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ABSTRACT

The pluviometric regime of Catalonia (NE Spain) is analyzed from the point of view of empirical dry period lengths
by considering 78 rain stations for an average of 34 years. Two possible statistical models are tested. The first model
is the exponential distribution that offers reasonable results for moderate or long sequences of dry days. The other
possibility comes from Markov chains of first or second order, with two or four states quantifying precipitation
amounts, that are used to give better results for all the range of sequences. The Kolmogorov-Smirnov test has been
applied with the aim of verifying the fit between empirical probabilities of the sequences and theoretical probabilities
given by the exponential distribution and the Markov chains. It is noticeable that the Markov chain of second order
is many times the distribution either satisfying the test criteria or the closest one to its fulfilment. The exponential
distribution satisfies better the test criteria only for a few gauges and we have to keep in mind that for a remarkable
number of pluviometric stations, none of the proposed models accomplish the test. In spite of these limited results,
the Markov chains are employed to quantify important aspects which can not be studied by the exponential
distribution. These aspects include return periods for a new dry or wet episode and the stationary probabilities for
different precipitation amounts quantifying the states of the chains, among other aspects. As a global achievement
and remembering the limited success of the test, the results depicted by Markov chains of first and second order are
employed to show a differentiated behaviour among the Pyrenees and Pre-Pyrenees areas, the Central Basin, the
Littoral and Pre-Littoral areas, the Transversal chain and the southern Mediterranean coast. © 1998 Royal
Meteorological Society.
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1. INTRODUCTION

The pluviometric regime corresponding to Catalonia (NE Spain) has been recently studied from several
different viewpoints. One of them (Fernández Mills and Lana, 1991) is the correlation of orography,
vicinity to the Mediterranean sea and to the most important mountainous ranges with annual and
seasonal amounts of precipitation. Another important aspect is the variability of the regime, as
corresponds to Mediterranean behaviour (Periago et al., 1991; Burgueño, 1991). With respect to extreme
episodes, Lana et al. (1995) have studied the spatial and temporal distribution of extreme rainfall episodes
and, more recently, a similar methodology has depicted the behaviour corresponding to extreme episodes
of consecutive dry days (Lana and Burgueño, 1998).

From the viewpoint of water resources management policy, a detailed study of drought periods is
absolutely necessary, as only forecasting extreme episodes of consecutive dry days is insufficient.
Generally, a period of hydric deficit could be the result of dry sequences (not necessarily of extreme
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length) following periods with a very moderate amount of precipitation. Consequently, we need a set of
statistical tools that allow us to model aspects as important as the expected duration of a dry episode or
the probability of a consecutive number of dry days, among other aspects.

For the present study, our attention will be focused on establishing a reasonable statistical model to
describe the properties of the dry–wet behaviour of each gauge, based on a database consisting of 24-h
records from 78 pluviometric gauges belonging to the Instituto Nacional de Meteorologı́a, with an average
of 1390 dry episodes and 34 years of records.

Conditions imposed about the temporal continuity of the records are not so strict as in the recent study
(Lana and Burgueño, 1998) of extreme drought episodes, where we need complete annual series without
temporal discontinuities to be sure that the detected extreme episode was true. Consequently, the number
of gauges is now slightly increased and the area studied is more densely covered. The pluviometric
network and the main orographic features that can condition the rainfall behaviour are shown in Figure
1.

Empiric dry spell lengths are a discrete variable due to data of 24-h rainfall amounts. Discrete models
such as the geometric distribution or the truncated negative binomial (De Arruda and Pinto, 1980) could
have been used. Nevertheless, the use of a continuous distribution such as the exponential is not unusual
(see for instance Burgueño et al., 1994). For this distribution, we define as a dry day, a 24-h period
recording less than 0.1 mm. We will assess whether the fit between such a distribution and the empirical
probability of a fixed number of consecutive dry days is good enough for 3 or more days. However, the
discrepancy for one or two dry days is remarkable, making it necessary to use another statistical model
such as Markov chains of first or second order.

The Markov chains give us a more complete description of the dry behaviour related to a rain gauge.
First of all, the probabilities computed with the Markov chains are compared with those deduced from
the exponential distribution. A Kolmogorov-Smirnov test (Benjamin and Cornell, 1970) will be conve-
nient to decide if the Markov chains offer more confident results. Secondly, numerical values quantifying
the number of expected days to begin a new dry or wet period or the expected length of a dry cycle can
be obtained. Thirdly, if we define four states of the Markov chains, with one corresponding to a lack of
precipitation and three more defining three rain amount levels, we will be able to compute the stationary
probabilities for the transitions from one state to another, as well as the number of days (steps of the
Markov chain) to obtain this stationary probability. The first state corresponds to 24-h periods recording
less than 0.1 mm. The other three states of the Markov chains correspond to 24-h episodes recording from
0.1 to less than 10 mm, from 10 to less than 50 mm and, finally, more than or equal to 50 mm,
respectively. The first threshold value of 0.1 mm is commonly accepted to classify a day as dry or wet (see
e.g. Moon et al., 1994). The other three threshold values, trying to characterize small, moderate and
abundant amounts, have been empirically established according to the authors’ knowledge of the
pluviometric regime of the country. Additional examples, where the empirical knowledge about the
pluviometric regime of the target area is a relevant factor, can be found in Haan et al. (1976) and Gregory
et al. (1993) who use different numbers of states and threshold lengths studying Kentucky (US) and Great
Britain, respectively.

Although the results concerning the exponential distribution and the Markov chains will be obtained
for each pluviometric gauge of the network, the incidence of the orography and the vicinity to the Atlantic
and Mediterranean seas can be satisfactorily analyzed by mapping these results for all the gauges.

