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Abstract 
Spatial data are complex and have spatial components 
and uncertain properties. It is important to develop 
effective spatial and aspatial indexing techniques to 
facilitate spatial and/or aspatial querying for databases 
that deal with spatial &a. In this study we discuss a 
number of spatial index structures, such as Multi-level 
grid file (ML,GF), R-tree, and R*-tree, for spatial 
andor aspatial queries. 
Keywords.. *atial database, Multi-level Grid File, R-tree, 
Fuzzy Spatial Querying. 

1. Introducbon 
The new application areas such as Geographical 

Information Systems (CIS), urban planning, astronomy, 
anatomy of the human body, very large scale integrated 
circuits (VLSI), the design of an automobile, and 
multimedia database applications pose serious challenges 
to the traditional database technology. At the core of these 
challenges is the nature of data which is manipulated. In 
traditional database applications, the database objects do 
not have any spatial dimension. The underlying data 
models, query languages and access methods were 
designed to deal with simple data types such as integers 
and strings. In a multi-dimensional space this data can be 
thought as point data. Furthermore, all operations on such 
data are OnedimenSional. Thus, users may retrieve all 
entities satisfying one or more constraints such as 
employees with certain name and salary. 

A spatial database is a database system that offers 
spatial data types in its data model and query language 
and supports such data types in its implementation, 
providing at least spatial indexing and algorithms for 
spatial join [8]. A spatial database management system 
has a number of requirements: 
1. It is a full-fledged database system with additional 
capabilities for handling spatial data. Spatial, or geometric 
information is in practice always connected with "non- 
spatial" data. Nobody cares about a special purpose 
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system that is not able to handle all the standard data 
modeling and query tasks. 
2. It offers spatial data types (SDTs) in its data model and 
query language: Spatial data types, e.g. point, line, region, 
provide a fundamental abstraction for modeling the 
structure of geometric entities in space as well as their 
relationships (l intersects r). properties (area(r) >1000), 
and operations fintersectiono,r)-the part of 1 lying within 
r). In addition they may have some constraints such as 
direction (e.g. north), topological (e.g. overlap, inside) or 
distance constraints (e.g. 1 km away). Without spatial 
types a system does not offer adequate support in 
modeling. 
3. It supports spatial data types in its implementation, 
providing at least spatial indexing and efficient algorithm 
for spatial join. A system must at least be able to retrieve 
fiom a large collection of objects in some space those 
lying within a particular area without scanning the whole 
set. Therefore spatial indexing is mandatory. 

There are additional requirements for higher 
dimensional objects. Examples include spatial 
relationships such as overlap, containment, and shared 
boundaries b e e n  real objects, incidence relatiomhip 
between a point and a line, and containment and distance 
relationship between a point and an area. 

There has been considerable amount of work done for 
dealiig with spatial and complex data especially in 
conceptual level. In the literature, there are a lot of models 
for spatial data ([4],[5]). In general, a conceptual model is 
a type of abstraction that uses logical concepts and hides 
the details of implementaion and data storage. As some 
researchers ([4],[10]) have been pointed out, the general- 
purpose conceptual models are not adequate for spatial 
applications. Therefore, there is a need for utilizing a 
powerful conceptual model to satisy unique requirements 
of these applications, such as the specific properties of 
geographic objects or entities and relationships. There are 
two common data models for modeling spatial 
information in CIS applications: field based models and 
object-based modek [lo]. Field-based models treat the 
spatial information space as a continuous domain such as 
altitude, rainfall and temperature as a collection of spatial 
functions transforming a space-pariition to an attribute 
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domain. The object-based models treat the information 
space as if it is populated with recognizable objects 
(spatial and aspatial) that are discrete and spatially 
referenced The modeling approach that we take in this 
study is object-based. 

Most of existing conceptual models assume that GIS 
applications do not involve in any form of uncertainity. 
However, it is not always possible to describe all the 
semantics of real world information precisely, since the 
observation and capluring of some real wold objects 
cannot be always perfect. In general, information may be 
both complex and uncertain. Uncertainity might arise 
from the data itself andor the relations between objects so 
that complex objects and relationships in GIS applications 
may involve in various forms of uncertainity. As a 
consequence of these, queries involving imprecise and 
uncertain information may be unavoidable. 

More specifically, the need for incorporating 
uncertainty in a conceptual modeling of GIs applications 
arises from the following reasons: 
1. Some geographic information in GIS applications is 
inherently imprecise or-. For example, locations of 
geographic objects, some of spatial relationships and 
various geometric and topological properties usually 
involve in various form of uncertainty. 
2. Most of the nahual geographic phenomena have 
uncertain boundaries. For example, mountains, lakes, 
soils, slopes, etc. 
3. Some measurements related to spatial domain are often 
incomplete. Sometimes forcing -such data to be 
completely crisp may result in hlse and useless 
information. 
4. In spatial applications, some of spatial domain related 
knowledge is specified in natural languages by using 
fuzzy terms and numerous quantifiers (e.g., many, fm, 
some, almost, etc.). These quantifiers are fuzzy and are 
used when conveying vague infomtion. 

