
Access Structures for Fuzzy Spatial Queries

Aziz SOZER Adnan YAZICI

Department of Computer Engineering, Middle East Technical University, Anhra, 06531/ TURKEY
e-mai1:eO 70364@ceng.metu. edu. tr e-mail:yazici@ceng. metu. edu. tr

Abstract
Spatial data are complex and have spatial components
and uncertain properties. It is important to develop
effective spatial and aspatial indexing techniques to
facilitate spatial and/or aspatial querying for databases
that deal with spatial &a. In this study we discuss a
number of spatial index structures, such as Multi-level
grid file (ML,GF), R-tree, and R*-tree, for spatial
andor aspatial queries.
Keywords.. *atial database, Multi-level Grid File, R-tree,
Fuzzy Spatial Querying.

1. Introducbon
The new application areas such as Geographical

Information Systems (CIS), urban planning, astronomy,
anatomy of the human body, very large scale integrated
circuits (VLSI), the design of an automobile, and
multimedia database applications pose serious challenges
to the traditional database technology. At the core of these
challenges is the nature of data which is manipulated. In
traditional database applications, the database objects do
not have any spatial dimension. The underlying data
models, query languages and access methods were
designed to deal with simple data types such as integers
and strings. In a multi-dimensional space this data can be
thought as point data. Furthermore, all operations on such
data are OnedimenSional. Thus, users may retrieve all
entities satisfying one or more constraints such as
employees with certain name and salary.

A spatial database is a database system that offers
spatial data types in its data model and query language
and supports such data types in its implementation,
providing at least spatial indexing and algorithms for
spatial join [8]. A spatial database management system
has a number of requirements:
1. It is a full-fledged database system with additional
capabilities for handling spatial data. Spatial, or geometric
information is in practice always connected with "non-
spatial" data. Nobody cares about a special purpose

0-7803-7461-4/02/$17.00 0 2002 IEEE

system that is not able to handle all the standard data
modeling and query tasks.
2. It offers spatial data types (SDTs) in its data model and
query language: Spatial data types, e.g. point, line, region,
provide a fundamental abstraction for modeling the
structure of geometric entities in space as well as their
relationships (l intersects r). properties (area(r) >1000),
and operations fintersectiono,r)-the part of 1 lying within
r). In addition they may have some constraints such as
direction (e.g. north), topological (e.g. overlap, inside) or
distance constraints (e.g. 1 km away). Without spatial
types a system does not offer adequate support in
modeling.
3. It supports spatial data types in its implementation,
providing at least spatial indexing and efficient algorithm
for spatial join. A system must at least be able to retrieve
fiom a large collection of objects in some space those
lying within a particular area without scanning the whole
set. Therefore spatial indexing is mandatory.

There are additional requirements for higher
dimensional objects. Examples include spatial
relationships such as overlap, containment, and shared
boundaries b e e n real objects, incidence relatiomhip
between a point and a line, and containment and distance
relationship between a point and an area.

There has been considerable amount of work done for
dealiig with spatial and complex data especially in
conceptual level. In the literature, there are a lot of models
for spatial data ([4],[5]). In general, a conceptual model is
a type of abstraction that uses logical concepts and hides
the details of implementaion and data storage. As some
researchers ([4],[10]) have been pointed out, the general-
purpose conceptual models are not adequate for spatial
applications. Therefore, there is a need for utilizing a
powerful conceptual model to satisy unique requirements
of these applications, such as the specific properties of
geographic objects or entities and relationships. There are
two common data models for modeling spatial
information in CIS applications: field based models and
object-based modek [lo]. Field-based models treat the
spatial information space as a continuous domain such as
altitude, rainfall and temperature as a collection of spatial
functions transforming a space-pariition to an attribute

383

domain. The object-based models treat the information
space as if it is populated with recognizable objects
(spatial and aspatial) that are discrete and spatially
referenced The modeling approach that we take in this
study is object-based.

Most of existing conceptual models assume that GIS
applications do not involve in any form of uncertainity.
However, it is not always possible to describe all the
semantics of real world information precisely, since the
observation and capluring of some real wold objects
cannot be always perfect. In general, information may be
both complex and uncertain. Uncertainity might arise
from the data itself andor the relations between objects so
that complex objects and relationships in GIS applications
may involve in various forms of uncertainity. As a
consequence of these, queries involving imprecise and
uncertain information may be unavoidable.