2. STATISTICAL APPROACH

2.1. Exponential distribution

Although the exponential distribution (Benjamin and Cornell, 1970) is a very simple statistical
distribution, it gives good results when studying the distribution of rainfall durations (Burgueño et al.,
1994) from hourly precipitation series. The distribution of dry lengths, taking as 24-h database records,
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could also be statistically modeled by assuming the same distribution. Nevertheless, discrepancies between
empirical and theoretical probabilities have to be expected for the shortest dry lengths.

From a mathematical point of view, the probability of having n consecutive dry days in a pluviometric
gauge can be expressed as:

Pe(n)=l exp(−nl) (1)

l=1/L0 (2)

where L0 is the empirical mean length of all the dry episodes measured in a gauge that, at the same time,
has to be coincident with the standard deviation of the lengths. From a theoretical point of view,
Equation (2) is the solution to the maximization of the likelihood function in the case of an exponential

Figure 1. Location of the 78 rain gauges belonging to the Instituto Nacional de Meteorologı́a. A and B, Pyrenees and Pre-Pyrenees
chains; C and D, Littoral and pre-Littoral chains; E, the Transversal chain; and F, the Central Basin. G and H, the Llobregrat and

Ebre rivers. The star indicates the location of Barcelona city
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Figure 2. Spatial distribution of the averaged dry lengths (in days) derived from the 78 pluviometric stations

distribution (Benjamin and Cornell, 1970). Sometimes, the estimation made according to Equation (2)
could produce some mistakes due to the statistical population of empirical dry lengths not being
sufficiently representative. Bearing in mind this fact, l will also be estimated for each gauge by searching
for a minimum of the misfit function:

m= [Pe(i)−Q(i)]T[Pe(i)−Q(i)] i=1, . . .n (3)

where Q(i ) the empirical probability of detecting a dry period with a length of i days. Discrepancies
between parameters l computed from Equation (2) or (3) will not be very relevant and the same
conclusions about their geographical distribution can be obtained from anyone of both sets.

2.2. Marko6 chain formulation

Markov chains and their properties are used in many scientific fields. Classical textbooks where they are
completely reviewed are, among others, Kemeny and Snell (1960), Cox and Miller (1965) and Benjamin
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Table I. Number of years (Y) and number of dry sequences considered (N) for every
rain gauge together with empirical (E) and the three theoretical expected lengths, in
days, of the dry events. MS is the expected length corresponding to a minimum of the
Equation (3) and M1 and M2 are the expected lengths deduced from Markov chains of

two states and first and second order, respectively

N E MSGauge M1Y M2

2071 6.02 5.29 6.051 6.0645
1043 7.81 6.8027 7.862 7.87
1049 7.25 6.24 7.403 7.4024
2113 7.53 6.6353 7.42 7.424

42 899 15.61 13.19 15.47 15.475
858 12.78 10.6934 12.95 12.956

1519 7.77 6.94 7.527 7.5240
710 8.05 6.9719 7.94 7.948

139 772 3.82 3.27 3.91 3.90
2378 5.97 5.1851 5.8310 5.82

4011 1695 6.86 5.91 6.86 6.85
32 883 11.55 9.29 11.86 11.8612

1094 6.50 5.3423 6.7213 6.72
1723 7.17 6.23 7.3214 7.3142
1540 6.32 5.4734 6.25 6.2515

2916 1410 5.59 4.82 5.41 5.41
616 7.92 6.3716 8.2417 8.23

4018 1837 6.20 5.38 6.25 6.25
1802 6.44 5.67 6.2319 6.2341
877 7.30 6.1022 7.25 7.2620

1736 6.94 5.96 6.7821 6.7941
1026 7.56 6.4326 7.63 7.6222

4723 2015 6.83 5.93 6.79 6.79
1781 7.19 6.2944 7.3824 7.37

3425 1268 8.18 6.78 8.18 8.18
1497 8.7426 7.64 8.79 8.7843
1307 7.36 6.3832 7.12 7.1227
914 9.49 8.09 9.5728 9.5828

1767 6.54 5.6740 6.58 6.5829
1861 4.36 3.70 4.3530 4.3534
1571 6.32 5.4635 6.3331 6.33
1494 8.91 7.36 8.9032 8.9043
736 6.12 5.3316 6.19 6.1933

2934 1265 6.54 5.47 6.35 6.35
1196 7.71 6.6846 7.74 7.7435
1103 4.23 3.77 4.2336 4.2419
873 8.96 7.2825 9.25 9.2537

3038 1411 6.01 5.27 5.77 5.76
1156 9.77 7.7836 9.6839 9.68

3340 1199 8.29 6.94 8.33 8.33
41 37 1446 7.66 6.72 7.71 7.71

2126 6.86 6.0150 6.7942 6.79
2027 6.06 5.18 6.0743 6.0744
763 8.58 6.9321 8.55 8.5444

3745 1381 8.11 6.94 8.20 8.19
1200 7.85 6.7031 7.6246 7.62

4547 1864 7.03 6.05 6.97 6.97
1912 5.3648 4.63 5.15 5.1538
1101 7.16 5.9427 7.48 7.4849
2029 8.68 7.49 8.7250 8.7257
756 7.98 6.7220 8.04 8.0351

52 29 1315 6.13 5.14 6.45 6.45
1705 9.02 7.36 9.16 9.175053
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Table I. (Continued)

