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Abstract. In this paper we present a genetic-algorithm-based
fuzzy-logic approach for computer-aided diagnosis scheme in medi-
cal imaging. The scheme is applied to discriminate myocardial heart
disease from echocardiographic images and to detect and classify
clustered microcalcifications from mammograms. Unlike the con-
ventional types of membership functions such as trapezoid, triangle,
S curve, and singleton used in fuzzy reasoning, Gaussian-
distributed fuzzy membership functions (GDMFs) are employed in
the present study. The GDMFs are initially generated using various
texture-based features obtained from reference images. Subse-
quently the shapes of GDMFs are optimized by a genetic-algorithm
learning process. After optimization, the classifier is used for dis-
ease discrimination. The results of our experiments are very prom-
ising. We achieve an average accuracy of 96% for myocardial heart
disease and accuracy of 88.5% at 100% sensitivity level for micro-
calcification on mammograms. The results demonstrated that our
proposed genetic-algorithm-based fuzzy-logic approach is an effec-
tive method for computer-aided diagnosis in disease classification.
© 2004 SPIE and IS&T. [DOIl: 10.1117/1.1786607]

cessing, feature extraction, classifier training, and classifi-
cation, can be applied to various imaging modalities and
diseases with minor modification. In our system, we basi-
cally employ fuzzy logic for classification. Unlike the con-
ventional types of fuzzy membership functions such as tri-
angle and trapezoid, Gaussian-distributed membership
functions (GDMFs) are used in the system. The GDMFs
are initially generated using various features obtained from
image data sets. Subsequently, the shapes of the GDMFs
are optimized using a genetic-algoriti@A) learning pro-
cess. After optimization, the system is used for discrimina-
tion of disease. To our knowledge, this is the first time such
a CAD system has been described using the GA-based
fuzzy approach. In the present study, we apply our CAD
method to discriminate myocardial heart disease from
echocardiographic images and to detect and classify clus-
tered microcalcification from mammograms. The perfor-
mance of our CAD method is evaluated in terms of accu-

1 Introduction racy, sensitivity, and specificity.

Research in computer-aided diagno&BAD) is a rapidly

growing, dynamic field with new computer techniques, new
imaging modalities, and new interpretation tasks. CAD is 2.1 Fuzzy Membership Functions and Fuzzy Rules
defined as a diagnosis made by a radiologist who uses th . . - .
output from a computerized analysis of medical images as ;I'he major components of the fuzzy-logic decision-making

second opinion in detecting lesions, assessing extent of disSYStem are fuzzy sets, fuzzy membership functions, and

ease, and making diagnostic decisidr8o far most CAD fuzzy f“'e$- Each' fuzzy set has a correspondln_g fuzzy
papers have involved either mammograme or chest membership function. The value of the membership func-
radiographs:~%7 Recent reports show that CAD research 10N ranges from 0 to 1 and can be considered a degree of
has extended to other fields such as echocardiogt&phyl truth: The current study uses simplified fuzzy rules as fol-
colonography®2° lows:

In this paper, we present a generalized CAD scheme
based on our previously reported CAD schefh&he pro-
posed CAD scheme, containing four stages: image prepro-

2 Methods

rule i: If x4 is ¢y and ,..., andxy is ¢y,

theny is w;, (1

wherei (i=1,2,...M) are rule numbersxy,... Xy are in-

Paper 02126 received Nov. 20, 2002; revised manuscript received Sep. 17, 2003, ; ; B
accepted for publication Mar. 3, 2004, put variables to the fuzzy reasoning, is the output,

