuro-
fuzzy system and NN. The F-CONFIS is different with the
classical multiple layer NNs by its repeated link weights.
With some special arrangements, we can derive the training
algorithm for the F-CONFIS, thereafter for a neuro-fuzzy
system efficiently and effectively.

Choosing a proper learning rate is a critical issue in the gra-
dient descent algorithm for a neuro-fuzzy system. It is a time
consuming process to select manually and the result may lack
of generality. In a neuro-fuzzy system, it needs to adjust two
learning rates corresponding to adjustable parameters in the
premise and the consequent parts. To improve the convergence
rate, although many kinds of dynamic learning rate methods
have been proposed for neuro-fuzzy systems [16], [18]–[22],
the convergence rate was still not improved satisfactorily
because only the optimal learning rate of the consequent part
is derived. Although the learning rate of the premise part can
be obtained by genetic search techniques in [18], of which is
time consuming and the optimal result is not guaranteed. The
optimal learning rate of the consequent part can be obtained
analytically, but unfortunately, the analytical expression of
the premise part cannot be solved in a similar way because the
premise part is usually a transcendental equation. Due to the
complexity of the premise part of neuro-fuzzy systems, there
is no existing learning algorithm about the optimal learning
rate of the premise portion that has been discussed. In this
paper, by transforming a neuro-fuzzy system to F-CONFIS, a
dynamic learning algorithm is proposed.

The major contributions of the paper are summarized as
follows.

1) We derive the ordinal indices for hidden neurons of the
repeated weights and, thereafter, the gradient descent-
based training algorithm of F-CONFIS.

2) The dynamic optimal learning rates of neuro-fuzzy sys-
tem are derived first time not only in the consequent part,
but also in the premise part. The optimal learning rate
for the parameters of MFs can greatly boost the training
speed of the neuro-fuzzy systems. Such kind of speedup
is extremely valuable for the online applications.

3) In addition, this paper explicitly provides formulations to
update the parameters of fuzzy MFs in the premise part
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Fig. 1. Common configuration of neuro-fuzzy system model.

and the weights of the consequent part of a neuro-fuzzy
system via its equivalent F-CONFIS. This simplifies
the implementation of the optimal learning of fuzzy
inference systems.

This paper is organized as follows. The special properties
of F-CONFIS are discussed in Section II. The new updating
laws of the gradient descent algorithm and a new optimal
learning with special properties for F-CONFIS are proposed
in Section III. The discussion of the time complexity and
derivative-based method are given in Section IV. The simu-
lation results and the comparison analysis are illustrated in
Section V. Finally, this paper is concluded in Section VI.

II. SPECIAL PROPERTIES OF EQUIVALENT

F-CONIS SYSTEMS

A. Fully Connected Neuro-Fuzzy Inference Systems

The equality between fuzzy logic systems and the feed-
forward NNs have been proved in [9]. The specific form of
an equivalent fully connected three layer feedforward NN
for the neuro-fuzzy system was discussed in [17]. Fig. 1
shows the common configuration of a neuro-fuzzy system
model [18], [20]. It is comprised of four layers. The first
layer is the input layer, whose nodes correspond to input
variables. Layer II is the MF layer, in which the value of
a node quantifies the degree of MF of the input linguist
variable. Layer III is the fuzzy rule layer. Therein each node
represents a fuzzy rule. The last layer is the output layer. In this
configuration, the consequent part is a fully connected graph,
but apparently the premise part is not, because the nodes in the
MF layer do not connect to all nodes in the fuzzy rule layer.

The fuzzy Mamdani model [23] represented by above con-
figuration of a neuro-fuzzy system contains following rules.

Fig. 2. Complete F-CONFIS.

Rule l: IF x1 is A1r1 and . . . and xN is ANrN THEN y1
is Bl1 and . . . . and yM is BlM where A1r1, . . . , ANrN and
Bl1, . . . , BlM are the standard fuzzy sets defined by MFs.
When the input variables are given, the firing strength μl of
the lth rule is defined by

μl = A1r1(x1) × · · · × ANrN (xN )

{l = 0, 1, 2, . . . , L − 1; ri = 0, 1, 2, . . . , Ri − 1}. (1)

There are two difficulties in developing a learning algorithm
for the neuro-fuzzy system. One is that, in a neuro-fuzzy
system, the links between the MF layer, and the fuzzy rule
layer are not fully connected, so it is selective learning. The
other is that the operators in the fuzzy rule layer are product-
form rather than summation form.

This kind of four-layer neuro-fuzzy system can be trans-
formed into an equivalent F-CONFIS [17]. For convenience
and completeness, we briefly describe the derivation of
F-CONFIS here. In order to overcome the above mentioned
difficulties, the MF layer II of a neuro-fuzzy system in Fig. 1
can be redrawn, and substituted for new links between Layer I
and Layer III, so that we can have a fully connected three-
layer NN as shown in Fig. 2. The new link weight {Vij (i =
1, 2, . . . , n; j = 1, 2, . . . , L)} in Fig. 2 is represented as
between the i th node of input Layer and the j th node of
the fuzzy rule layer. The exponential function was taken as
the activation function in F-CONFIS. Therefore, the new link
weight Vij (i = 1, 2, . . . , N; j = 0, 1, . . . , L −1) is defined as

Vij = ln(Airi ( j )(xi )) (2)

where ln is the natural logarithm, and ri ( j) (i = 1, . . . , N)
are ordinal indices of MFs corresponding to rule j .

Fig. 2 depicts the equivalent F-CONFIS, and it is equivalent
to the original neuro-fuzzy system shown in Fig. 1. The
F-CONFIS has three layers as shown in Fig. 2 and its hidden
layer is also the fuzzy rule layer.

B. Special Properties of F-CONFIS

The F-CONFIS differs from traditional multilayer NNs.
For a normal multilayer feedforward NN, every weight is
updated only once to reduce the error in the process of each
epoch. While in F-CONFIS, the weights may be updated
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Fig. 3. Neuro-fuzzy system with two input variables and two output variables.

Fig. 4. Red dotted lines: gradient decent flow of F-CONFIS for the first MF
of x1 with repeated link weight.

TABLE I

F-CONFIS WEIGHTS GENERATED FROM MFS AND RULE NUMBER

more than one time. For example, see the configuration of
a neuro-fuzzy system in Fig. 3 and its equivalent F-CONFIS
shown in Fig. 4. The configuration of the neuro-fuzzy system
(or the F-CONFIS) has two input variables x1 and x2, two
output variables y1 and y2, and two MFs {A10(x1), A11(x1)}
for x1 and three MFs {A20(x2), A21(x2), A22(x2)} for x2,
{R1 = 2, R2 = 3}. For instance, in Fig. 4, the links V10, V12,
and V14 are with the same weight of ln(A10(x1)) from the first
MF of x1 to hidden neurons as shown in Table I. This kind
of multiple updates should be handled carefully and will be
discussed next.

With above description, it is important to find the number of
repeated links RW(i ) for each fuzzy variable xi in premise part
so that the training algorithm can be properly carried out for
the F-CONFIS. The following proposition 1 shows a precise
formula of finding the number of repeated links RW(i ) in the
F-CONFIS.

Proposition 1: In a F-CONFIS, each input variable xi has
the number of repeated links RW(i ), every same value of
weights Airi (xi ) will be repeated for RW(i ) times between
input layer and hidden layer, RW(i ) is given as

RW(i) =

n∏

i=1
Ri

Ri
(i = 1, . . . , N) (3)

where Ri is the number of MFs for input variable xi , Airi (xi )
is the ri th MF of xi .