Gauge Y N E MS M1 M2

54 17 788 5.78 5.15 5.67 5.67
55 47 2104 6.32 5.48 6.16 6.16
56 25 1236 5.37 4.48 5.37 5.37
57 40 1960 5.47 4.76 5.48 5.48
58 20 884 6.30 5.79 6.64 6.65
59 39 1719 6.36 5.51 6.28 6.28
60 33 1151 8.75 7.29 8.77 8.76
61 20 740 8.05 6.81 7.88 7.88
62 23 1101 5.52 4.87 5.63 5.62
63 16 699 6.39 5.50 6.76 6.76
64 52 1834 8.79 7.55 8.74 8.74
65 29 1305 6.39 5.58 6.32 6.32
66 23 981 7.08 6.13 6.92 6.93
67 48 2012 6.75 5.85 6.47 6.47
68 53 2161 7.40 6.41 7.24 7.24
69 22 1173 4.55 3.90 4.41 4.41
70 30 1060 8.67 7.40 8.65 8.65
71 25 1009 7.47 6.45 7.41 7.41
72 13 539 7.18 6.27 7.28 7.26
73 37 2115 4.13 3.61 4.18 4.18
74 35 1392 7.65 6.50 7.73 7.73
75 58 2126 8.33 7.07 8.29 8.29
76 38 1851 5.50 4.69 5.62 5.62
77 27 1289 5.45 4.76 5.64 5.64
78 30 971 9.73 8.01 9.91 9.91

and Cornell (1970). As an example, two specific applications, where the Markov chain concepts are very
useful, are the estimation of seismic risk (Patwardhan et al., 1980) and the parameter estimation process
known as the annealing algorithm (Rothman, 1986).

The Markov chains, specially those of second order, are used in climatology to model rainy and
drought behaviour or transitions from wet to dry episodes. Some examples can be found in Wiser (1965),
Feyerherm and Bark (1967), Katz (1974), Haan et al. (1976), Edwin (1977), Pérez Manrique et al. (1984),
Douguedroit (1987), Conesa and Martı́n Vide (1993), Gregory et al. (1993), Moon et al. (1994), among
many others, with either transitions from wet to dry episodes, based on daily records, or the behaviour
of the drought events, based on monthly amounts being analyzed. In our case, we take into consideration
Markov chains of first and second order, representing the transition matrix between two possible states
(precipitation and no-precipitation) or the transition matrix among four possible states defined above. The
probability for each transition defining these matrices will be estimated by computing the quotient Nij/Ni

for the first order Markov chain, with Nij as the number of transitions from a starting state i to another
state j in 24 h and Ni as the whole number of days with rainfall amounts belonging to state i. Similarly,
for the Markov chain of second order, we compute the quotient Nijk/Ni, with Nijk as the number of
transitions from state i to state j in 24 h and from state j to state k in the next 24 h.

The case of first order and two states will be quantified by a 2×2 transition matrix:

P12(i, j)=Pij i=0, 1; j=0, 1 (4)

where 0 and 1 represent the states of no-precipitation and precipitation, respectively, and Pij the transition
probability in one step (day) from state i to state j. On the other hand, it is evident that Pi0+Pi1, is equal
to 1 for i equal to 0 and 1.

The case of first order and four states will be quantified by a 4×4 transition matrix:

P14(i, j)=Pij i=0, 1, 2, 3; j=0, 1, 2, 3 (5)

© 1998 Royal Meteorological Society Int. J. Climatol. 18: 793–815 (1998)
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where 0, 1, 2 and 3 are the states defined by rainfall amounts less than 0.1 mm, from 0.1 to less than 10
mm, from 10 to less than 50 mm and greater than or equal to 50 mm, respectively. In this case, the
constraint on Pij is given by �j Pij=1 for i equal to 0, 1, 2 and 3.

The second order Markov chain, with two states, will be represented by a transition tensor:

P22(i, j, k)=Pijk i=0, 1; j=0, 1; k=0, 1 (6)

In this case, the constraints applied to the elements are given by �j,k Pijk=1 for all pairs ( j, k), being Pijk

the transition probability, in two steps (days), from state i to state j and from state j to state k.
The definition of transition matrices (4), (5) and (6) permits computation of several aspects of the

dry–wet behaviour of each gauge in terms of different orders and states, such as the following.
(i) The probabilities of detecting n consecutive dry days in a rain gauge, according to the Markov chain

of first and second order, are:

Q1(n)= (1−P01)n−1P01 n]1 (7)

Q2(n)=P100P000
n−2P001 n]2 (8)

Figure 3. Spatial distribution of the variation coefficient (%), computed as the quotient between standard deviation and expected
length

© 1998 Royal Meteorological Society Int. J. Climatol. 18: 793–815 (1998)
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Q2(1)=P101 (9)

(ii) The probability of a state, n days after a fixed starting state, according the concept of transition
matrix of first order and two states, P12, can be computed as follows:

S12(n)=V ·P12
n (10)

where V is a vector of components (0, 1), if the starting state corresponds to a rainy day and components
(1, 0), if the starting day is dry. An easy generalization can be made for the case of first order and four
states, P14, obtaining:

S14(n)=V ·P14
n (11)

where V is now a vector of four components, similarly defined as in the previous case. For example, the
components of V will be (0, 0, 0, 1), if the starting state corresponds to a daily record with precipitation
greater than or equal to 50 mm.

(iii) A more interesting aspect is the detection of the number of days required to obtain a stationary
value for the elements of matrices P12

n and P14
n, that will represent the stationary transition probabilities

for the states. We can develop the case for two states and then to extrapolate for four states. According
to elementary matrix algebra, we decompose P12 and P12

n matrices in terms of eigenvector matrix, R, and
diagonal eigenvalues matrix, L, of P12:

P12=R ·L ·R−1 (12)

P12
n=R ·Ln ·R−1 (13)

being easy to prove that, with n tending to �, the elements of P12
n tend to:

P12
n(0, 0)=P12

n(1, 0)=P10/(P01+P10) (14)

P12
n(0, 1)=P12

n(1, 1)=P01/(P01+P10) (15)

representing these equations, respectively, the first and second stationary columns of P12
n. The stationary

2×2 matrix obtained is then formed by two columns, the first quantifying the stationary probability of
recording a dry day in a gauge and the second a day with precipitation.