More specifically, the need for incorporating
uncertainty in a conceptual modeling of GIs applications
arises from the following reasons:
1. Some geographic information in GIS applications is
inherently imprecise or-. For example, locations of
geographic objects, some of spatial relationships and
various geometric and topological properties usually
involve in various form of uncertainty.
2. Most of the nahual geographic phenomena have
uncertain boundaries. For example, mountains, lakes,
soils, slopes, etc.
3. Some measurements related to spatial domain are often
incomplete. Sometimes forcing -such data to be
completely crisp may result in hlse and useless
information.
4. In spatial applications, some of spatial domain related
knowledge is specified in natural languages by using
fuzzy terms and numerous quantifiers (e.g., many, fm,
some, almost, etc.). These quantifiers are fuzzy and are
used when conveying vague infomtion.

At the physical database design level, spatial database
management systems have challenging parts. The
effectivenes of the spatial database systems can be
severely compromised if the spatial data are not properly
managed in physical databases. Spatial databases are
characterized by having large quantities of data associated
with them. Since spatial data usually are complex and
have a number of unique requirements (e.g. spatial
components and uncertainty), classical onedimensional
database indexing structures are not appropriate for multi-
dimensional spatial searching. However, many of the
conventional indexing methods have been used as the
starting point for designing spatial indexes. For example,
M>-trees and its variations have been derived from binary
trees. The other approach is to develop a dedicated spatial
access structure to index on spatial attributes. A large
number of the spatial access structures supporting spatial
search operations in spatial databases have been multi-

dimensional access methods [3]. There are different
methods for storing and retrieving complex objects such
as circles, polygons, etc. These are: (1) transformation
approach, (2) overlapping regions, (3) clipping, and (4)
multi layers. Among these metlhods, the R-tree [6] and R*
-tree [2] were proposed by overlapping regions method.
R+-tree [lo] uses the clipping method. Z-ordering and
Hilbert curve [l] are the most prominent ones in the
transformation methods. Multilevel Grid File is an
example of the multi-layers approach.

Many spatial queries may include some fuzzy and
uncertain information. Uncertainty is an inevitable
property of spatial and geographic data. In many new
generation applications, fuzzy queries are usually
combined with crisp queries. At the physical database
design level, the current access methods [31 are
inappropriate for representing and efficiently accessing
fizzy data. For the effectiveness of fuzzy databases, it is
necessary to allow both the non-fimy and f b z q attributes
to be indexed together, hence a multidimensional access
structure is required, so that the user can handle
crisp/fuzZy SpatiaVaspatial queries efficiently.

Looking into the literature, we see that only a few
researchers paid attention to fuzzy spatiaVaspatial
querying. [9] introduced a fixmework for conliguration
similarity that takes into account all major types of spatial
constraints (topological, direction, distance). Helmer [7]
studied indexing fuzzy data. In his study, he demonstrated
how signature files (sequential, compressed, hierarchical,
partitioned and inverted) can be used to speed up the
retrieval of fuzzy data. Most of the existing multi-
dimensional index structures process spatial and aspatial
data or fuzzy and crisp data seperately. Considering the
requirements of spatial database applications, fuzzy data
as well as crisp data should be indexed together. In our
study we bring spatial and aspatial data (fuzzy and crisp)
together on the same index structures. Z-ordering
technique is used to transform the location attribute into
one dimension. We use Multi-level Grid File [I41 for
representing the data with spatial attribute (i.e., location)
and aspatial attriiute (i.e., population).

This paper will include the following subtopics: We
will first give an overview of fuzzy spatial index
structures, MLGF, R-tree and lR*-tree. The queries which
are used to evaluate the index structures will be explained
in section 3. In Section 4 we give the experiemental
results for comparing these spatial index structures.
Finally we conclude.

2. Fuzzy spatial index structures

Traditional file structures are designed to handle
single-key access to speed up the querying process.
However, the requirements of complex applications have
made traditional access stnictures inefictive. Since

384

spatial data usually are complex, we need spatial indexing
structure that facilitates spatial and/or aspatial selection,
even under uncertain conditions. The index structures
introduced in this chapter are multi-dimensional and are
extensions of Multilevel Grid File (MLGF), R-tree and
R*-tree combined with z-ordering technique. The basic
properties of the structure are to be able to index on fuzy
aspatial andor spatial data and to process aspatial, spatial,
and fuzzylcrisp queries.