From (1), we have

μl =
n∏

i=1

Airi (xi )

{l = 0, 1, 2, . . . , L − 1; ri = 0, 1, 2, . . . , Ri − 1}. (4)

To be identical with l defined in [24], the ordinal index l of
the lth fuzzy rule is

l = r1 +
N∑

i=2

⎛

⎝
i−1∏

j=1

R j

⎞

⎠ri . (5)

From (4) and (5), the total number of fuzzy rules is

L = R1 × R2 × · · · × Ri × · · · × RN . (6)

In F-CONFIS, there are L links from every node of the input
layer to all of nodes of the fuzzy rule layer. However, there
are only Ri different MFs for xi {Aiq |q = 0, 1, 2, . . . , Ri − 1}.
From (4) and (6), it is obvious that for each fuzzy variable xi

to have the number of repeated links, RW(i ), with the same
weights

RW(i) = R1 × R2 × · · · × Ri × · · · × Rn

Ri
=

n∏

i=1
Ri

Ri
.

For instance, in Fig. 4, the number of repeated links of
variables x2 is as follows:

RW(2) =

n∏

i=1
Ri

R2
= R1 ∗ R2

R2
= 6

3
= 2

which are V20 = V21 = ln(A20(x2)), V22 = V23 =
ln(A21(x2)), and V24 = V25 = ln(A22(x2)) for fuzzy variable
x2 as shown in Table I.

The derivation of a new learning algorithm for F-CONFIS
is discussed in the following sections.

III. NEW OPTIMAL LEARNING OF F-CONFIS

The F-CONFIS is a new type of NN that has dependent
and repeated links between input and hidden layers. With
Proposition 1 that shows a precise formula of finding the
number of repeated links, RW(i ), in F-CONFIS, an explicit
learning algorithm considering the dependent and repeated
weights is proposed next.

A gradient decent algorithm, may be the most commonly
used, with fixed learning rates may lead to slow convergence
[25]–[30]. The choosing of proper learning rate becomes a
critical issue in a gradient decent-based algorithm. To deal with
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this issue, many kinds of dynamic learning rate methods have
been proposed [12]–[16]. However, only the optimal learning
rate of the consequent part is derived for neuro-fuzzy systems
[18]–[22]. Although the learning rate for the premise part is
obtained by genetic search techniques [18], it is generally
time consuming and the searched result may not be optimal.
Due to the complexity of the premise part of neuro-fuzzy
systems, no existing learning algorithm about the optimal
learning of the premise portion has been discussed. In this
section, based on the F-CONFIS, we derive the new optimal
learning rate for both the premise part and the consequent part.

A popular centroid defuzzification method is used in the
output layer as

yk =
L−1∑

j=0

μ j w jk

/
L−1∑

j=0

μ j , (k = 1, 2, . . . , M) (7)

where the output vectors is {yk, k = 1, 2, . . . , M}. The number
of training patterns is P . The total training error [17] is given
as

E(W ) = 1

2P

P∑

p=1

M∑

k=1

(
y p

k − d p
k

)2
(8)

where y p
k is the kth actual output and d p

k is the kth desired
output. In F-CONFIS, the Gaussian MFs are adopted

Aiq (x) = exp

[
−(x − miq )2

2σ 2
iq

]

i = 1, . . . , N; q = 0, . . . , Ri − 1i (9)

where miq and σiq denote the center and width of the MFs,
respectively.

In F-CONFIS and its corresponding neuro-fuzzy system,
two types of adjustable parameters should be adjusted, i.e., the
adjustable parameters, W consist of the parameters of MFs
in the premise part and weight factors in consequent part.
Therefore, weighting vector W is defined as

W = [miq σiq wjk ]
i = 1, . . . , N; q = 0, . . . , Ri − 1; k = 1, . . . M (10)

where wjk are the link weights between the fuzzy rule layer
and output layer. The gradient of E(W ) with respect to W is

g =
[

∂ E

∂miq

∂ E

∂σiq

∂ E

∂wjk

]

i = 1, . . . , N; q = 0, . . . , Ri − 1

j = 0, . . . , L − 1; k = 1, . . . , M. (11)

The weighting vector W can be tuned as

W (α, β) = W −
[

α
∂ E

∂miq
, α

∂ E

∂σiq
, β

∂ E

∂wjk

]

i = 1, . . . , N; q = 0, . . . , Ri − 1

j = 0, . . . , L − 1; k = 1, . . . , M. (12)

From (5), all the r ′
i s for a specific rule number l are

represented as

r1(l) = l%R1; ri (l) =
(

l/
i−1∏

k=1

Rk

)

%Ri , i = 2, . . . , N. (13)

Fig. 5. Finding the links with repeated weights.

From Fig. 5, we know that the repeated weight for the qth
MF of xi is equal to Aiq = Airi (�). Therefore, we have

q = ri (�λ) ⇒ {�λ = hλ(i, q); λ = 1, . . . , RW(i)} (14)

where {�λ = hλ(i, q); λ = 1, . . . , RW(i)} in (14) are the links
with repeated weight Aiq for the qth MF of xi . For conve-
nience, we define following si :
⎧
⎪⎨

⎪⎩

si = 1, i = 1

si =
i−1∏

k=1
Rk , i > 1 or

{
s1 = 1

si+1 = si Ri , i = 1, . . . , N − 1

(15)

so that we can rewrite (13) to find the lth fuzzy rule in hidden
layer as

l(r1, r2, . . . , rN ) =
N∑

n=1

rnsn . (16)

Let A = {r1, ri−1, . . . , q, ri+1, . . . , rN |0 < rn < Rn, n =
1, 2, . . . , i − 1, i + 1, . . . , N} and B = {hλ(i, q)|λ =
1, . . . , RW(i)}. Then, it is obvious that the following equation
will generate an one to one mapping from A to B using a
fixed q:

l(r1, r2, . . . , ri−1, q, ri+1, . . . , rN )

=
i−1∑

n=1

rnsn + qsi +
N∑

n=i+1

rnsn

(r0 = 0 and rN+1 = 0). (17)

It is implicitly assumed that all the l’s generated via (17)
will be in ascending order by the mechanism described in
the Appendix. It is also obvious to see that the cardinality of
A equals the cardinality of B

Dim(A) =
(

i−1∏

n=1

Ri

)

× 1 ×
(

N∏

n=i+1

Ri

)

= 1

Ri

N∏

n=1

Ri

= L

Ri
= RW(i) = Dim(B).

In the error gradient decent process, error will propa-
gate along interconnection Vihλ(i,q)(λ = 1, . . . , RW(i)) from
μhλ(i,q)(λ = 1, . . . , RW(i)) to xi . The signal flow for the
center of the first MF of x1, namely ∂ E/∂m10, is drawn in
Fig. 6 (from Fig. 4) to demonstrate the approach of finding
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Fig. 6. Signal flow graph showing the gradient of error signal for the first
MF of x1.

dependent and repeated links between input layer and hidden
layer in F-CONFIS. For instance, in order to find ∂ E/∂m10
of premise part in Fig. 5, we need to know that V10 = V12 =
V14 = ln(A10(x1)) are the links with the repeated weight of
ln(A10(x1)) from the first MF of x1 to hidden neurons 0, 2,
and 4.

Although (17) can indeed generate {hλ(i, q)|λ =
1, . . . , RW(i)} by considering all the combinations of
ri , it still not precise enough for the gradient descent training
of F-CONFIS. The following Theorem 1 will show a precise
formula of finding the ordinal indices of these links with
repeated weights for the qth MF of the i th fuzzy input
variable xi .

Theorem 1: The ordinal indices {hλ(i, q)|λ =
1, . . . , RW(i)} for hidden neurons with links of repeated
weights, which connect the qth MF of the i th fuzzy input
variable xi , can be found from the following equation:

hλ(i, q) = (λ − 1)%si + qsi + [(λ − 1)/si ] Ri si

(i = 1, . . . , N; q = 0, . . . , Ri − 1; λ = 1, . . . , RW(i)) (18)

where A % B represents the remainder of the division of A
over B , and A/B represents the quotient of the integer division
of A over B .

Proof: Please refer to the Appendix.