Computations for four states are equivalent for calculating eigenvalues and eigenvectors of a 4×4
matrix and the same steps are applied when considering the 2×2 matrix. In this last case, the elements
of the first stationary column, designed by {P14

n(i, 0); i=0, 1, 2, 3}, have to be coincident with values
given by Equation (14), that quantify again the stationary probability of recording a dry day in a gauge.
Now we can distinguish between stationary probabilities of recording low amounts ranging from 0.1 to
less than 10 mm {P14

n(i, 1); i=0, 1, 2, 3}, moderate precipitation from 10 to less than 50 mm {P14
n(i, 2);

i=0, 1, 2, 3}, and, finally, very high amounts greater than or equal to 50 mm {P14
n(i, 3); i=0, 1, 2, 3}.

Moreover, addition of the second, third and fourth columns give us a column which has to be coincident
with stationary values given by Equation (15), bearing in mind that state 1 of the Markov chain of two
states summarizes states designated by 1, 2 and 3 of the Markov chain of four states.

(iv) The transition matrix elements also provide a way to quantify the expected length of a wet or dry
period as well as the expected length of a dry–wet cycle. Computations can be made according to Markov
chains of two states, provided that we are only interested now in the possibility of wet or dry episodes,
but considering a first or second order chain. First of all, we have to quantify the probability of detecting
n consecutive rainy days or n consecutive dry days.

Considering for the moment the first order case:

R1r(n)=P11
n−1P10 (16)

R1d(n)=P00
n−1P01 (17)

where R1r(n) and R1d(n) are the probabilities for rainy and dry sequences of n days, respectively, then,
the expected length of a sequence of rainy or dry days can be expressed as:

© 1998 Royal Meteorological Society Int. J. Climatol. 18: 793–815 (1998)
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Figure 4. (a) A comparison between exponential (solid line) and empirical distribution (points) for the dry lengths. The curved lines
represent the control band given by the parameter C of the Kolmogorov-Smirnov test. This example corresponds to gauge 3. (b) As

for (a). This example corresponds to gauge 40

© 1998 Royal Meteorological Society Int. J. Climatol. 18: 793–815 (1998)
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Figure 5. (a) A comparison between the exponential model (solid line), Markov chains of first order (line of points), second order
(dashed line) and empirical distribution (points) for the dry lengths. This example corresponds to gauge 7. (b) As for (a). This

example corresponds to gauge 78

© 1998 Royal Meteorological Society Int. J. Climatol. 18: 793–815 (1998)
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E1(r)=SnnR1r(n) n=1, . . .,� (18)

E1(d)=SnR1d(n) n=1, . . .,� (19)

Both expressions can be rewritten as arithmetic-geometric series, being straightforward to prove that:

E1(r)=1/P10 (20)

E1(d)=1/P01 (21)

Then, the expected length of a dry–wet cycle can be expressed as:

E1(c)=E1(r)+E1(d)= (P10+P01)/(P10P01) (22)

(v) The return period could also be interesting to evaluate. The probabilities to return to a dry day after
n consecutive days, PRD, or to a rainy day after n consecutive days, PRR, can be expressed as:

PRD(n)=P01P11
n−2P10 n]2 (23)

PRR(n)=P10P00
n−2P01 n]2 (24)

Then, the expected return period for wet or dry episodes can be computed and the arithmetic-geometric
series appear again:

ER(r)=SnnPRR(n) n=1, . . .,� (25)

ER(d)=SnnPRD(n) n=1, . . .,� (26)

Finally, the expected return period for a rainy and for a dry day can be expressed, respectively, by:

ER(r)= (P01+P10)/P01 (27)

ER(d)= (P01+P10)/P10 (28)

(vi) With respect to the expected lengths of dry and wet cycles, the same computations can be made by
considering a second order Markov chain. Now, the probability of detecting n days of consecutive rainy
and dry days can be quantified as:

R2r(n)= (1−P010)(1−P110)n−2P110 n]2 (29)

R2r(1)=P010 (30)

R2d(n)= (1−P101)(1−P001)n−2P001 n]2 (31)

R2d(1)=P101 (32)

If we evaluate the expected length of each possible sequence, we obtain again two arithmetic-geometric
series, finally obtaining:

E2(r)= (1−P010+P110)/P110 (33)

E2(d)= (1−P101+P001)/P001 (34)

and the expected length of a whole cycle of wet–dry days will be:

E2(c)=E2(r)+E2(d)=2+ (1−P101)/P001+ (1−P010)/P110 (35)

The definition of return periods for a second order Markov chain cannot be properly derived due to the
fact that these transition probabilities do not include the case n=1 and expressions similar to Equations
(25) and (26) can not be entirely reproduced.