1017-9909/2004/$15.00 © 2004 SPIE and IS&T. Ci1,..-.Cim are fuzzy labels corresponding to the input vari-
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CilOi CiQOi e . Cl]Ol e . CiMOi Cion | Ci2o12 | Cizos | Caoe | Coro21 | C2o22 | C3ozs | Coqoa
__________________________ (a)
] [&T Ciz Ci3 Ci4 Ca Cn Ca Co
rule 1| rule 2| « « - | rule1 - - - |ruleN
(b
rule field Fig. 2 (a) Chromosomes of an individual presented by two fuzzy
rules. Each fuzzy rule consists of four GDMFs with various coeffi-
Fig. 1 Configuration of an individual consisting of N fuzzy rules. If cients ¢;; and standard deviations oj; (i=1, 2, and j=1, 2, 3, 4). (b)
each fuzzy rule is composed of M premise-part membership func- Each individual consists of eight coefficients.
tions, a total of MXN chromosomes line up to generate an indi-

vidual.

fuzzy rules. Each fuzzy rule consists of four GDMFs with

various coefficients;; and standard deviations; (i=1, 2,
ables, andw; is a real number of the consequent part of the and j=1, 2, 3, 4. The cijo; are optimized by the GA.
fuzzy rule. While almost any type of fuzzy membership since the values ofr11, 015, 013, T14, Oo1, Tops To3,
functions such as trapezoid, triangle, S curve, and singleton, 4 0,4 are constant when the data set is determined, in
can be used, the GDMFs were employed in this study. The, 5 ctice only the coefficients are used in the phase of opti-
optimal shape of a membership function may vary depend-pi;ation. As shown in Fig. (®) the string having eight
ing on the issue being dealt with. In this study, we intended | 5 japles is treated as an individual. The shape of the
to automatically generate membership functions using vari-consequent-part membership functions employed in the

gus f]f-zatures obtained C}‘rolm a_f_spe_cific category dOf ic';”"':;]gepresent study is a right isosceles triangle with the maximum
ata for recognition and classification. We considered thatyaj e of unity(normalized.

if the number of image data base is large, Gaussian distri- 5 simple GA that has given good results in a variety of
bution function can be used to appropriately describe im- ¢ gineering problems is composed of three operators: se-
age’s features. These are the main reasons why GDMFSgtion (reproduction, crossover, and mutation. These op-
were usgd. . erators are implemented by performing the basic tasks of
Con5|d_er a specific feature valyehat can be measured copying strings, exchanging portions of strings, and gener-
from an image. Let the mean value ®ffrom a set of  4iny random numbers. The GA begins by randomly gener-

images belonging to the same category,band the stan-  44ing 3 population of individualéstrings. Each individual
dard deviation of the feature values beDefine a fuzzy set g 4 possible solution to the optimization problem. In gen-

with a GhDMF havi?g tdhe mameurE_va:cue of uni(yorn;)al- eral, the population is initialized at random to a bit string of
ized). L e normalized membership function can be ex- o5 ang 1's. The selection operation mimics the natural se-
pressed as lection process by selecting which individuals will be used
1/ x— )2 to create a new generation, where the fittest individuals
_ I A reproduce most often. Usually a fithness function is used to
f(x)=ex 2 IS . ) :
2\ o rate individuals in terms of how good they are in solving

the optimization problem. The crossover operation refers to
When the value ok for an image isu, the membership  the exchange of substrings of two individuals to generate
value should be one. Whenis gradually apart from the two new individuals. The third operator, mutation, en-
value of u, the membership value should become smaller. hances the ability of the GA to find near-optimal solutions.
If the number of sample images is limited, the valuesof ~ Mutation is the occasional alternation of the binary value at
may not accurately reflect the characteristic of all images ofa particular string position.
the same category. Therefore, in this study we propose a The procedure of how to optimize the membership func-
method to use a GA at a training phase for determining thetions using the GA is described as follows.
optimal membership function.
1. Atotal of 200 individuals are randomly determined.