For illustration, the F-CONFIS in Fig. 4, RW(1) = 3 implies
that there are three repeated links with the same weight, which
connect three hidden neurons and x1. Therefore, from Theo-
rem 1, the ordinal indices {hλ(i, q) |i = 1; q = 0; λ = 1, 2, 3 }
for hidden neurons with links of three repeated weights, which
connect the 0th MF of the 1st fuzzy input variable x1, is given

as (s1 = 1)

h1 (1, 0) = (1 − 1) %1 + 0 ∗ 1 + (0/1) ∗ 2 ∗ 1 = 0

h2 (1, 0) = (2 − 1) %1 + 0 ∗ 1 + (1/1) ∗ 2 ∗ 1 = 2

h3 (1, 0) = (3 − 1) %1 + 0 ∗ 1 + (2/1) ∗ 2 ∗ 1 = 4.

The ordinal indices {hλ(i, q)|i = 1; q = 1; λ = 1, 2, 3} con-
nect the first MF of the 1st fuzzy input variable can be found
as (s1 = 1)

h1 (1, 1) = (1 − 1) %1 + 1 ∗ 1 + (0/1) ∗ 2 ∗ 1 = 1

h2 (1, 1) = (2 − 1) %1 + 1 ∗ 1 + (1/1) ∗ 2 ∗ 1 = 3

h3 (1, 1) = (3 − 1) %1 + 1 ∗ 1 + (2/1) ∗ 2 ∗ 1 = 5.

From Fig. 4, links carry ln(A10(x1)) are connected to μ0,
μ2, and μ4 of hidden nodes, and links carry ln(A11(x1)) are
connected to μ1, μ3, and μ5 of hidden nodes.

Therefore, from the above illustration, it is important to
find the updating law of the repeated links for F-CONFIS,
especially in a large neural fuzzy inference network. The
following Theorem 2 will show a precise updating law of
F-CONFIS.

Theorem 2: Applying the gradient descent algorithm for
F-CONFIS, the gradient components of the premise part
should be updated RW(i ) times, where RW(i ) is the total
number of repeated links. In the consequent part, the gradient
component is updated only one time. The gradient components
are updated as

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

miq (t + 1) = miq (t) − α
RW(i)∑

λ=1

∂E
∂μhλ(i,q)

∂μhλ(i,q)

∂ Aiq

∂ Aiq
∂miq

σiq (t + 1) = σiq (t) − α
RW(i)∑

λ=1

∂E
∂μhλ(i,q)

∂μhλ(i,q)

∂ Aiq

∂ Aiq
∂σiq

wjk (t + 1) = wjk (t) − β ∂E(W )
∂w jk

(19)

and the gradient components of Gaussian-type learning algo-
rithm are updated as

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

miq (t + 1) = miq (t)−
α 1

P

RW(i)∑

λ=1

P∑

p=1

M∑

k=1

(
y p

k −d p
k

)(
w jk −y p

k

)

L−1∑

j=0
μ j

μhλ(i,q)

(
x p

i −miq

)

σ 2
iq

σiq (t + 1) = σiq (t)−

α 1
P

RW(i)∑

λ=1

P∑

p=1

M∑

k=1

(
y p

k −d p
k

)(
w jk −y p

k

)

L−1∑

j=0
μ j

μhλ(i,q)

(
x p

i −miq

)2

σ 3
iq

wjk (t + 1) = wjk (t) − β 1
P

P∑

p=1

(
y p

k − d p
k

)
μ j

/
L−1∑

l=0
μl

(20)

i = 1, . . . , N, j = 0, . . . , L − 1, k = 1, . . . , M,

q = 0, . . . , Ri − 1, λ = 1, . . . , RW(i).

Proof: By Proposition 1, we know that each variable
xi has RW(i) repeated links between the input layer and
the hidden layer. Let Aiq(q ∈ [1, Ri − 1]) be the qth MF
of the variable xi , {�λ = hλ(i, q); λ = 1, . . . , RW(i)} in (14)
are the links with repeated weight Aiq for the qth MF of
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xi , and the weights of the repeated links are Vihλ(i,q)(λ =
1, . . . , RW(i)).

Let miq and σiq be the control parameters of Aiq . In the
error gradient decent process, error will propagate along inter-
connection Vihλ(i,q)(λ = 1, . . . , RW(i)) to xi . To get error’s
partial derivative with respect to miq and σiq , from (1), (2),
(4), and (8) and by the chain rule, we can get these partial
derivate as

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

∂ E

∂μhλ(i,q)

∂μhλ(i,q)

∂ Aiq

∂ Aiq

∂miq

∂ E

∂μhλ(i,q)

∂μhλ(i,q)

∂ Aiq

∂ Aiq

∂σiq
, λ = 1, . . . , RW(i).

From (8), (9), (12), and (13), we have

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂ E

∂miq
= 1

P

P∑

p=1

M∑

k=1

(
y p

k − d p
k

) (
wjk − y p

k

)

L−1∑

j=0
μ j

μ j
(
x p

i − miq
)

σ 2
iq

∂ E

∂σiq
= 1

P

P∑

p=1

M∑

k=1

(
y p

k − d p
k

) (
wjk − y p

k

)

L−1∑

j=0
μ j

μ j
(
x p

i − miq
)2

σ 3
iq

i = 1, ...N; q = 0, . . . , Ri − 1; j = 0, . . . , L − 1. (21)

From (7) and (8), by chain rule, we have

∂ E

∂wjk

= ∂ E

∂y p
k

∂y p
k

∂wjk

= 1

P

P∑

p=1

(y p
k − d p

k )μ j

/
L−1∑

l=0

μl

j = 0, . . . , L − 1; k = 1, . . . , M. (22)

After finding RW(i ) by Proposition 1, all these intermediate
partial derivatives should be summed up to give the final
update for miq and σiq as the following equations:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

∂ E

∂miq
=

RW(i)∑

λ=1

∂ E

∂μhλ(i,q)

∂μhλ(i,q)

∂ Aiq

∂ Aiq

∂miq

∂ E

∂σiq
=

RW(i)∑

λλ=1

∂ E

∂μhλ(i,q)

∂μhλ(i,q)

∂ Aiq

∂ Aiq

∂σiq
.

(23)

In practical applications, given a hidden node number l,
we can reversely find ordinal index of MFs for all fuzzy
variable, namely ri (l)(i = 1, 2, . . . , N) by (13). By (23), we
can calculate one item in the right-hand side of (23) for every
MF connected to hidden node. Traversing all the hidden nodes,
we can find all the items in the right-hand side of (23) for
every MFs. In consequent part, because there is no repeated
links, the gradient component should be updated only one
time. Therefore, the components of W are finally updated by

the following equations:
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

miq (t + 1) = miq (t) − α

RW(i)∑

λ=1

∂ E

∂μhλ(i,q)

∂μhλ(i,q)

∂ Aiq

∂ Aiq

∂miq

σiq (t + 1) = σiq (t) − α

RW(i)∑

λ=1

∂ E

∂μhλ(i,q)

∂μhλ(i,q)

∂ Aiq

∂ Aiq

∂σiq

wjk (t + 1) = wjk (t) − β
∂ E(W )

∂wjk

.

From (19), (21), and (22), we have

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

miq (t + 1) = miq (t)−

α
1

P

RW(i)∑

λ=1

P∑

p=1

M∑

k=1

(
y p

k − d p
k

) (
wjk − y p

k

)

L−1∑

j=0
μ j

μhλ(i,q)

(
x p

i − miq
)

σ 2
iq

σiq (t + 1) = σiq (t)−

α
1

P

RW(i)∑

λ=1

P∑

p=1

M∑

k=1

(
y p

k −d p
k

) (
wjk −y p

k

)

L−1∑

j=0
μ j

μhλ(i,q)

(
x p

i − miq
)2

σ 3
iq

wjk (t + 1) = wjk (t) − β
1

P

P∑

p=1

(
y p

k − d p
k

)
μ j

/
L−1∑

l=0

μl .

Q.E.D.