© 1998 Royal Meteorological Society Int. J. Climatol. 18: 793–815 (1998)
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2.3. Test of significance

Taking into account that we have to decide for each gauge which is the best statistical model describing
consecutive dry days probabilities, the Kolmogorov-Smirnov test (Benjamin and Cornell, 1970) has been
applied to theoretical and empirical distributions obtained for each recording station. The test is based on
the computation of the parameter:

D=max{Q*(i)−P*(i)} i=1, . . .,n0 (36)

where Q*(i ) is the cumulative empirical distribution of consecutive dry days and P*(i ) is the cumulative
theoretical distribution, derived either from the exponential distribution or from the Markov chains of
first and second order and two states. n0 is the number of intervals conforming to the experimental
distribution Q(i ), introduced for the computation of the misfit function (Equation (3)). After the
calculation of the parameter D, we have to decide if the hypothesis that a theoretical model, representing
the empirical distribution, must be discarded or not. The applied rule is simple. If D is equal or less than
a quantity C, the hypothesis is accepted. The hypothesis is rejected if the opposite is found. C is computed
according to the asymptotic expression (Lindgren, 1962):

C=1.36n0
1/2 n0]40 (37)

with a confidence level of the 5%.

3. APPLICATION

3.1. Comparison of statistical models

The exponential distribution and the Markov chains of first and second order and two states have been
tested for each one of the 78 rain gauges depicted in Figure 1. Figure 2 shows a distribution of the average
dry length (in days) for all the studied area. As a general feature, we can observe that the expected length
becomes larger from north to south, with remarkably low values, in relative terms, of less than or equal
to 6 days, assigned to most of the Pyrenees and Pre-Pyrenees areas. Conversely, the rest of the country
is linked to expected lengths of 8, 9 and 10 days, with a noticeably strong positive gradient evident in the
south of the country, reaching up to 16 days. This gradient is due to a local effect detected in gauge
number 5. We have to remember that this outstanding behaviour was also detected for this gauge in terms
of extreme dry episodes (Lana and Burgueño, 1998). This local phenomenon is a consequence of the foehn
effect that originates from the NW winds that, channelized by the Ebre valley, overcome the littoral
mountains and arrive at the Mediterranean sea. The inverse of quantities depicted in Figure 2 should be
a good approximation of the l parameter of the exponential distribution represented by Equation (1). The
l parameters for each rain gauge are also determined by minimization of the misfit function designated
by Equation (3) and both estimations. These, together with the expected values given by Markov chains,
are listed in Table I.

Figure 3 shows the variation coefficient, defined as the quotient between the standard deviation of the
dry lengths and their expected values depicted in Figure 2. The geographical distribution of this coefficient
is not exactly coincident with the expected values of Figure 2.

The largest variation, with values above 115%, is detected for a large part of the Central Basin and
extends across the Eastern Pyrenees, the west face of the Transversal chain and arrives in the vicinity of
Barcelona city. Less irregular behaviour is obtained for the rest of the Catalan Pyrenees and Pre-Pyrenees,
with the average value and the standard deviation almost equal for some small areas. Provided that the
expected lengths and standard deviation differ from each other for most of the country, we can assume
that the exponential distribution is not the best model describing the dry behaviour.

Two opposite examples of fit between empirical and exponential distributions are shown in the
probability plots of Figure 4(a) and (b). Points represent empirical data, the straight line the exponential
distribution and the curved lines tolerances given by Equation (37), according to the Kolmogorov-
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Table II. Results of the Kolmogorov-Smirnov test for the whole set of gauges G. Emax,
M1max and M2max design, respectively, statistic D given by Equation (36) for the
exponential distribution and the Markov chains of first and second order. C is the

quantity given by Equation (37) for a significance level of 5%

G Emax M1max M2max C G Emax M1max M2max C

1 0.0608 0.0723 0.0448 0.0299 40 0.0706 0.0956 0.0621 0.0393
2 0.0502 0.0714 0.0504 0.0421 41 0.0454 0.0638 0.0362 0.0358
3 0.0232 0.0477 0.0469 0.0420 42 0.0541 0.0632 0.0334 0.0295
4 0.0634 0.0726 0.0324 0.0296 43 0.0666 0.0846 0.0580 0.0300
5 0.0518 0.0673 0.0389 0.0454 44 0.0573 0.0975 0.0712 0.0492
6 0.0607 0.0912 0.0586 0.0464 45 0.0502 0.0745 0.0474 0.0366
7 0.0489 0.0501 0.0252 0.0349 46 0.0538 0.0659 0.0289 0.0393
8 0.0649 0.0751 0.0343 0.0510 47 0.0736 0.0889 0.0396 0.0315
9 0.0682 0.0788 0.0448 0.0489 48 0.0579 0.0588 0.0229 0.0311