2.1. Multi-level grid file (MLGF)

MLGF is a multi-dimensional index structure.
Therefore, one can create an index on both spatial and/or
aspatial crisp and limy data. Many spatial database
applications usually involve in hzzy and complex
information. For instance, if we do not know the exact
population of a city, we may specify it as crowded On the
other hand, the population of the city is known
beforehand and stored as a crisp value, i.e. 1 (one)
million. MLGF handles merge and split operations on
directories. The grid directory is maintained as a multi-
level structure where each directory entry points to a
lower level directory block. In MLGF, splitting and
merging a directory is performed locally, thereby
decreasing the amount of VO that is required for a global
split or merge. This causes the structure to be flexible
during record insertion and deletion operations. Empty
directory entries do not exist in MU;F. The organizing
attriiutes are turned into bit patterns. Bit patterns of each
organizing attribute are merged to form a key bit paltern.
In MLGF, a directory entry is formed of a region vector
and pointer. The region vector is a composite bit pattern
that is composed of hashed bit patterns of the organizing
attributes. We use z-code [l] representation for spatial
.attriiute and population for aspatial attribute in index
structure.

DI
OOO, 00 Block A -4
001,00BlockB -+
00 ,01 BIockC -+ T
01 , - BlockD 7 0

,100.00 Block E -+ D
100,Ol Block F A
101.0 BlockG T

DZ
0 .-
10,o -- --

r

A

11 1.01 Block K
11 ,00BlockL

2.2. R-tree and R*-tree

An R-Tree, proposed by Antonin Guttman [6], is an
index structure for point and spatial data at the same time.
Insert, delete and search can be intermixed without
periodic reorganization. It uses a tuple to represent a
spatial data in the database. In order to retrieve the data,
each tuple has a unique identifier, tuple-identifier. At the
leaf node of a R-Tree, it has index record that can
reference the spatial data. The index record is (I, tuple-
identifier). I is an n-dimensional rectangle and it is the
bounding rectangle of the spatial data indexed This
rectangle is also known as minimal bounding rectangle,
MBR, and each entry in tuple-identifier is the upper and
lower bounds, [upper, lower], of the rectangle along the
dimension. Non-leaf nodes contain entries (I, childnode-
pointer) where I is the minimal rectangle bounding all the
rectangles in the lower nodes’ entries. Childnode-pointer
is the pointer to a lower node in the R-Tree.

Figure 2. An example of R-tree

Based on a carell study of the behavior of the R-tree
under different data distributions, Beckmann [2] identified
R*-tree. In particular, they co-ed that the insertion
phase is critical for search performance. The design of the
R*-tree therefore introduces a policy called forced
reinserr. If a node overflows, they do not split it right
away. Rather, they first remove p entries fiom the node
and reinsert them into the tree. The parameter p may vary;
B e c k ” suggest p to be about 30% of the maximal
number of entries per page.

3. Querying the fuzzy spatial index structures
In this part we describe various query types for both
MLGF and R-trees (R-tree and R*-tree). We test our
modified index structures, R-tree, R*-tree and MLGF, in a
geographic information system (GIS) database. A number
of districts in central A n k d u r k e y with their
population, zcodes and x-y coordinates are stored into
MLGF and R-tree/ R*-tree.

Figure 1. An example of MLGF structure [ll]

385

3.1 Exact match query: crisp spatial and aspatial
query

In the exact match query, input is a value of an
attriiute and location (z-code). The output is the points,
which has the specific value@) and z d . This algorithm
can be utilized b r queries such as “Give the districts
which have a population 1 million and coordinates are
(x,y)”. Since coordinates are given as (x,y), a
transformation is taking place. For MLGF, z-code of the
point is found by transforming coordinates into z-code.
This is necessary since we hold z-code prefixes of the
points in MLGF index structure.

We form a rectangle structure for the exact match in R-
tree. The rectangle strucave consists of spatial (x,y
coordinates) and aspatial (i.e., population) data. Since we
hold x, y coordinates in R-tree, we do not need to
transform the input coordinates to z-codes as in MLGF.
The output is the points, which has the specific population
and Z-code.

3.2. Fuzzy aspatial queries

Fuzzy aspatial queries are the queries such as “Give
the places which are small” or “Give the cities which are
0.8 crowded”. To deal with these queries we use partition
trees for different fuzzy terms. To construct the partition
tree of each fuzzy term, the domain is partitioned and
membership values are assigned to the partition tree of
fuzzy terms using the membership functions of smull,
normal and crowded.

Algorithm finds the leaf level nodes in the partition
tree using the input threshold value. Any node below
threshold is discarded. As we reach at the leaf level we
have a bit pattern for partition value. Whenever a leaf is
found in the @tion tree, the final bit pattern is used to
search the index structures, MLGF or R-tree. Note that
we may also search the partition &e+) of other fuzzy
terms as well, in case the similarity of the specified fuzzy
term to the other fuzzy terms is above a specified
threshold.

33. Fuzzy spatial queries

In a fuzzy spatial query, one may ask “What are the
districts on the South?” with a specified threshold value.
In each diredon, the objects are fetched within the
threshold value.