2.2 Optimization of the Fuzzy Membership Function Each individual (string consists of eight variables as
Using Genetic Algorithms shown in Fig. 2b). o
. . 2. The fitness values of each individual are computed.
As shown in Eq(3), by varying the value of standard de- 3 Thg individuals are rearranged in ranking order ac-
viation o with a coefficientc, the shape of the GDMF can cording to the fitness value.
be optimized using GA-based learning 4. Out of 200 randomly generated initial strings, the

1 2 first 140 high-ranked parent strings are selected for cross-
f(x)=ex;{ _ _(X_'“) _ &) over and mutation to produce the same number of children
2\ co strings. Next, the first high-ranked 60 parent strings to-
gether with the 140 children are treated as the strings of the
If N fuzzy rules are present and each fuzzy rule consistsnext generation. Single-point crossover is used in this
of M premise-par{antecedentmembership functions in a  study. It should be emphasized here that the crossover is
fuzzy system, a total oM XN chromosomegor geneg performed for each variable having eight-digit binary num-
line up to generate an individugee Fig. 1. As shown in ber, namely, the crossover are simultaneously performed at
Fig. 2@), it is assumed that an individual comprises two eight positions. A probability of 10% is used for mutation.
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5. Operations 2—4 are treated as one generation. The Premise Part Consequent Part
number of generation employed is 50. On the completion of
\ \ AN

50 iterations(generationy the individual having the high-  rulet /
est ranking is finally selected, the eight variables corre- ®amab
sponding to the eight coefficients of GDMFs are considered

as optimal, and the training process is finished, followed by , e

the classification phase. (abnormal) /

Z P

0.2
Q, Q, Qs Q,

2.3 Defuzzification

While many kinds of defuzzification approaches could be
used, the MIN-MAX compositional rule of fuzzy inference Input data
is employed in this study. However, a modified “height
H])retgg;juZ?%EiiléﬁanTzeenﬁ:ﬁf&/?,&a)‘zllt(:yomsgi?t?ofafrﬂgllg%/ted Fi_g. 3 IIIustr_ation_of _defuzzification employed'in our CAD scheme.
. o Eight Gaussian-distributed membership functions are used in the
method is described as follows. CAD scheme. The MIN-MAX compositional rule of fuzzy inference is
First, assuming thatno{Q1), tnod Q2), nolQz), and  employed in this study.
Mol Q) are the respective fuzzy GDMF values for the
normal case(or benignancy and u (Q1), afQ2).

Output
“normal”

. _agnosis are somewhat indeterminate. If a computer-aided
ta Q3), andpuqf Q4) are the respective fuzzy GDMF val technique, which provides a second opinion for the physi-

ues for the abnormal cager malignancy. Then, the mini- cian, can be developed, then this subjectivity may be re-

mum value of unodQ1), #nodQ2): #nodQs) and  g,0ad and in turn the accuracy in diagnosis is expected to
nod Qa), and that of u,(Q1), ma(Q2), maQs) and increase.
ra(Qa) are given by

3.1.1 Data set

Hnor=MIN[ 0o Qo). o Q2) o Qa) ol Q)T () 1 i application, a total of 90 samples of echocardio-

graphic images from 45 subjectsvo sample images per
subject: an end-diastole image and an end-systole image
_ were collected at the Hospital of Gifu University School of

#ra=MINL 22 Qu), patf Q) patl Qa): thal Qu) - ® Medicine. The images were captured from a Toshiba SSH-
160A device with a 2.5 MHzcentral frequency trans-
ducer. The state when the ventricles of the heart are maxi-
mally filled just before the heart contracts is calledd
diastole The other extreme state—when the ventricles are

and

This is usually called MIN(minimum) operation. Finally,
the larger value is taken from the two. It is called MAX
(maximum) operation and is given by

= MAX , ' 6 maximally emptied—is calleénd systoleHence, one car-
Hrnotab [H4nor: Habl © diac cycle can be represented by these two extreme states to
use the end-diastole and end-systole images in the diagnos-
it tnorua™ Mnor— NOrMal case(or benignancy), (7) tic process. Of the 45 subjects, 23 subjects were diagnosed

in advance by a highly trained5 year experienceclini-
(8) cian as normal and 22 were as abnoriahated cardiomy-

opathy or hypertrophic cardiomyopadhyach image was
digitized at the resolution of 256256 pixels. Since the
original echocardiographic images have 64 gray levels, the
scanned images were quantized to the same level. In our
previous studies we noted that the use of composite images
could provide higher recognition rate compared to that of

if wnorua= Map— @bnormal casdor malignancy).