At the physical database design level, spatial database 
management systems have challenging parts. The 
effectivenes of the spatial database systems can be 
severely compromised if the spatial data are not properly 
managed in physical databases. Spatial databases are 
characterized by having large quantities of data associated 
with them. Since spatial data usually are complex and 
have a number of unique requirements (e.g. spatial 
components and uncertainty), classical onedimensional 
database indexing structures are not appropriate for multi- 
dimensional spatial searching. However, many of the 
conventional indexing methods have been used as the 
starting point for designing spatial indexes. For example, 
M>-trees and its variations have been derived from binary 
trees. The other approach is to develop a dedicated spatial 
access structure to index on spatial attributes. A large 
number of the spatial access structures supporting spatial 
search operations in spatial databases have been multi- 

dimensional access methods [3]. There are different 
methods for storing and retrieving complex objects such 
as circles, polygons, etc. These are: (1) transformation 
approach, (2) overlapping regions, (3) clipping, and (4) 
multi layers. Among these metlhods, the R-tree [6] and R* 
-tree [2] were proposed by overlapping regions method. 
R+-tree [lo] uses the clipping method. Z-ordering and 
Hilbert curve [l] are the most prominent ones in the 
transformation methods. Multilevel Grid File is an 
example of the multi-layers approach. 

Many spatial queries may include some fuzzy and 
uncertain information. Uncertainty is an inevitable 
property of spatial and geographic data. In many new 
generation applications, fuzzy queries are usually 
combined with crisp queries. At the physical database 
design level, the current access methods [31 are 
inappropriate for representing and efficiently accessing 
fizzy data. For the effectiveness of fuzzy databases, it is 
necessary to allow both the non-fimy and f b z q  attributes 
to be indexed together, hence a multidimensional access 
structure is required, so that the user can handle 
crisp/fuzZy SpatiaVaspatial queries efficiently. 

Looking into the literature, we see that only a few 
researchers paid attention to fuzzy spatiaVaspatial 
querying. [9] introduced a fixmework for conliguration 
similarity that takes into account all major types of spatial 
constraints (topological, direction, distance). Helmer [7] 
studied indexing fuzzy data. In his study, he demonstrated 
how signature files (sequential, compressed, hierarchical, 
partitioned and inverted) can be used to speed up the 
retrieval of fuzzy data. Most of the existing multi- 
dimensional index structures process spatial and aspatial 
data or fuzzy and crisp data seperately. Considering the 
requirements of spatial database applications, fuzzy data 
as well as crisp data should be indexed together. In our 
study we bring spatial and aspatial data (fuzzy and crisp) 
together on the same index structures. Z-ordering 
technique is used to transform the location attribute into 
one dimension. We use Multi-level Grid File [I41 for 
representing the data with spatial attribute (i.e., location) 
and aspatial attriiute (i.e., population). 

This paper will include the following subtopics: We 
will first give an overview of fuzzy spatial index 
structures, MLGF, R-tree and lR*-tree. The queries which 
are used to evaluate the index structures will be explained 
in section 3. In Section 4 we give the experiemental 
results for comparing these spatial index structures. 
Finally we conclude. 

2. Fuzzy spatial index structures 

Traditional file structures are designed to handle 
single-key access to speed up the querying process. 
However, the requirements of complex applications have 
made traditional access stnictures inefictive. Since 
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spatial data usually are complex, we need spatial indexing 
structure that facilitates spatial and/or aspatial selection, 
even under uncertain conditions. The index structures 
introduced in this chapter are multi-dimensional and are 
extensions of Multilevel Grid File (MLGF), R-tree and 
R*-tree combined with z-ordering technique. The basic 
properties of the structure are to be able to index on fuzy 
aspatial andor spatial data and to process aspatial, spatial, 
and fuzzylcrisp queries. 