For example, the number of repeated links RW(1) is 3
by Proposition 1. According to Theorem 2, the gradient
components m10 of the premise part should be updated RW(1)
times. Therefore, we have

m10(t + 1) = m10(t) − α

3∑

s=1

∂ E

∂μhλ(1,0)

∂μhλ(1,0)

∂ A10

∂ A10

∂m10

= m10(t)−α

(
∂ E

∂μ0

∂μ0

∂ A10

∂ A10

∂m10
+ ∂ E

∂μ2

∂μ2

∂ A10

∂ A10

∂m10

+ ∂ E

∂μ4

∂μ4

∂ A10

∂ A10

∂m10

)

.

For notational convenience, let mij (α) = mij (t + 1),
σi j (α) = σi j (t + 1), W (α, β) = W (t + 1), [�mij ,
�σi j ,�w j p] = [∂ E/∂mij , ∂ E/∂σi j , ∂ E/∂wjk ]. We can
explicitly express weights and error function in terms of
learning rates. From (12), we have

W (α, β) = W − [α�mij , α�σi j , β�wjk ]. (24)

After weights are updated, we can get new error with respect
to new weights E(α, β) = E(W (α, β)). Gradient descent
algorithm updates weights in negative gradient direction −g =
−[�mij ,�σi j ,�wjk ]. The weights update is �W (α, β) =
−[α�mij , α�σi j , β�wjk ]. To improve convergence rate, it
is important to find the optimal learning rate. The following
Theorem 3 will show the optimal learning rate of neuro-fuzzy
systems.



CHEN et al.: NEW LEARNING ALGORITHM FOR A F-CONFIS 1747

Theorem 3: The optimal learning rate βopt of the conse-
quent part in neuro-fuzzy systems can be obtained as

βopt =

P∑

p=1

K∑

k=1

(
y p

k (α) − d p
k

)
�yk(α)

P∑

p=1

K∑

k=1
�yk(α)�yk(α)

(25)

where �yk(α) = ∑L
j=1 μ j (α)�w j p/s(α), and the near opti-

mal learning rate αopt of the premise part in neuro-fuzzy
systems can be obtained

αopt = −
∂E(α)

∂α |α=0

∂2 E(α)
∂α2 |α=0

. (26)

Proof: From (8), we have

E(W ) = 1

2P

P∑

p=1

M∑

k=1

(
y p

k − d p
k

)2 ≥ 0.

In F-CONFIS, given the MFs are continuously differentiable
and provided that learning rates is greater than zero, the error
of the gradient-descent learning process will be decreased.
Taking error gradient with respect to (α, β) is zero, and then
the near optimal learning rates satisfy

∂ E(α, β)

∂α

∣
∣
α=αopt = 0

∂ E(α, β)

∂β

∣
∣
β=βopt = 0 . (27)

Form (7), (8), and (22), we get

�wjk = 1

P M

P∑

p=1

M∑

k=1

(
y p

k − d p
k

)
μ j

s
. (28)

Denote �yk(α) = ∑L
j=1 μ j (α)�wjk /s(α), from (7), we

have

yk(α, β) =

L∑

j=1
μ j (α)wjk (β)

s(α)

=

L∑

j=1
μ j (α)

(
wjk − β�wjk

)

s(α)
= yk(α) − β�yk(α). (29)

Differentiating (8) with respect to β, we get

∂ E(α, β)

∂β
= 1

P

P∑

p=1

K∑

k=1

(
y p

k (α, β) − d p
k

)∂y p
k (α, β)

∂β
. (30)

From (29) and (30), we have

∂ E(α, β)

∂β
= − 1

P

P∑

p=1

K∑

k=1

(
y p

k (α) − β�yp(α) − d p
k

)
�yk(α).

(31)

From (27) and (31), we get the optimal learning rate βopt of
the consequent part

βopt =

P∑

p=1

K∑

k=1

(
y p

k (α) − d p
k

)
�yk(α)

P∑

p=1

K∑

k=1
�yk(α)�yk(α)

.

Although the optimal learning rate βopt of the consequent
part can be obtained, unfortunately, the analytical expression
of the premise part cannot be solved in a similar way because
the premise part, ∂ E(α, β)/∂α = 0, is usually a transcendental
equation. To obtain αopt, line search method [31] is feasible.
The simplest way for performing a line search is to take a
series of small steps along the chosen search direction until the
error increases, and then go back one step. Though there are
other better approaches for performing inexact line searches
such as Armijo line search [32], [33], it is still time consuming.
In this paper, we propose a method to get the near optimal
learning rate for α by expanding E(α, β) with Taylor series.
To avoid the complicacy of multivariable Taylor series, we let
the weights of consequent part wjk stay the same (that is to
let β = 0) while deriving the learning rate of the premise
part. Taylor series of E(α) = E(α, 0) to second order around
point 0 is

E(α) = E(0) + α
∂ E(α)

∂α

∣
∣
∣
∣
α=0

+ α2

2

∂2 E(α)

∂α2

∣
∣
∣
∣
α=0

+ O(α3).

(32)

If we neglect the higher order terms and differentiate both
side of (32) with respect to α, we have

∂ E(α)

∂α
= ∂ E(α)

∂α

∣
∣
∣
∣
α=0

+ α
∂2 E(α)

∂α2

∣
∣
∣
∣
α=0

. (33)

From (27) and (33), we get the near optimal learning rate αopt
of the consequent part

αopt = −
∂E(α)

∂α

∣
∣
∣
∣
α=0

∂2 E(α)
∂α2

∣
∣
∣
∣
α=0

.

Q.E.D.

Next, we need to derive ∂ E(α)/∂α and ∂2 E(α)/∂α2. Let

ep
k = 1

2

(
y p

k − d p
k

)2
. (34)

Then

E = 1

P

P∑

p=1

M∑

k=1

e p
k (35)

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

∂ E(α)

∂α
= 1

P

P∑

p=1

M∑

k=1

∂e p
k (α)

∂α

∂2 E(α)

∂α2 = 1

P

P∑

p=1

M∑

k=1

∂2e p
k (α)

∂α2 .

(36)
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For conciseness, we use ∂ek(α)/∂α and ∂2ek(α)/∂α2 to
express ∂e p

k (α)/∂α and ∂2e p
k (α)/∂α2 corresponding to any

pth training pattern.
From (34), we get

∂ek(α)

∂α
= (yk(α) − dk)

∂yk(α)

∂α
. (37)

Differentiating (37) with respect to α, we get

∂e2
k (α)

∂α2 =
(

∂yk(α)

∂α

)2

+ (yk(α) − dk)
∂2 yk(α)

∂α2 . (38)

Differentiating (7) with respect to α, we get

∂yk(α)

∂α
=

∑ ∂(μ j (α)w jk )

∂α −
(

∑ ∂(μ j (α))
∂α

)

yk(α)

s(α)
. (39)

Differentiating (39) with respect to α, we have

∂2yk(α)

∂α2

=
∑

wjk

∂2μ j (α)

∂α2 −yk(α)
∑ ∂2(μ j (α))

∂α2 − 2 ∂yk(α)
∂α

∑ ∂(μ j (α))
∂α

s(α)
.

(40)

Form (1) and (9), we have

μ j (α) =
n∏

i=1

Aij (α) = exp

(

−
n∑

i=1

(
(xi − mij + α�mij )

2

2(σi j − ασi j )2

))

.

(41)

Differentiating (41) with respect to α, we have

∂μ j (α)

∂α
= −μ j (α)

n∑

i=1

(
(xi − mij (α))�mij

(σi j (α))2

+ (xi − mij (α))2�σi j

(σi j (α))3

)

. (42)

Differentiating (42) with respect to α, we have

∂2μ j (α)

∂α2 = −∂μ j (α)

∂α

×
n∑

i=1

(
(xi − mij (α))(σi j (α)�mij + (xi − mij (α))�σi j )

(σi j (α))3

−μ j (α)h(α)

)

(43)

where h(α) is

h(α)

= ∂

∂α

n∑

i=1

(
(xi − mij (α))�mij

(σi j (α))2 + (xi − mij (α))2�σi j

(σi j (α))3

)

=
n∑

i=1

(
(�mij )

2

(σi j (α))2 + 4(xi − mij (α))�mij �σi j

(σi j (α))3

+3(xi − mij (α))2(�σi j )
2

(σi j (α))4

)

.