In the case Ofu,o= 1ap, the classification becomes uncer-
tain and is regarded as misclassification in this study.

As shown in Fig. 3, suppose that the minimum values
for rules 1 and 2 are 0.4 and 0(2bsolute valug respec-
tively. Since 0.4(fuzzy rule 1 for normal cages greater -~ ; .
than 0.2(fuzzy rule 2 for abnormal cagethe output of the ~ Individual images at end systole and end diastofe.
fuzzy inference is “it is a normal case.” The result is sub- _Therefore, in the present appllcatlon we used composite
sequently compared to the teacher signal, which is alreadyMmagesh(x,y), which are obtained as follows:
known through the diagnosis made by the highly trained
physician. If the result is identical to the diagnostic result NOGY)=max{m(xy),n(x,y)], ©)

made by the physician, then the case is correctly classified. )
y g y wherem(x,y) andn(x,y) refer to the images at end-systole

3 Applications and end-diastole states, respectively. Figure 4 shows an ex-
ample of the normal case. The images at end-systole and
3.1 Classification of Myocardial Heart Disease from end-diastole states are shown in Figs) 4nd 4b), and the
Ultrasonic Images composite image is shown in Fig(cl.

Echocardiography is one of the best tools for diagnosing .
cardiomyopathy. However, since the clinical interpretation <-1-2 Feature extraction

process and the results largely depend on the physician'dVe generated a gray-level co-occurrence matrix from each
subjective point of view and experience, the criteria of di- of composite images. The gray-level co-occurrence matrix
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M1=E flE P(fq1,f2),
f1 fa

=2 1,2 P(fyfy),
- ﬁ f, f
Fig. 4 Examples of echocardiograms: (a) end-systole, (b) end- 2_ . 2

diastole, and (c) composite images. The composite image h(x,y) is 71 le (fl 1) fzz P(fl’fZ)’
obtained using h(x,y)=max m(x,y),n(x,y)], where m(x,y) and

n(x,y) refer to the images at end-systole and end-diastole states,

respectively. o.ngz (fz_Mz)sz P(fq,f5).
2 1

is a matrix used to express the correlation of spatial loca- Entropy Qu):

tion and gray-level distribution of an image. From it, the

local variation of gray levels on an image can be statisti-

cally investigated, which in turn enable us to know the Q4__le fzz P(f1,f)IN[P(fy,f2)]. (13
manner of change in gray level as a whole. In the current
application, we used the following conditions to generate
gray-level co-occurrence matricgs) Number of gray lev-
els: A co-occurrence matrix of 6464 size can be obtained
from a 64 gray-level image. In order to save computation
time, we compress the gray level to 16 in this application,

since our experiments showed that the matrix size of! o
16x16 was adequatdb) Direction: In general the gray- 'Mage contrast. The featuf@; represents pattern periodic-

level co-occurrence matrices from 0°, 45°, 90°, and 135¢ ity of specific directions. The featu@, represents the con-
directions are used. Since the differences of the results fronirary property ofQ,. It is still not very clear that these
the four directions are insignificant in our preliminary in- features completely describe what kinds of physical prop-
vestigation, only the direction of 0° was used in the study. erties of the tissue, respectively. However, in the sense that
(c) Distance: The length of five pixels was used, becausedifferent tissue or different quality of image provides dif-
we experimentally found that the value to be optimal. From ferent feature values, these statistic values can be used to
the generated gray-level co-occurrence matrices, a total ofepresent texture features of echocardiographic images.
14 statistical features for each image can be calcufdted.
We experimentally evaluated all of these features on their
ability to discriminate between normal and abnormal cases.3.1.3  Classification using GA-based fuzzy-logic
Of the 14 features, we found that the following 4 have the approach
most powerful discrimination ability as texture features of e randomly selected 12 normal and 12 abnormal echocar-
the composite images. diograms from the 45 subjects and called them “set A,”
Angular second momen(;): and called the remainingll normal and 10 abnormal
hearts “set B.” We used set B as learning data for training
) to obtain optimal membership functions, and used set A as
Q.= fE fE P(f1.f2)% (10 test data for classification, and vice versa. The classification
o2 results were then averaged. it should be noted that the GD-
. MFs were initially generated by using and o obtained
wheref, andf, are the gray-level values of two pixels at .,y jearing data for learning and optimization phase. In
different locationsP(f1,f>) is the probability obtained by  ther words, no learning data were used for testing in this
dividing the number of {;,f,) pairs in the matrix by the  stydy.
total number of occurrence in the co-occurrence matrix. A two-step fitness function in the selection operation
Contrast Qy): was employed to attempt increasing the accuracy of classi-
fication. Fitness values are computed by the fitness func-
tions shown as follows:

The featureQ, represents the uniformity of textures. The
more the number of specific gray-level pairs appears, the
higher the value 0@, . The featur&, represents the mean
of the gray-level differences of various gray-level pairs
(fq1-f5). The value ofQ, increases with the increase of

Q=2 2 (f1=f2)?P(f1,f). (11)
- gm0 (14)
Correlation Q3): Yo
21,24, f1fP(F1 f2) — s and
Q3= ; (12
0102 n
f,= dyi—dy)?, 15
where. 2= 2, (dy—dy) (15)
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Table 1 Performance comparison for various methods applied to
myocardial heart disease.

Accuracy Sensitivity Specificity
Method (%) (%) (%)
BP-NN 82.1 83.0 80.8
GA-NN 88.7 91.7 86.4
Fuzzy 91.4 91.7 91.3
GA-fuzzy 95.9 91.7 100

wheren andm refer to the number of learning data and the
number of misclassification, ardi; andd,; represent the
minimum values obtained from fuzzy rules 1 and 2, respec-
tively. When m=n, that is, all of the learning data are
misclassified, therf;=0. On the contrary, whem=0,
namely, all learning data are correctly classified during the
training phase, thef;=1. Moreover, when the difference
betweerd,; andd,; increases, then the value fof becomes
greater. The fitness values obtained from E#4) and(15)

demonstrate the effectiveness of the proposed method, we
also provide the results of neural network with back-
propagation learning methd@P—NN method, neural net-
work with GA learning method GA—-NN method, and
fuzzy method(without GA operatioh for comparison. The
sensitivity rates for BP—NN/GA—NN/fuzzy/GA-fuzzy
methods were 83.0%/91.7%/91.7%/91.7%, respectively.
Except for the BP—NN method, the sensitivity rates for the
other three methods are comparable. The BP—NN method
has lower sensitivity because of the number of FN cases.
Specificity rates for BP—-NN/GA—NN/fuzzy/GA-fuzzy
methods were 80.8%/86.4%/91.3%/100%, respectively.
The GA-fuzzy method provided the highest specificity, fol-
lowed by fuzzy, GA—NN, and BP—NN methods. The table
reveals that none of the FP cases misclassified. The results
indicated that the GA-fuzzy method was effective. The
overall accuracies for BP—NN/GA—NN/fuzzy/GA-fuzzy
methods were 82.1%/88.7%/91.4%/95.9%, respectively.
The results showed the superiority of the GA-based fuzzy
method.

Regarding fuzzy-logic-based methoffszzy and GA-
fuzzy methody the employment of GA for optimization of

are used for ranking the individuals. The ranking process iSGDMFs could achieve better classification rates, a 4.5%

as follows:(a) The individuals are ranked according to the

fithess value off;. (b) Those individuals having the same

value off, are further ranked according to the valuefgf
After completion of learning, the individual with the

increase in accuracy. The results suggest that our proposed
GA-fuzzy method for determining the GDMFs is useful,
especially in the case of small number of training data
available.

highest fitness value is selected and the eight variables of Furthermore, in order to reveal the merit of the use of
this individual are considered as the optimal coefficients. GDMFs, we also evaluated the performance of using a
By using the optimal coefficients, the widfles) of each triangular-type membership function. Our results showed
membership function is determined. For example, when setthat the average classification rate was 85%, an 11% de-
A was used as test data for classification, the mean valuerease in accuracy. This inferiority may be due to the rea-

and the standard deviation @, for normal case were
0.137 and 0.037. The optimal coefficiemtwas 1.21. Fi-
nally the width of the corresponding membership function
was 0.045.