2.1. Multi-level grid file (MLGF) 

MLGF is a multi-dimensional index structure. 
Therefore, one can create an index on both spatial and/or 
aspatial crisp and limy data. Many spatial database 
applications usually involve in hzzy and complex 
information. For instance, if we do not know the exact 
population of a city, we may specify it as crowded On the 
other hand, the population of the city is known 
beforehand and stored as a crisp value, i.e. 1 (one) 
million. MLGF handles merge and split operations on 
directories. The grid directory is maintained as a multi- 
level structure where each directory entry points to a 
lower level directory block. In MLGF, splitting and 
merging a directory is performed locally, thereby 
decreasing the amount of VO that is required for a global 
split or merge. This causes the structure to be flexible 
during record insertion and deletion operations. Empty 
directory entries do not exist in MU;F. The organizing 
attriiutes are turned into bit patterns. Bit patterns of each 
organizing attribute are merged to form a key bit paltern. 
In MLGF, a directory entry is formed of a region vector 
and pointer. The region vector is a composite bit pattern 
that is composed of hashed bit patterns of the organizing 
attributes. We use z-code [l] representation for spatial 
.attriiute and population for aspatial attribute in index 
structure. 
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2.2. R-tree and R*-tree 

An R-Tree, proposed by Antonin Guttman [6], is an 
index structure for point and spatial data at the same time. 
Insert, delete and search can be intermixed without 
periodic reorganization. It uses a tuple to represent a 
spatial data in the database. In order to retrieve the data, 
each tuple has a unique identifier, tuple-identifier. At the 
leaf node of a R-Tree, it has index record that can 
reference the spatial data. The index record is (I, tuple- 
identifier). I is an n-dimensional rectangle and it is the 
bounding rectangle of the spatial data indexed This 
rectangle is also known as minimal bounding rectangle, 
MBR, and each entry in tuple-identifier is the upper and 
lower bounds, [upper, lower], of the rectangle along the 
dimension. Non-leaf nodes contain entries (I, childnode- 
pointer) where I is the minimal rectangle bounding all the 
rectangles in the lower nodes’ entries. Childnode-pointer 
is the pointer to a lower node in the R-Tree. 

Figure 2. An example of R-tree 

Based on a carell study of the behavior of the R-tree 
under different data distributions, Beckmann [2] identified 
R*-tree. In particular, they co-ed that the insertion 
phase is critical for search performance. The design of the 
R*-tree therefore introduces a policy called forced 
reinserr. If a node overflows, they do not split it right 
away. Rather, they first remove p entries fiom the node 
and reinsert them into the tree. The parameter p may vary; 
B e c k ”  suggest p to be about 30% of the maximal 
number of entries per page. 

3. Querying the fuzzy spatial index structures 
In this part we describe various query types for both 
MLGF and R-trees (R-tree and R*-tree). We test our 
modified index structures, R-tree, R*-tree and MLGF, in a 
geographic information system (GIS) database. A number 
of districts in central A n k d u r k e y  with their 
population, zcodes and x-y coordinates are stored into 
MLGF and R-tree/ R*-tree. 

Figure 1. An example of MLGF structure [ll] 
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3.1 Exact match query: crisp spatial and aspatial 
query 

In the exact match query, input is a value of an 
attriiute and location (z-code). The output is the points, 
which has the specific value@) and z d .  This algorithm 
can be utilized b r  queries such as “Give the districts 
which have a population 1 million and coordinates are 
(x,y)”. Since coordinates are given as (x,y), a 
transformation is taking place. For MLGF, z-code of the 
point is found by transforming coordinates into z-code. 
This is necessary since we hold z-code prefixes of the 
points in MLGF index structure. 

We form a rectangle structure for the exact match in R- 
tree. The rectangle strucave consists of spatial (x,y 
coordinates) and aspatial (i.e., population) data. Since we 
hold x, y coordinates in R-tree, we do not need to 
transform the input coordinates to z-codes as in MLGF. 
The output is the points, which has the specific population 
and Z-code. 

3.2. Fuzzy aspatial queries 

Fuzzy aspatial queries are the queries such as “Give 
the places which are small” or “Give the cities which are 
0.8 crowded”. To deal with these queries we use partition 
trees for different fuzzy terms. To construct the partition 
tree of each fuzzy term, the domain is partitioned and 
membership values are assigned to the partition tree of 
fuzzy terms using the membership functions of smull, 
normal and crowded. 

Algorithm finds the leaf level nodes in the partition 
tree using the input threshold value. Any node below 
threshold is discarded. As we reach at the leaf level we 
have a bit pattern for partition value. Whenever a leaf is 
found in the @tion tree, the final bit pattern is used to 
search the index structures, MLGF or R-tree. Note that 
we may also search the partition &e+) of other fuzzy 
terms as well, in case the similarity of the specified fuzzy 
term to the other fuzzy terms is above a specified 
threshold. 

33. Fuzzy spatial queries 

In a fuzzy spatial query, one may ask “What are the 
districts on the South?” with a specified threshold value. 
In each diredon, the objects are fetched within the 
threshold value. 

3.4. Fuzzy Spatial and Aspatial Queries 

crowded”. Algorithm finds two sets of object data, one for 
aspatial and one for spatial, then takes an intersection set. 
The two index structures use the same algorithm. MLGF 
uses z-code operations fbr spatial operations while R-tree 
uses rectangle operations. While MLGF makes prefix 
searches for population R-tree uses node’s population 
lists. 