By (42) and (43), we can calculate ∂μ j (α)/∂α and
∂2μ j (α)/∂α2. With ∂μ j (α)/∂α and ∂2μ j (α)/∂α2, by (39)

Fig. 7. Training process of the optimal learning of neuro-fuzzy system.

and (40), we can calculate ∂yk(α)/∂α and ∂2 yk(α)/∂α2.
With ∂yk(α)/∂α and ∂2 yk(α)/∂α2, by (36)–(38), we can
calculate ∂ E(α)/∂α and ∂2 E(α)/∂α2. With ∂ E(α)/∂α and
∂2 E(α)/∂α2, by (26), we can calculate αopt. For each iteration,
during the gradient descent process, the near optimal learning
rate of the premise part αopt is first calculated via (26). With
the αopt, the control parameters of MFs are updated. Then,
the optimal learning rate of the consequent part is calculated
by (25). Therefore, according to Theorem 2, the components
of W are finally updated by following equations:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

miq (t + 1) = miq (t) − αopt

×
⎛

⎝
RW(i)∑

λ=1

∂ E

∂μhλ(i,q)

∂μhλ(i,q)

∂ Aiq

∂ Aiq

∂miq

⎞

⎠

σiq (t + 1) = σiq (t) − αopt

×
⎛

⎝
RW(i)∑

λ=1

∂ E

∂μhλ(i,q)

∂μhλ(i,q)

∂ Aiq

∂ Aiq

∂σiq

⎞

⎠

wjk (t + 1) = wjk (t) − βopt
∂ E(W )

∂wjk

.

(44)

From (44), we have, (45), as shown at the bottom of the next
page.
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Algorithm 1 Optimal Learning of Neuro-Fuzzy System via
F-CONFIS

Step 1: Initializing the weight vector, learning rates. Let t
be iteration count, t = 1.

Step 2: Calculate the number of fuzzy rule L by (6), truth
value μl by (1), output yk by (7), error E in (8), the
repeated link weights RW(i ) by(3), and the ordinal
indices hλ(i, q) by Theorem 1.

Step 3: Calculates the update changes of the control para-
meters in the premise part i.e., the overall update
changes of the centers and spreads of the Gaussian
MFs.

1) Let hidden node number l = 0.
2) For training input data i = 1, . . . , N

a) By (13), get the ordinal index ri (l) of MFs for
the i th fuzzy variable.

b) Find the gradient components ∂ E/∂miri (l) and
∂ E/∂σiri (l) in premise part via (21).

c) Since every same weight Aiq will be repeated
for RW(i) times, we have to sum the update
changes with the same subscripts for i th fuzzy
variable xi for RW(i ) times by (23).

3) If l less than to the total number of fuzzy rules L,
then l = l + 1, go to 2), else go to next step 4.

Step 4: Calculate the gradient components of consequent
part by (22).

Step 5: Calculate the learning rate αopt of the premise part
via (26) according to Theorem 3.

Step 6: Update mij and σi j by (45) according to Theorem 2.
Step 7: Calculate the learning rate βopt of the consequent

part by (25) according to Theorem 3.
Step 8: Update wjk by (45) according to Theorem 2.
Step 9: Calculate error E in (8).

Step 10: If error E is less than error tolerance or iteration
t reaches maximum iterations, go to step 11, else
iteration t = t + 1; go to step 2.

Step 11: Stop.

The optimal learning rates of the premise part and the
consequent part are given by Theorem 3. Next, an optimal
learning algorithm for F-CONFIS will be described.

Fig. 7 describes the process of the proposed learning.

IV. DISCUSSION OF TIME COMPLEXITY AND

DERIVATIVE-BASED METHOD

Assume there are n adjustable parameters, L fuzzy rules.
The training procedure of FIS can be summarized as the
following pseudo-code.

while(epochs< max_epochs)
{
For(i=0; i< L; i++)//forward pass of training algorithm
{
Calculate_firing_strength_of_each_rule( );
Calculate_the_output_of_FIS( );
}
if(error< tolerance)break;
//backward pass of training algorithm
Calculate_derivative ( );
Update_the_parameters( );
}
In one epoch, the time complexity for forward pass is O(L).

There are three cases for backward pass.

1) If only first-order derivative is used, then the time
complexity is O(n).

2) If second-order derivative is used, then the time com-
plexity is O(n2).

3) If there are operation of inverse matrix [like Levenberg–
Marquardt (LM) method or Gauss–Newton (QN)
method], then the time complexity is O(n3).

So, the overall time complexity for algorithm may
be O[epochs*(L+n)], O(epochs*(L + n2)), or O(epochs*
(L+n3)). ANFIS and our proposed method used only the first-
order derivative, the time complexity is O(epochs*(L + n)).
For a real application, the n and L are fixed, whereas epochs
is variable. It usually holds that L < n < epochs, so the
dominated factor is epochs. The proposed approach applies
dynamic optimal learning algorithm in premise and consequent
parts of FIS, so it can obtain less iteration times than that
of ANFIS, which leading to reduce of epochs and time
complexity. Zhao–Li–Irwin’s method apply LM method [34],
LM method contains matrix inverse operation, so its time
complexity is O(epochs*(L + n3)). Theoretically, LM method
can achieve less iteration times than gradient-descent method,
but n3 item in time complexity counteract this advantage.

The derivative-based optimization can be written as

Wk+1 = Wk − ηk Bk∇Ek . (46)

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

miq (t + 1) = miq (t) − αopt

⎛

⎝ 1

P

RW(i)∑

λ=1

P∑

p=1

M∑

k=1

(
y p

k − d p
k

)(
wjk − y p

k

)

∑L−1
j=0 μ j

μhλ(i,q)

(
x p

i − miq
)

σ 2
iq

⎞

⎠

σiq (t + 1) = σiq (t) − αopt

⎛

⎝ 1

P

RW(i)∑

λ=1

P∑

p=1

M∑

k=1

(
y p

k − d p
k

)(
wjk − y p

k

)

∑L−1
j=0 μ j

μhλ(i,q)

(
x p

i − miq
)2

σ 3
iq

⎞

⎠

wjk (t + 1) = wjk (t) − βopt

⎛

⎝
1

P

P∑

p=1

(
y p

k − d p
k

)
μ j

/
L−1∑

l=0

μl

⎞

⎠

i = 1, . . . , N, j = 0, . . . , L − 1, k = 1, . . . , M, q = 0, . . . , Ri − 1, λ = 1, . . . , RW(i). (45)
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Fig. 8. Conventional method of genfis1.

When Bk is identity matrix (Bk = Ik), it is gradient descent
method. When Bk is the inverse of Hessian matrix (Bk =
(∇2(wk))

−1), it is Newton’s method. Since the inverse of
Hessian matrix may not exist and the computation cost is high.
The quasi-Newton method is a practical alternative, in which
Bk is an approximation of the true inverse Hessian matrix.
BFGS and DFP are two kinds of quasi-Newton method. The-
oretically, if the object function is quadratic, the convergence
rate of quasi-Newton method is superlinear. If we take the
BFGS or DFP method, then we cannot get the optimal learning
rate in closed form, and must resort to line search method. If
the line search is inexact or not based on the Wolfe conditions,
the Bk will becomes a poor approximation to the true inverse
Hessian and produce bad results. The possible exploration in
dynamic learning rate of approximate second-order derivative
methods like BFGS or DFP for a neuro-fuzzy system should
be discouraged and can be regarded as a possible direction of
future work.

V. ILLUSTRATED EXAMPLES

In practical application, choosing the proper learning rate
is a time consuming process. Manually selected learning rate
needs many experiments and the result may lack generality.
The proposed optimal learning algorithm can adjust the learn-
ing rate dynamically. In this section, several examples are
conducted to verify the effectiveness of the proposed training
algorithms for the F-CONFIS, and compared with the results
from some well-known methods. In our proposed approach,
the values of premise parameters are initialized using fuzzy
C-means clustering method, and the values of consequent
parameters are initialized by least-squares method.