3.1.4 Results and discussion

son that those test data having feature values larger than
u+30 could not be classified using the triangular-type
membership function and resulted in misclassification.

To the best of our knowledge, so far, there are no other
reports dealing with echocardiography classification.
Therefore, we do not have references for the comparative

. evaluation of our results on the specific database used.

We evaluate the performance of the proposed method in

terms of sensitivity, specificity, and overall accuracy. Sen-
sitivity (true positive fractionis the probability that a di-

However, we believe that the performance of our proposed
method is satisfactory and the method is clinically useful
for computer-aided diagnosis of cardiomyopathy.

agnostic test is positive, given that the person has the dis-

ease. Specificitytrue negative fractionis the probability

that a diagnostic test is negative, given that the person does o . .
not have the disease. Overall accuracy is the probability3-2 Classification of Clustered Microcalcifications on

that a diagnostic test is correctly performed. The three in-
dices are definéd'*as follows:

TP
sensitivity= w1, (16)
TN
specificity= INFFP' (17)
TP+TN (18

accUraCY: TP TN+ FP+ EN’

where TP, FP, TN, and FN refer to true positive, false posi-
tive, true negative and false negative, respectively.

Table 1 shows the classification rates for performing the
GA-based fuzzy methodGA-fuzzy method. In order to
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Mammograms

Breast cancer is a leading cause of cancer deaths among
women in many parts of the world. Mammography is
known as the most effective modality for early detection of
breast cancer, such as tumors and microcalcifications. De-
tection of microcalcifications is especially related to early
detection of breast cancer because those are considered to
be suspicious observations in the early stages of cancer.
Thus, development of a CAD system is strongly desirable.
Several methods for classifications of microcalcifica-
tions in mammography have been repod®d® In these
papers, methods using neural netwdtké’ and using
GAs® have been proposed. Recently, there has been re-
search on the a%)lication of fuzzy logic to the CAD in
medical image$®2°~**The reason lies in the fact that a lot
of information used for interpretation of medical images is
fuzzy. In this application, we use our proposed GA-fuzzy
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Table 2 Performance comparison for various methods applied to
microcalcifications.

Accuracy Sensitivity Specificity
Method (%) (%) (%)
BP-NN 84.6 100 69.2
GA-NN 76.9 100 53.8
Fuzzy 65.4 100 30.8

Fig. 5 An example of mammogram with microcalcifications. The
mammograms used in this study was digitized at a spatial resolution GA-fuzzy 88.5 100 76.9
of 50 um sampling distance with an eight-bit density resolution.

method to discriminate between benign and malignant clus-and the circularity of théth candidate region, respectively.
tered microcalcifications. D; is the distance fronith candidate to the nearest candi-
3.2.1 Data set date.

In this application, we used the mammographic database3.2.3 Classification using GA-based fuzzy-logic
provided by the Mammographic Image Analysis Society approach

(MIAS) in the United Kingdom. Each of the mammograms Basi L ;
) I . . asically, the GA-based fuzzy method used in this applica-
in the MIAS database was digitized at a spatial resolut|ontion is the same as that used in the preceding application. In

of 50 um sampling distance with an eight-bit density reso- this application, eight GDMFs are generated from four fea-

lution. Figure > sho_\/\_/s an example of region of interest tures(Num, Area, Cir, and Disfor each of two categories
(ROI) with microcalcifications. (benignancy, malignangy