4. Experimental Results 

We performed some performance tests for both access 
structures. For performance tests we increased the numbex 
of records. A Pentium III-866 MHZ with 256 MB RAM 
PC is used for performance test. In the following figures, 
the results of tests are shown: 

4.1. Crisp spatial and asputial query 

Crisp spatial and aspatial query is the exact match query 
(see Section 3.1), which accepts population and location 
as input. 

Exaa Match Query Pehrmance I 

I 250 500 1000 2000 4000 8000 
Number of Records 

Exaa Mal& Query Performance 
(Crkp sparial and asparial) 

I 250 500 1000 2000 4000 8000 I Number of Records 

Figure 3. Comparison of the performance 
results of exact match query (crisp aspatial 
and aspatial) 

This query is the combination of fuzzy spatial queries 
and fuzzy spatial queries. An example for this kind of 
query may be “Give the districts in South 0.6 and 0.8 
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4.2. Fuzzy aspatial query 
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8000 
2 7000 
5 6000 

5000 
4000 

8 3000 
f 2000 

1000 
0 

250 500 1000 2000 4000 8000 

Number of Records 

I 
~~ 

Fuzzy Aspatial Query r 
3000.00 
2500.00 

~ 2 0 0 0 . 0 0  

1500.00 

~ r o o o . 0 0  

500.00 
t 

0.00 

+ r-tree 
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Figure 4. Comparison of the performance 
results of fuzzy aspatial query 

4.3. Fuzzy spatial query 
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Figure 5. Comparison of the performance 
results of fuzzy spatial query 

4.4. Fuzzy spatial and aspatial query 

Spatial and aspatial queries are combined in the 
following experiment. 

I Fuzzy Spatial Aspalial Query 

.?-tree 

I Womber of Recorda I 
I Fuzzy Spatial Aspatial Query I 

-+- r-tree 
+?-tree 

I 2 5 0 5 0 0 1 a o ” 8 r m  I Number of Records 

Figure 6. Comparison of the performance 
results of fuzzy spatial aspatial query 

4.5. Comparison of index structures: R-tree/R*- 
tree vs. MLGF 

Several algorithms have been tested with two index 
structures. The first group of experiments is about aspatial 
queries. MLGF gives better performance for aspatial 
queries (crisp aspatial, fuzzy aspatial). Because MLGF 
uses aspatial attribute (population) and spatial attribute 
(location) as primary index so index organization 
algorithm (insertion) takes into account both spatial and 
aspatial attributes. R-tree family has worse performance 
than MLGF for aspatial queries. In R-tree and R*-tree 
spatial attribute is a secondary index and spatial attribute 
is a primary index. So data distribution is organized by 
spatial attribute only. So this explains why MLGF is 
better in aspatial queries. 

Second group of experiments are about spatial queries. 
For spatial queries such as crisp spatial, hzzy spatial, R- 
tree family is better than MLGF. The reason is similar to 
the previous one. In R-tree family, spatial attribute is the 
main organizer of data (primary index) whereas MLGF 
data is organized by both aspatial and spatial attributes. 
So spatial data is retrieved less costly. 
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In the third group experiments where we combine 
spatial and aspatial queries such as crisp spatiaVaspatia1 
query, fuzzy SpatiaVaspatial query, R-tree M y  is better 
for message volumes up to 4000. MLGF becomes better 
after this point. The reason for that is that MLGF uses 
better organization which takes both aspatial attribute and 
spatial attriiute into account. This becomes more 
effective as the message volume gets higher. Although it 
is not a direct purpose of this study, we should also 
mention that R*-tree gives better performance than R-tree 
for most types of queries. 

5. Conclusion 

In this paper, we discussed fuzzy and crisp 
spatiallaspatial queries on MLGF, R-tree and R*-tree 
index structures. For fuzzy queries we implemented a 
partitioning technique so that we could use these access 
structures for fuzzy querying as well as crisp queries. 

R - W * t r e e  and MLGF index structures are dynamic. 
These access methods continuously keep track of the 
changes. They can use secondary and tertiary storage. It is 
not always possible to hold database in main memory. 
MLGF and R-tree/R*-tree index structures support broad 
range of operations (insertion, delete and retrieval). All 
index structures are simple and can be integrated with 
applications easily. MLGF can put index on many 
attributes because it is multi-level. R-tree is especially 
designed for spatial attributes (although we could extend 
it to adapt it to a aspatial attribute in addition to spatial 
attribute.) All index structures are scalable. They can 
adapt as database size grows. Spatial searches are fast and 
there is not a big performance difference between them 
( t h e  efficient). In the node level they hold just the 
necessary attributes to reach to the data blocks. We can 

.say that they are space efficient. We tested the access 
methods in a single user environment so concurrency and 
recovery issues should be tested in a multi-user 
environment within a database management system. 
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