Example 1 (Comparison of the Performance of Well-Known
Fuzzy Systems With Conventional Method and Our Proposed
Method): Consider the approximation of the following 1-D
nonlinear function [35]

y (x) = 1

1 + e(−25(x−0.5))
0 ≤ x ≤ 1 (47)

where x is input and y is output. In all, 400 data samples
were generated, every sample is (x(t), y(t)). The first 200 data
samples is used for the training process and remaining 200 for

Fig. 9. Conventional method of genfis2.

Fig. 10. Conventional method of genfis3.

testing process. x(t) uniformly distributed in the interval [0, 1]
and y(t) was given by

y (t) = f (x(t)) + ε(t) 0 ≤ x ≤ 1 (48)

where ε(t) ∼ N(0, 0.042).
Example 1.1 (Performance Comparison Between ANFIS

and F-CONFIS): For comparison purpose, fuzzy models were
developed under the same condition using several well-known
methods, including genfis1, genfis2, and genfis3 of ANFIS and
F-CONFIS. The fuzzy models were optimized by the proposed
method and the conventional algorithms of ANFIS, which are
available in MATLAB toolbox.

After iteration reaches 100, Figs. 8–10 show the outputs of
genfis1, genfis2, and genfis3 trained by conventional method
of ANFIS. Fig. 11 shows the output of F-CONFIS trained by
the proposed method. In each figure, top curve is the output
(dashed line) of neuro-fuzzy systems and training data (solid
line) and bottom curve is the prediction error between the
output and original training data. It is obvious that proposed
method achieves better accuracy and faster convenience speed.

Table II shows the performance (MSE) comparison of con-
ventional methods and proposed method. Both conventional
and the new optimal learning approaches were utilized in the
example, then 10, 100, 200, 500, and 1000 iterations were
conducted for the methods. It can be seen that when iteration
reaches 10, the MSE of proposed method is 0.010832, the
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Fig. 11. Proposed method.

TABLE II

COMPARISON PERFORMANCE OF OTHER METHODS AND OUR METHOD

TABLE III

COMPARISON PERFORMANCE OF FIXED LEARNING RATE

AND OUR METHOD

TABLE IV

COMPARISON OF THE ACCURACY AND CONVERGENCE OF OTHER

METHOD AND OUR METHOD

error reduction is is much better than that of other methods at
iteration of 1000.

Example 1.2 (Comparison of Conventional Algorithms
and Our Proposed Algorithm): For comparison purpose,

Fig. 12. MSE value and convergence of the proposed method.

Fig. 13. Comparison of the accuracy and convergence of using the
Zhao–Li–Irwin approach in 2013 (upper) and the conventional one (bottom).

the experiments were conducted under the same condition.
ANFIS and F-CONFIS are trained using the conventional
gradient descent algorithm with fixed learning rate and the
proposed method respectively.

Table III shows the performance comparison of the proposed
method and traditional gradient descent with fixed learning
rate algorithm (Case a: α = 0.2, β = 0.1; Case b: α = 0.5,
β = 0.8; Case c: α = 0, β = 0.6; Case d: α = 0.4,
β = 0.4). From Table III, we can see that when iteration
reaches 10, the proposed method almost converge to zero. The
error reduction is much better than that of others method at
iteration of 1000. The improvement of convergence rate is
considerable and impressive.

Example 1.3 (Comparison of Zhao–Li–Irwin’ New
Algorithm of ANFIS and Our Proposed Learning of
F-CONFIS): For comparison purpose, the experiments
were conducted under the same condition. Zhao–Li–Irwin’
method [34] is a new gradient descent training algorithm for
fuzzy neural models in 2013. In this example, we conduct
the comparison among the conventional gradient descent
method, Zhao–Li–Irwin’ method of ANFIS, and our proposed
approach of F-CONFIS.

After 10, 50, and 500 iterations, the results are shown in
Table IV. It can be seen that the MSE is 0.00129 in Zhao’s
gradient descent approach when iteration reaches 50, whereas
the MSE of the proposed method is 0.00098454 when iteration
reaches 10, the convergence speed of proposed method is much
faster. Figs. 12 and 13 show the curve of MSE value of the
three methods. It is shown that the proposed approach achieves
excellent performance.

Example 2 (Nonlinear System Identification): The second
example is to identify a nonlinear system, which is described
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Fig. 14. Performance comparison for Example 1. Case a: our algorithm.
Case b: α = 0.5, β = 0.8. Case c: α = 0, β = 0.6. Case d: α = 0.4, β = 0.4.
Case e: α = 0.1, β = 0.2.

by the second-order difference equation [36]

y(k + 1) = g[y(k), y(k − 1)] + u(k) (49)

where

g[y(k), y(k − 1)] = y(k)y(k+1)[y(k) + 2.5]
1 + y2(k) + y2(k−1)

. (50)

A series-parallel neuro-fuzzy system identifier [18], [36] is
given by

ŷ(k + 1) = f̂ [y(k), y(k − 1)] + u(k) (51)

where f̂ [y(k), y(k − 1)] is the form of (7) with two fuzzy
variables y(k) and y(k − 1). The 500 training sample are
generated by the plant model using a random input signal
u(k), which is distributed in [−2, 2] and every fuzzy vari-
able has five MFs. The MFs are the Gaussian functions.
After the training process is finished, the model is tested
by applying a sinusoidal input signal u(k) = sin(2πk/25).
The proposed optimal learning algorithm was applied to the
F-CONFIS.

Example 2.1 (Comparison of Fixed Learning Rates and
Dynamic Learning Rate in F-CONFIS): For comparison pur-
pose, the experiments are conducted in F-CONFIS with fixed
learning rates and dynamic learning rate.

After 500 iterations, the trajectories of error of first 10 iter-
ations are shown in Fig. 14. It also shows the performance
comparison with the Cases b–e, where the learning rates are
fixed (Case a: proposed method; Case b: α = 0.5, β = 0.8;
Case c: α = 0, β = 0.6; Case d: α = 0.1, β = 0.2).
Apparently, the error of dynamic approach converges to zero
faster than other cases.

Table V shows the comparison performance with fixed
learning rate and the proposed method, where 10, 200, and
500 iterations (t) were conducted. It can be seen that the
total squared error J of proposed method is 0.00074829 when
iteration reaches 10, whereas the total square error J of other
cases is close to this value till iteration reaches 200. Obviously,
the proposed tuning algorithm for F-CONFIS is much better
than other cases.

Example 2.2 (Comparison of Conventional Optimal Learn-
ing Methods of ANFIS and the Proposed Algorithm of
F-CONFIS): To improve convergence rate, some kinds of
dynamic learning rate methods [12], [16], [18]–[22] can be
applied to the neuro-fuzzy systems. The learning rate of
premise part was obtained by genetic search techniques in [18].

TABLE V

PERFORMNCE COMPARISON OF GRADIENT DESCENT ALGORITHM

WITH FIXED LEARNING RATE AND PROPOSED

ALGORITHM (E−2 = ×10−2)

TABLE VI

COMPARISON WITH CONVENTIONAL OPTIMAL LEARNING

Fig. 15. Output of F-CONFIS trained by gradient decent with dynamic
learning rates method, the solid line is the original data and the sign + denotes
the F-CONFIS output.

This example conducts the performance comparison between
the conventional dynamic optimal learning method in [18]
and our proposed method under the same condition. Table VI
shows the performance comparison between conventional opti-
mal learning methods of the fuzzy NN in [18] with the
proposed method.

After five iterations and 120 iterations, the total squared
error J of the proposed method is 0.003286 and 0.0004019
compared with 0.00719 and 0.0023 of method in [18]. It can
be seen that the convergence speed of the proposed algorithm
is dozens times faster than those of others. To show the
accuracy of the proposed method, the output of F-CONFIS
trained by proposed method is shown in Fig. 15, where the
sign + denotes the F-CONFIS output and the solid line is
the original data.
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Fig. 16. Original configuration of neuro-fuzzy system with two input
variables, each variable with five MFs.