The MIAS database consists of more than 300 images. ™" “<pown in Fig. 3, rule norma) and rule 2(abnor-

microcalafication, mase, architectural distorion, and asyme 8 correspond to benignancy rule and malignancy rule,
’ ’ ’ Y respectively, in this application. We used GA at training

metry. Of the images, 25 images are obviously indicated as,p, e 'tor determining the optimal membership functions by
microcalcifications. The aim of our study is to develop a

SR g .~ varying the values of coefficient. In training phase, ten
CAD system for qllscr|m|n_at|o_n between benign and malig- benign cases and ten malignant cases were used as learning
nant clustered microcalcifications. Therefore, we employed

onlv 25 images including 13 benian and 12 malianant mi- data. The remaining five cases were used for classification
Yy 25 IMages i 9 9 9 as unknown images. In order to obtain results of high reli-
crocalcifications in the current study.

ability, a total of 3146 combinations for classification of
malignancy and a total of 4356 combinations for classifica-

] ] ] tion of benignancy were used, respectively. That is, when a
Prior to feature extraction from the ROI images used for pajlignant case was selected and used for classification, the

classification, we employed mather?gtical morphology t0 nymber of combinations for training and classification was
detect microcalcifications from ROTS. After detection, ¢ . .c, —11x286=3146. Similarly, when a benign

four feature: including micrtjlca_[{cifg_ation Qumbm“m)'_ case was selected and used for classification, the number of
ms;ﬂ d?sr;a:r]cre{eg)ié)n\:veeig ﬁggg ?c?r%la!;'if;g Qﬁggrgqénﬁ}i- combinations for training and classification wasCig
g X 12C10= 66X 66=4356.

crocalcifications. The main reason for using these feature
is that radiologists’ interpretation for classifying clustered
microcalcifications is generally based on the visual infor-
mation distribution such as sizes and shapes of clusteredable 2 shows the classification rates for performing our
microcalcifications. These features are expressed as folproposed method. We also compare the method with other

3.2.2 Feature extraction

3.2.4 Results and discussion

lows: three techniqueBP—-NN, GA—NN, fuzzy. The specificity
rates at 100% sensitivity level for BP—NN/GA—NN/fuzzy/
Num=n, (19 GA-fuzzy methods were 69.2%/53.8%/30.8%/76.9%, re-

spectively. The accuracies at 100% sensitivity level for
1" BP—-NN/GA—-NN/fuzzy/GA-fuzzy methods were 84.6%/
Area= —E A, (20 76.9%/65.4%/88.5%, respectively. The results showed the
ni=1 superiority of the proposed GA-fuzzy method. Moreover, in
N order to show the statistical significance of the proposed
1 method, receiver operating characterisiROC) analysis
Cir= ﬁ;l Ci, (21 was made. ROC analysis is the standard approach to evalu-
ate the sensitivity and specificity of diagnostic procedures.
n The ROC analysis estimates a curve, namely, ROC curve,
Dis= EE D. (22) which describes the inherent tradeoff between sensitivity
nis and specificity of a diagnostic te$t*° Figure 6 illustrates
the ROC curves. The differences in the performances
wheren is the number of isolated candidate regions of mi- among the four techniques were estimated by comparing
crocalcification within a ROl imaged; andC; are the area  four A, values(the areas under the ROC curye$he A,
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1
M5
08 |
g
= GA-Fuzzy (Az=0.95)
E 06 i
E . ) Fuzzy (Az=0.89) B7
:g | H I"\ GA-NN (Az=0.80)
1,
3 04 ."_'\ BP-NN (Az=0.36)
e i
02 i
1
0 ‘ ‘ ‘ ‘ B10
0 0.2 04 0.6 0.8 1
False-positive fraction
Fig. 6 ROC curves obtained from the computer analysis of four
various methods, i.e., BP-NN, GA-NN, fuzzy method, and GA-
fuzzy methods. A ROC curve describes the inherent tradeoff be-
tween sensitivity and specificity of a diagnostic test. The area under B13

an ROC curve, A,, is a quick and accepted way of comparing the
performance of different classifiers. It is the average sensitivity over
all possible specificities.

e

Fig. 7 Four cases that had low accuracy classified using the GA-
. . . fuzzy method. On the left are original ROl images (one malignant
value has become a particularly important metric for evalu- case M5 and three benign cases B7, B10, and B13), and on the

ating diagnostic procedures because it is the average sensiight are the corresponding thresholded binary images. The sizes of
tivity over all possible specificitie%r’. TheAZ areas for BP— the RQI_ ime_tges shown were reduced to 35% of actual sizes from
NN/GA—-NN/fuzzy/GA-fuzzy methods were 0.86/0.80/ [N originalimages.