10 0.0606 0.0675 0.0383 0.0279 49 0.0652 0.0911 0.0606 0.0410
11 0.0539 0.0754 0.0521 0.0330 50 0.0457 0.0658 0.0376 0.0302
12 0.0582 0.1028 0.0704 0.0458 51 0.0487 0.0802 0.0554 0.0495
13 0.0592 0.0969 0.0651 0.0421 52 0.0542 0.0923 0.0576 0.0375
14 0.0532 0.0761 0.0484 0.0328 53 0.0529 0.0949 0.0650 0.0329
15 0.0514 0.0637 0.0355 0.0347 54 0.0672 0.0675 0.0268 0.0484
16 0.0712 0.0755 0.0277 0.0362 55 0.0694 0.0770 0.0413 0.0296
17 0.0579 0.1107 0.0804 0.0548 56 0.0569 0.0790 0.0482 0.0387
18 0.0656 0.0853 0.0566 0.0317 57 0.0565 0.0679 0.0428 0.0307
19 0.0551 0.0573 0.0261 0.0320 58 0.0452 0.0589 0.0425 0.0457
20 0.0745 0.0971 0.0559 0.0459 59 0.0622 0.0720 0.0391 0.0328
21 0.0422 0.0575 0.0358 0.0326 60 0.0569 0.0899 0.0557 0.0401
22 0.0437 0.0661 0.0556 0.0425 61 0.0545 0.0767 0.0379 0.0500
23 0.0674 0.0813 0.0463 0.0303 62 0.0305 0.0387 0.0302 0.0410
24 0.0484 0.0680 0.0451 0.0322 63 0.0799 0.1111 0.0559 0.0514
25 0.0375 0.0676 0.0477 0.0382 64 0.0726 0.0899 0.0539 0.0318
26 0.0543 0.0748 0.0443 0.0352 65 0.0423 0.0498 0.0215 0.0376
27 0.0608 0.0687 0.0283 0.0376 66 0.0452 0.0584 0.0396 0.0434
28 0.0653 0.0866 0.0377 0.0450 67 0.0544 0.0569 0.0139 0.0302
29 0.0674 0.0881 0.0508 0.0324 68 0.0576 0.0718 0.0426 0.0293
30 0.0559 0.0667 0.0366 0.0315 69 0.0652 0.0643 0.0288 0.0397
31 0.0400 0.0562 0.0364 0.0343 70 0.0650 0.0824 0.0492 0.0418
32 0.0812 0.1074 0.0505 0.0352 71 0.0471 0.0686 0.0336 0.0428
33 0.0511 0.0672 0.0365 0.0501 72 0.1770 0.0828 0.0639 0.0586
34 0.0504 0.0664 0.0378 0.0382 73 0.2322 0.0575 0.0285 0.0296
35 0.0485 0.0660 0.0403 0.0321 74 0.0711 0.0759 0.0520 0.0365
36 0.0691 0.0644 0.0381 0.0409 75 0.1481 0.0787 0.0396 0.0295
37 0.0584 0.0980 0.0625 0.0460 76 0.0566 0.0759 0.0560 0.0316
38 0.0485 0.0478 0.0233 0.0362 77 0.2206 0.0884 0.0648 0.0379
39 0.0640 0.1000 0.0622 0.0400 78 0.2040 0.1081 0.0675 0.0436

Smirnov test. The discrepancies between exponential and empirical models for gauge 3 are within the
control bands of the tolerance test. Consequently, for this particular gauge, the exponential function is a
good distribution. Opposite to that behaviour, gauge 40 shows empirical data outside the range given by
Equation (37) for a wide range of lengths. This is a clear example of an exponential distribution
incorrectly reproducing the empirical data.

Figure 5(a) and (b) compares the exponential distribution, the Markov chains of first and second order
and empirical data for two other gauges. We can easily detect in both cases that the best fit with empirical
data is obtained for the Markov chain of second order (dashed line), whereas the model derived from a
Markov chain of first order (line of points) is very similar to the exponential function for gauge 7 and
closer to the second order chain for gauge 78. A common feature for both examples is the noticeable
discrepancy between empirical data and the exponential model, specially for gauge 78.
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Table III. Return period, computed according to Markov chains of first order and given
in days, to a new dry episode (Dry) and to a new wet episode (Wet)

WetGauge Dry

4.24311.30841
5.85662 1.2059
7.04361.16553
5.63874 1.2156

11.8601.09215
9.59386 1.1164
4.95231.25307
5.60638 1.2171
2.70191.58769
4.08610 1.3240
4.9681.252011

1.122512 9.1657
5.08721.244713
5.303314 1.2324
4.55431.281315
3.712016 1.3687
6.51871.181217
4.540618 1.2824
4.24701.308019

1.238320 5.1958
5.02631.248421
5.433122 1.2256
4.96641.252123

1.241724 5.1376
6.34221.187225

1.184826 6.4126
5.148527 1.2411
7.39231.156428
5.041229 1.2474
2.88421.530730
4.682631 1.2715
6.80071.172432
4.460033 1.2890
4.49411.286234
5.865335 1.2055
3.01721.495736
7.756237 1.1480
4.20601.311938
7.143439 1.1628
6.24751.190640
5.638341 1.2156
4.97371.251742

1.298743 4.3477
6.10681.195844
6.032045 1.1987
5.73741.211146
4.854047 1.2595
3.64391.378248
5.388749 1.2279
6.66831.176450

1.198451 6.0396
4.51481.284552
6.500753 1.1818
3.87341.348054

1.298055 4.3554
3.68191.372956
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Table III. (Continued)

Gauge Dry Wet

57 1.3541 3.8242
58 1.2777 4.6011
59 1.2995 4.3388
60 1.1930 6.1804
61 1.2222 5.4995
62 1.3609 3.7711
63 1.2696 4.7099
64 1.1888 6.2962
65 1.2701 4.7028
66 1.2264 5.4173
67 1.2825 4.5397
68 1.2149 5.6536
69 1.5403 2.8509
70 1.1755 6.6980
71 1.2117 5.7233
72 1.2163 5.6221
73 1.5322 2.8790
74 1.1927 6.1901
75 1.1977 6.0584
76 1.3410 3.9324
77 1.3739 3.6744
78 1.1524 7.5607

Figures 4 and 5 are only some examples showing general patterns when comparing the exponential
distribution and Markov chains. A more general picture of these comparisons is obtained from Tables I
and II. Table I summarizes expected lengths deduced empirically and computed by means of expressions
(3), (21) and (34). We can find that the differences between the exponential and the Markov formulation
are small. When trying to decide which is the best model, provided that the results from Table I are not
conclusive , the Kolmogorov-Smirnov test has been applied to each distribution and each rain gauge.
Table II, where we can compare parameters D for the different distributions and limiting values given by
C, summarizes the obtained results. We can observe that for 30 rain gauges the Kolmogorov-Smirnov test
criteria are met (five according to the exponential distribution, one related to the Markov chain of first
order and 24 considering the Markov chain of second order). In addition, another 17 gauges almost
satisfy the test (three according to the exponential distribution and 14 considering the Markov chain of
second order). In contrast, the discrepancies between parameters D and C for gauges 72, 73, 75, 77 and
78 (case of exponential distribution) and gauges 17 and 63 (Markov chain of first order) are especially
remarkable. Although the Markov chain of second order does not always fulfil the test, as a general
feature, its parameter D is less than those corresponding to the first order chain and the exponential
model. As a matter of fact, the maximum number of gauges satisfying the test corresponds to the second
order chain.