TABLE VII

MSE COMPARISON OF DIFFERENT ALGORITHM

Example 3 (Gas Furnace Data With the New Algorithm):
The gas furnace data set is a commonly used benchmark.
This data set has been used extensively as a benchmark
example in neuro-fuzzy field [37], [38]. There are 296 input–
output measurements. The input u(t) is the flow rate of
the methane gas and the output measurement y(t) is the
concentration of carbon dioxide in the gas mixture flowing out
of the furnace under a steady air supply. In our experiment, the
inputs are u(t−4) and y(t−1), with the output variable is y(t).
The F-CONFIS shown in Fig. 17 is equivalent to the original
neuro-fuzzy system shown in Fig. 16, it has two input nodes
and one output node, each input variable has five items, so
there are 25 fuzzy rules. The learning rates for the conventional
algorithm are set as α = 0.01 and β = 0.2. The MFs are the
Gaussian functions.

Table VII shows MSE comparison of between conven-
tional gradient decent algorithm and the proposed method, the
MSE of the conventional gradient decent algorithm reaches
0.087277 in 1000 epochs, but with the proposed dynamic opti-
mal learning rates the MSE reaches 0.077028 in 200 epochs.
The proposed dynamic learning rate approach converges much
faster than the conventional gradient decent algorithm. It can
be seen that the proposed tuning algorithm for F-CONFIS is
very effective.

After 500 iterations, the trajectories of error of first
five iterations are shown in Fig. 18. It also shows the
performance comparison with other Cases b–e in which the
learning rates are fixed. Table VIII shows the comparison
performance of fixed learning rates and the proposed method

Fig. 17. F-CONFIS with two input variables, each variable with five MFs.
It is good practice to explain the significance of the figure in the caption.

Fig. 18. Performance comparison for Example 3. Case a: proposed method.
Case b: α = 0.5, β = 0.8. Case c: α = 0, β = 0.6. Case d: α = 0.4, β = 0.4.
Case e: α = 0.1, β = 0.2.

TABLE VIII

PERFORMANCE COMPARISON OF FIXED LEARNING RATE

AND OUR METHOD

in 50, 100, 200, and 500 iterations (t). Apparently, the
convergence speed of proposed algorithm is much faster
than those of other cases. Fig. 19 shows the output of
F-CONFIS trained by the dynamic learning rates, where
the solid line is the original data and the dot denotes the
F-CONFIS output with the dynamic learning rate algorithm.
It is shown that the proposed approach achieves excellent
performance.



1754 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, VOL. 25, NO. 10, OCTOBER 2014

Fig. 19. Output of F-CONFIS trained by proposed method, where the solid
line is the original data and the dotted line denotes the F-CONFIS outputs.

VI. CONCLUSION

The conventional four-layer neuro-fuzzy system is trans-
formed into an equivalent fully connected three-layer feedfor-
ward NN, or F-CONFIS. Because F-CONFIS is a variation
of multilayer NNs and has dependent and repeated links,
the derivation of the learning algorithm is carefully designed
to cope with weights in these repeated links. In addition,
the dynamic optimal learning of F-CONFIS is derived not
only in the premise part, but also in the consequent part.
The simulation results indicate the proposed dynamic learn-
ing improves the accuracy considerably and converges much
fast.

APPENDIX

The following Lemma 1 shows the increment rule of ordinal
indices for hidden neurons with links of repeated weights,
which is needed to prove Theorem 1.

Lemma 1: Let {hλ(i, q)|λ = 1, 2, . . . , RW(i)} be the ordi-
nal indices for hidden neurons with links of repeated weights,
which connect the qth MF of the i th fuzzy input variable xi .
Then, we have
{

hλ+1(i, q) = hλ(i, q)+ Risi − si +1, if hλ(i, q)%si = si −1

hλ+1(i, q) = hλ(i, q)+1, otherwise

where si is defined in (15).

Proof: We know that hλ (i , q) is a specific fuzzy rule
number l in (17) for which we should have ri (l) = q , or

hλ(i, q) = l(r1(λ), r2(λ), . . . , ri−1(λ), q, ri+1(λ), . . . , rN (λ))

=
(

i−1∑

n=1

rn(λ)sn + qsi +
N∑

n=i+1

rn(λ)sn

)

=
i−1∑

n=1

rn(λ)sn + qsi

+Ri si

(

ri+1(λ) + ri+2(λ)Ri+1

+ · · · + rN (λ)

N−1∏

n=i+1

Rn

)

. (A.1)

Let

lv(λ) = lv (r1(λ), r2(λ), . . . , ri−1(λ)) =
i−1∑

n=1

rn(λ)sn

hv(λ) = hv (ri+1(λ), ri+2(λ), . . . , rN (λ)) = 1

Ri si

N∑

n=i+1

rn(λ)sn

(lv(λ) = 0, if i = 1; hv(λ) = 0, if i = N).

Then, (A.1) can be rewritten as

hλ(i, q) = lv(λ) + qsi + Ri si hv(λ). (A.2)

The (A.1) and (A.2) are actually from (17) so that all the
hλ(i, q) in H = {hλ(i, q)|λ = 1, . . . , RW(i)} are arranged in
ascending order by the following mechanism.

1) Let (r1, r2,…, ri−1, ri+1 ,…, rN ) = (0, 0, . . . , 0,
0, . . . , 0).

2) Increment the hλ (i , q) by increasing the (r1, r2, …,
ri−1, ri+1, …, rN ) using the following sequence: {(0,
0, …, 0, 0, …, 0), (1, 0, …, 0, 0, …, 0), …, (R1 − 1,
0, …, 0, 0, …, 0), (0, 1, …, 0, 0, …, 0), …, (R1 − 1, 1,
…, 0, 0, …, 0), …, (R1 −1, R2 −1, …, 0, 0, …, 0), …,
(R1 − 1, R2 − 1, …, Ri−1 − 1, Ri+1 − 1, …, RN − 1)}.

The reason for the above arrangement is quite obvious due
to the fact that si+1 > si in (A.1), and the only way to let hλ

(i, q) in H = {hλ(i, q)|k = 1, . . . , RW(i)} in ascending order
is to increase the indices of ri quicker than ri+1.

Denote

lv(r1, r2, . . . , ri−1)

=
i−1∑

n=1

rnsn , (lv(r1, r2, . . . , ri−1) = 0, if i = 1)

hv(ri+1, . . . , rN )

= 1

si+1

N∑

n=i+1

rnsn , (hv(r1, r2, . . . , ri−1) = 0, if i = n)

It is obvious that the minimum value of lv(r1, r2, . . . , ri−1) is

lvmin = lv (0, 0, . . . , 0) =
i−1∑

n=1

0sn = 0.

The maximum value can be similarly found as

lvmax = lv (R1 − 1, R2 − 1, . . . , Ri−1 − 1)

=
i−1∑

n=1

(Rn − 1)sn =
i−1∑

n=1

(sn+1 − sn) = si − s1 = si − 1.

Then, we have

0 ≤ lv(λ) ≤ si−1. (A.3)

So, lv(λ) may take any natural number between 0 and si −1.
The minimum value of hv(ri+1, . . . , rN ) is

hvmin = hv(0, 0, . . . , 0) = 0 + 0Ri+1 + · · · + 0
N−1∏

n=i+1

Rn = 0.
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Its maximum value can be found as

hvmax = hv(Ri+1, Ri+2, . . . , RN ) = 1

si+1

N∑

n=i+1

(Rn − 1)sn

= 1

si+1

N∑

n=i+1

(sn+1 − sn) = sN+1 − si+1

si+1
= sN+1

si+1
− 1.