0.89/0.95, respectively.

Pairedt test was used to validate the statistical signifi-
cance of the difference iA, values in terms op value. The
p values of GA-fuzzy and GA—NN pair, GA-fuzzy an
BP—NN pair, and GA-fuzzy and fuzzy pair were 0.04
0.16, and 0.15, respectively. These results show that ou
proposed method is significantly superior to the GA—NN
method. However, the differences Ay values among GA-

fuzzy, BP—NN, and fuzzy are statistically insignificant. The ered superior or comparable to the performance shown in

:ﬂilrgegggagfcgama?/e ti)riaduei s‘grI?lfrl#]ﬁecrlergrfz?mglniem;ggzt-he mentioned literature. The results demonstrate the use-
P 9 P Sfulness of our method in the classification of clustered mi-

ment is needed. o
) . . crocalcifications on mammograms.
Figure 7 shows four ROI image@ne malignant case However, to further improve the classification perfor-

and three benign casethat had low sensitivity or low L ;
specificity by using the GA-fuzzy method. The sizes of mance, it is still necessary to enhance the detection perfor-
mance of microcalcifications and to investigate the exis-

ROI images shown in this application were reduced to 35% .
of actual sizes of the original images. The benign cases B71t§]r;c;eesof more powerful features and to increase sample

B10, and B13 were on dense-glandular mammograms as
the character of background tissue. Since microcalcifica-
tions are buried in dense regions, it is difficult to correctly
extract regions of microcalcifications from dense-glandular In this paper we have proposed a GA-based fuzzy approach
mammograms because microcalcifications are buried infor CAD scheme in disease classification. The proposed
dense regions. In particular, it is difficult to visualize mi- method was to exploit a GA-based training for optimization
crocalcifications in case B13 though we do not know of membership functions. Unlike the conventional types of
whether microcalcifications really exist or not, because themembership functions, Gaussian-distributed membership
place of each microcalcification was not indicated in the functions were employed. The effectiveness of our pro-
MIAS database. We suppose that detection results of mi-posed method has been demonstrated through two applica-
crocalcifications influence classification performance. This tions, i.e., discrimination of myocardial heart disease from
factor may be a reason of misclassifications in this applica-echocardiographic images and classification of clustered
tion. microcalcifications from mammograms. We have compared
In several related studies, Chanal?® reported a speci- the proposed methods with other three methods, BP—NN,
ficity of 39% at 100% sensitivity, Harat al?’ reported a  GA-NN, and fuzzy approaches. In the application of dis-
specificity of 94% at 79% sensitivity, and Chanhal?® re- crimination of myocardial heart disease, the results in terms

ported a specificity of 50% at 100 sensitivity. The corre-

d sponding accuracies obtained from the three reports are

o 70%, 86%, and 75%, respectively. The respective images
' Iused were 56, 104, and 145. Although the conditions of
performance evaluation were different among these reports
as well as our present stud25 imageg the performance

of our proposed methothn accuracy of 88.5%s consid-

4 Conclusion
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of accuracy have validated the superiority of the proposed17.

method. In the application of classification of microcalcifi-
cation, the ROC analysis was employed to compare the

performance of the four methods and the results show thexs.

tendency for the improvement by using the proposed
method. Our future works include increasing sample im-
ages for further feasibility test on the proposed method, ;4
modifying the shape of consequent-part membership func-
tion, and exploring more powerful image features.

20.
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