3.2. Return periods and stationary probabilities

The Markov chain of second order, gives an interesting complement to the dry behaviour as it provides
an evaluation of the return periods for dry or rainy episodes. On the other hand, in order to obtain a
better statistical description of the pluviometric behaviour linked to a rain gauge, the stationary transition
probabilities for the four states of precipitation defined previously can be computed. In spite of the poor
results of the Kolmogorov-Smirnov test for the chains of first order, two reasons have been considered to
choose this chain to evaluate the stationary probabilities instead of the second order chain. First, a
Markov chain of second order and four states implies the computation of 4×4×4 different probabilities.
This fact is a very important shortcoming bearing in mind the limited database, possibly leading to very
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erroneous computation of probabilities linked to the third and fourth states which are characterized,
especially the latter, by outstanding amounts of precipitation. And second, at the end of the section it is
shown that the number of steps (days) of the Markov chain to achieve the stationary probability is less
than or equal to 10 days for all the gauges. A close review of the whole set of figures similar to Figure
5 shows that the theoretical probabilities for the Markov chain of first order begin to underestimate
empirical probabilities for lengths greater than 20 days, approximately. Consequently, the stationary
transition probabilities derived from the first order formulation should not be submitted to similar
mistakes.

Table III lists the return periods obtained for a new dry or wet episode. We can observe that expected
return periods for dry episodes are almost constant, ranging from 1.1 to 1.6 days. According to that, we
should conclude that no significant differences could be established among the different domains of the
country. However, the number of days to return to a new rainy episode, ranging from 2.7 to 11.9 days,
emphasizes the diversity of the country. In addition, the geographical distribution of the return periods
(Figure 6) is in agreement with previous deductions made according to Figures 2 and 3. As an example,
the shortest expected return period (2.9 days) is obtained for gauge 9, located on the north face of the
Pyrenees, and the longest (11.9 days) is associated with gauge 5, on the southern Mediterranean coast.

Figure 6. Expected return periods (days) deduced from the Markov chain of two states and first order for Catalonia
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Figure 7. Stationary transition probability for the four pluviometric levels defined in the text and designed by (a) state 0; (b) state
1; (c) state 2; and (d) state 3

Figure 7(a–d) describes the geographical evolution of stationary probabilities for pluviometric states
defined by levels 0, 1, 2 and 3 and quantified, respectively, by P14

n(i, 0), P14
n(i, 1), P14

n(i, 2) and P14
n(i, 3)

for an arbitrary value of the index i and n tending to �. As we can expect, the highest stationary
probabilities are linked to the state defined by amounts of daily precipitation less than 0.1 mm (Figure
7(a)). The lowest percentages are obtained for the Pyrenees and Pre-Pyrenees areas (575%), reaching a
minimum at the north face of the Pyrenees, clearly subjected to Atlantic influences. Another relevant
minimum corresponds to gauge 69, with 70% probability, at 1700 m height, localized on the southern end
of the Transversal chain and commonly affected by Mediterranean advection. The rest of the country
reaches probabilities greater than 75%, with a remarkable 85% located on the western extreme of the
Central basin and 90% related to gauge number 5, with the pluviometric regime influenced by the foehn
effect, as previously discussed. This first geographic description could be an approximation scheme
representing the distribution of the wet and dry parts of the country.

The picture linked to the state designated by state 1, with daily amounts ranging from 0.1 to 10 mm,
corresponds to Figure 7(b). Now the highest percentages are obtained for the main mountainous ranges
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of the country. Only the southern extreme of the Transversal chain, gauge 69, reaches a high percentage.
Low percentages (59%) are detected for the southeastern coast, due to the same reasons outlined above,
and for the western face of the Transversal chain, possibly due to the pluviometric screen effect. As a
general picture, Figure 7(b) is a bit more complex than Figure 7(a), with probabilities for a larger part of
the country less than or equal to 12% differences disappearing between the Central Basin and the Littoral
and Pre-Littoral ranges. In short the percentage distribution seems to be controlled by orography both at
a local and regional scale.

For the next level, corresponding to daily precipitations from 10 to 50 mm, we can observe in (Figure
7(c)) a clear increasing tendency from west to east and from south to north. This distribution suggests the
role of the main mountainous ranges namely, the Pyrenees and Pre-Pyrenees, where the highest
percentages are detected, and the Transversal chain. Whereas the preceding Figure 7(b) is linked to very
moderate daily amounts, now we correlate Figure 7(c) with moderate and relevant amounts which could
be the effects of Eastern advection, enhanced by orography (Eastern Pyrenees and Transversal chain) or
Atlantic perturbations affecting the west part of the Catalan Pyrenees and, specially, the north face of the
chain.

Figure 7 (Continued)
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Figure 7 (Continued)

Figure 7(d) depicts the stationary percentages for daily amounts greater than 50 mm. Although the
percentages are the lowest and the discrepancies among the different areas are small, we can observe some
interesting peculiarities. Firstly, the lowest percentage is obtained for the western part of the Central
Basin. Secondly, the western part of the Catalan Pyrenees does not appear as the highest percentage,
similar to the behaviour shown by most of the Mediterranean coast. The highest ratios are obtained for
the Eastern Pyrenees and the Transversal chain, suggesting that the remarkable amounts for 24-h records
could be mainly attributed to north-eastern Mediterranean advection with effects reinforced by the
orography.