Then, we have

0 ≤ hv(λ) ≤ (sN+1/si+1) − 1. (A.4)

So, hv(λ) may take any natural number between 0 and
(sN+1/si+1)− 1. From (A.2)–(A.4), for any natural number x
in [0, si − 1] and y in [0, (sN+1/si+1) − 1], we have

(x + qsi + Ri si y) ∈ H = {hλ(i, q)|λ = 1, . . . , RW(i)}.
(A.5)

It is also important to say that we have to adopt
the above ascending order mechanism for [xy] =
[lv(r1, r2, . . . , ri−1)hv(ri+1, . . . , rN )] so that the hλ(i, q) in
H = {hλ(i, q)|λ = 1, . . . , RW(i)} will be in ascending order.
From (A.2) with the fact that 0 ≤ lv(λ) ≤ si − 1, we have

hλ(i, q)%si = lv(λ)%si + 0 + 0 = lv(λ). (A.6)

The above (A.6) will be used to check if the maximum value
of lv(λ) has been reached or not. From (A.2), we have

hλ+1(i, q) − hλ(i, q) = lv(λ + 1) − lv(λ)

+ Ri si [hv(λ + 1) − hv(λ)]
= x − lv(λ) + Ri si [y − hv(λ)]. (A.7)

Since we have assumed that all the hk(i, q) in H =
{hλ(i, q)|λ = 1, . . . , RW(i)} are arranged in ascending order
in a manner explained in the above ascending order mecha-
nism, therefore the x = lv(λ+1) in (A.7) will be incremented
by 1 from lv(λ) until it reaches its maximum, i.e., si−1.
However, y will not be incremented in this stage, i.e., we
let yhv(λ) = 0. Therefore, we have the following Case 1, i.e.,
if hλ(i, q)%si = lv(λ) < si − 1.

Case 1: If hλ(i, q)%si = lv(λ) < si − 1, then

hλ+1(i, q) − hλ(i, q) = x − lv(λ) + Ri si [y − hv(λ)]
= 1 + 0 = 1.

Then, if hλ(i, q)%si = lv(λ) = si −1, then x = lv(λ+1) must
be reset to zero, so the y = hv(λ+1) will be incremented from
hv(λ) by 1 until it reaches its maximum value (sN+1/si+1)−1.
So, we have the following Case 2, i.e., if hλ(i, q)%si =
lv(λ) = si − 1.

Case 2: If hλ(i, q)%si = lv(λ) = si − 1, then we reset x to
zero and let y = hv(λ) + 1 to have

hλ+1(i, q) − hλ(i, q) = x − lv(λ) + Ri si [y − hv(λ)]
= 0 − lv(λ) + Ri si = Ri si − si + 1.

After combining the above Cases 1 and 2, we have the
following conclusion:
{

hλ+1(i, q)=hλ(i, q)+ Risi −si +1, if hλ(i, q)%si = si −1

hλ+1(i, q) = hλ(i, q) + 1, otherwise.

Q.E.D.

Fig. 20. Successive intervals for k with respect to t in Theorem 1.

Theorem 1: The ordinal indices {hλ(i, q)|λ = 1, . . . ,
RW(i)} for hidden neurons with links of repeated weights,
which connect the qth MF of the i th fuzzy input variable xi ,
can be found from the following equation:

hλ(i, q) = (λ − 1)%si + qsi + [(λ − 1)/si ]Ri si

λ = 1, . . . , RW(i) (A.8)

where A % B is the remainder of the division of A over
B , and A/B is the quotient of the integer division of A
over B .

Proof: For the i th fuzzy input variable xi , by (3), we have

RW(i) =

N∏

m=1
Rm

Ri
=

(
i−1∏

m=1
Rm

)

Ri

(
N∏

m=i+1
Rm

)

Ri

= si

N∏

m=i+1

Rm .

Therefore, we have 1 ≤ λ ≤ si
∏N

m=i+1 Rm , which will
fall into one of the ranges {[(t − 1)si + 1, tsi ]| t =
1, . . . ,

∏N
m=i+1 Rm} (if i = N , then t = 1 and k ranges from

1 to si ). This can be illustrated by Fig. 20.
If we can prove (A.8) holds for all t , then it accord-

ingly holds for all λ. We will prove this by mathematical
induction.

Base: When t = 1, λ will fall into the range
of [1,si ]. For λ = 1, from (A.2) with the fact that
{r1(1)r2(1) . . . ri−1(1)ri+1(1) . . . srN (1)} = {00 . . . 00 . . . 0}

hλ=1(i, q) = 0 + qsi + 0 = 0 + qsi + (λ − 1).

This will imply h1(i, q)%si = 0. Therefore, according to
Lemma 1, h2(i, q) = h1(i, q) + 1 = qsi + 1. This process
can be continued as follows:

h1(i, q)%si = 0 => h2(i, q) = h1(i, q) + 1 = qsi + 1;
h2(i, q)%si = 1 => h3(i, q) = h2(i, q) + 1 = qsi + 2;

. . .

hsi−2(i, q)%si = si − 3 => hsi−1(i, q) = hsi−2(i, q) + 1

= qsi + si − 2;
hsi−1(i, q)%si = si − 2 => hsi (i, q) = hsi−1(i, q) + 1

= qsi + si − 1.

So that we have hλ(i, q)%si = λ − 1, i f 1 ≤ λ ≤ si and

hλ(i, q) = qsi + λ − 1, 1 ≤ λ ≤ si . (A.9)
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For 1 ≤ λ ≤ si , we have (λ − 1)/si = 0 and (λ − 1) =
(λ − 1)%si . From (A.9), we have

hλ(i, q) = qsi + λ − 1

= [(λ − 1)/si ]Ri si + qsi + (λ − 1)%si , 1 ≤ λ ≤ si .

So (A.8) holds for t = 1.

Induction Hypothesis: Assume (A.8) holds for some speci-
fied t0, then we have

hλ(i, q) = [(λ − 1)/si ]Ri si

+ qsi + (λ − 1)%si

(t0 − 1)si + 1 ≤ λ ≤ t0si . (A.10)

Inductive Step: The last value of {hλ(i, q)| (t0 − 1)si + 1 ≤
λ ≤ t0si } is

hλ=t0si (i, q) = [(t0si − 1)/si ]Ri si + qsi + (t0si − 1)%si

= [((t0 − 1)si + si − 1)/si ]Ri si + qsi

+[(t0 − 1)si + si − 1]%si

= (t0 − 1)Ri si + qsi + si − 1. (A.11)

From (A.11), we have hλ=t0si (i, q)%si = si − 1. According to
the Lemma 1, we have

hλ=t0si+1(i, q) = hλ=t0si (i, q) + Ri si − si + 1

= (t0 − 1)Ri si + qsi + si − 1 + Ri si − si + 1

= t0 Ri si + qsi . (A.12)

For λ = tsi +1, we have (λ−1)/si = t0 and (λ−1)%si = 0.
From (A.12), we have

hλ=t0si+1(i, q) = t0 Ri si + qsi

= [(λ − 1)/si ]Ri si + qsi

+(λ − 1)%si . (A.13)

From (A.13), hλ=t0si+1(i, q)%si = 0. Therefore, the next
si −1 items of {hλ(i, q)|t0si +2 ≤ λ ≤ (t0 + 1)si } will have the
property of {hλ(i, q)%si < si − 1|t0si + 2 ≤ λ ≤ (t0 + 1)si }.
According to Lemma 1, hλ+1(i, q) = hλ(i, q) + 1. Therefore,
we have

hλ(i, q) = t0 Ri si + qsi + (λ − 1)%si

t0si + 2 ≤ λ ≤ (t0 + 1)si . (A.14)

For t0si + 1 ≤ λ ≤ (t0 + 1)si , we have (λ − 1)/si = t0.
Therefore, we can combine (A.13) and (A.14) to have

hλ(i, q) = [(λ − 1)/si ] Ri si + qsi + (λ − 1)%si

t0si + 1 ≤ λ ≤ (t0 + 1)si .

Thereby, (A.8) holds for t0 + 1.
Q.E.D.
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