Finally, Figure 8 summarizes the number of steps (days) of the Markov chain of first order and four
states to obtain the stationary state on every gauge. Provided that the required difference, established as
1.0×10−7, between elements of matrix P14

n and P14
n+1, with increasing n, to detect the stationary

situation has been the same for each gauge, we can conclude that no significant differences can be
established among the pluviometric stations, as the required number of steps is very similar and scattered
throughout the country.
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Figure 7 (Continued)

4. CONCLUSIONS

NE Spain, as many parts of the Iberian Peninsula (Pérez Manrique et al., 1984; Conesa and Martı́n Vide,
1993), is frequently submitted to drought episodes. In spite of a global drought pattern, a set of
orographic and geographical factors lead us to consider relevant differences among parts of the country
and to distinguish between humid and dry parts of the studied area. Similar division was recently
investigated by Lana and Burgueño (1998) who studied extreme dry episodes based on 24-h records and
a preliminary regionalization in terms of expected extreme lengths for different return periods. Neverthe-
less, if we want a more detailed description of the drought phenomena and their relations with orographic
and geographic factors conditioning them, we need to study extreme, moderate and short dry episodes.
Consequently, the search for the best statistical model reproducing the empirical distribution of dry
events, based on 24-h records, is needed.

From a methodological point of view, no large differences have been found between the exponential
distribution and Markov chains with respect to the expected lengths of the dry periods. Therefore the
concordance between expected lengths deduced from Markov chains and those derived from Equation (2),
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Figure 8. Number of steps (days) required to reach the stationary transition probability, according to the Markov chain of first
order and two states, on each gauge

which is derived from the concept of maximum likelihood, is especially relevant. However, the differences
are enhanced by the Kolmogorov-Smirnov test, appearing as a relatively complex pattern. A few gauges
satisfy the test by assuming the exponential distribution or the chain of first order. A more numerous set
of gauges fulfil the test according to the second order chain formulation and a great number of the
remaining gauges is close to passing the test provided that this chain is considered. The goodness of the
second order chain with respect to the first order is in agreement with results obtained with the Akaike
and Bayesian Information Criteria to estimate the appropriate order of the chain. According to Gregory
et al. (1993), quite often, a chain of order greater than 1 is preferred by the two mentioned AIC and BIC
tests.

With respect to the return periods, they have to be derived from chains of first order, in spite of the
Kolmogorov-Smirnov test results, due to the specific characteristics of the theory involved for the second
order chains. Another relevant aspect of the study is the definition of four precipitation ranges, that lead
us to establish a Markov chain of first order and four states and the corresponding stationary transition
probabilities. The Markov chain of second order and four states had to be discarded due to the limited
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size of the database which does not assure reliable transition probabilities affecting the third and fourth
states.

An alternative to many ranges of precipitation and high order Markov chains is the so called
chain-dependent process (Gregory et al., 1993), where conditional distribution of precipitation is fitted by
a continuous distribution. This more complete analysis is not applied here, as the interest of the present
research is not the generation of daily rainfall series. Also, to reproduce the empirical distribution of dry
periods and compute expected dry–wet sequences and return periods, two states (precipitation and no
precipitation) and first and second order Markov chains seem to be sufficient. And, finally, the agreement
between the spatial characteristics of the stationary matrices of first order and four states, with the
orography of the country, together with the main features of the atmospheric circulation over Catalonia
and previously published results is quite good. Consequently, higher order chains or more states of
precipitation, leading to a chain-dependent process, are at present unnecessary.

From an applied point of view, the results deployed for the present study establish important
differences between a domain formed by the Pyrenees, Pre-Pyrenees, Transversal Chain and Northern
Littoral and the rest of the country (Central and Southern Coast and Central Basin). In addition,
phenomena such as the pluviometric screen, foehn effect, vicinity to the Mediterranean sea, Atlantic
influences on the North face of the Pyrenees or reinforcing of precipitation due to orographic barriers are
underlined by the different results, especially those concerning the geographical distribution of stationary
probabilities. All these aspects are in agreement with conclusions obtained in previous studies of the same
area, where spatial and temporal distribution of annual extreme rainfall episodes and annual extreme
drought periods (Lana et al., 1995; Lana and Burgueño, 1998) have been recently investigated.

The present study also contributes to a better understanding of the drought behaviour of NE Spain,
establishing clear differences among drought and wet areas. A first attempt, not completely successful, has
been recently presented by Lana and Burgueño (1998), who tried to classify the Catalonian domain in
terms of expected annual extreme dry lengths for return periods of 2, 5, 10, 25 and 50 years. In addition,
new valuable information concerning return periods, expected lengths for dry–wet cycles and evaluation
of probabilities for consecutive dry days has been now established for each gauge analyzed. In spite of all
these studies, problems concerning the wet–dry behaviour of NE Spain are not completed and further
studies would be necessary. These further researches would include three topics. Firstly, the previous
regionalization of the country achieved by Lana and Burgueño (1998) in terms of expected extreme
lengths could be improved by characterizing each gauge with more parameters, as the ones introduced
here, including a standard principal component analysis. Secondly, it would be interesting to apply the
same Markov chain formulation to different levels of monthly amounts of precipitation. And, finally,
bearing in mind that the usual statistical tools for extreme episodes do not include probabilities
concerning repeated phenomena of moderate or long dry sequences that could generate drought events,
some statistical tools for modeling the behaviour of these phenomena would prove useful.
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