3.4. Fuzzy Spatial and Aspatial Queries

crowded”. Algorithm finds two sets of object data, one for
aspatial and one for spatial, then takes an intersection set.
The two index structures use the same algorithm. MLGF
uses z-code operations fbr spatial operations while R-tree
uses rectangle operations. While MLGF makes prefix
searches for population R-tree uses node’s population
lists.

4. Experimental Results

We performed some performance tests for both access
structures. For performance tests we increased the numbex
of records. A Pentium III-866 MHZ with 256 MB RAM
PC is used for performance test. In the following figures,
the results of tests are shown:

4.1. Crisp spatial and asputial query

Crisp spatial and aspatial query is the exact match query
(see Section 3.1), which accepts population and location
as input.

Exaa Match Query Pehrmance I

I 250 500 1000 2000 4000 8000
Number of Records

Exaa Mal& Query Performance
(Crkp sparial and asparial)

I 250 500 1000 2000 4000 8000 I Number of Records

Figure 3. Comparison of the performance
results of exact match query (crisp aspatial
and aspatial)

This query is the combination of fuzzy spatial queries
and fuzzy spatial queries. An example for this kind of
query may be “Give the districts in South 0.6 and 0.8

386

4.2. Fuzzy aspatial query

I Fuzzy Aapatial Duery

8000
2 7000
5 6000

5000
4000

8 3000
f 2000

1000
0

250 500 1000 2000 4000 8000

Number of Records

I
~~

Fuzzy Aspatial Query r
3000.00
2500.00

~ 2 0 0 0 . 0 0

1500.00

~ r o o o . 0 0

500.00
t

0.00

+ r-tree

250 500 1000 2000 4000 8000 I Number of Records I
Figure 4. Comparison of the performance
results of fuzzy aspatial query

4.3. Fuzzy spatial query

I Fuzzy Spatial Ouery I
3500

9 3000
f 2500
0 2000 --c r-tree

-e ?-tree c : 1500

t 1000
5 500 z

0

I I 250 500 1000 2000 4000 8000
Number of Records

Fuzzy Spatlal Ouery
I
s”
7”
e” -e r-tree

+ r-Ire0

“1””
Number of Records

Figure 5. Comparison of the performance
results of fuzzy spatial query

4.4. Fuzzy spatial and aspatial query

Spatial and aspatial queries are combined in the
following experiment.

I Fuzzy Spatial Aspalial Query

.?-tree

I Womber of Recorda I
I Fuzzy Spatial Aspatial Query I

-+- r-tree
+?-tree

I 2 5 0 5 0 0 1 a o ” 8 r m I Number of Records

Figure 6. Comparison of the performance
results of fuzzy spatial aspatial query

4.5. Comparison of index structures: R-tree/R*-
tree vs. MLGF

Several algorithms have been tested with two index
structures. The first group of experiments is about aspatial
queries. MLGF gives better performance for aspatial
queries (crisp aspatial, fuzzy aspatial). Because MLGF
uses aspatial attribute (population) and spatial attribute
(location) as primary index so index organization
algorithm (insertion) takes into account both spatial and
aspatial attributes. R-tree family has worse performance
than MLGF for aspatial queries. In R-tree and R*-tree
spatial attribute is a secondary index and spatial attribute
is a primary index. So data distribution is organized by
spatial attribute only. So this explains why MLGF is
better in aspatial queries.

Second group of experiments are about spatial queries.
For spatial queries such as crisp spatial, hzzy spatial, R-
tree family is better than MLGF. The reason is similar to
the previous one. In R-tree family, spatial attribute is the
main organizer of data (primary index) whereas MLGF
data is organized by both aspatial and spatial attributes.
So spatial data is retrieved less costly.

387

In the third group experiments where we combine
spatial and aspatial queries such as crisp spatiaVaspatia1
query, fuzzy SpatiaVaspatial query, R-tree M y is better
for message volumes up to 4000. MLGF becomes better
after this point. The reason for that is that MLGF uses
better organization which takes both aspatial attribute and
spatial attriiute into account. This becomes more
effective as the message volume gets higher. Although it
is not a direct purpose of this study, we should also
mention that R*-tree gives better performance than R-tree
for most types of queries.

5. Conclusion

In this paper, we discussed fuzzy and crisp
spatiallaspatial queries on MLGF, R-tree and R*-tree
index structures. For fuzzy queries we implemented a
partitioning technique so that we could use these access
structures for fuzzy querying as well as crisp queries.

R - W * t r e e and MLGF index structures are dynamic.
These access methods continuously keep track of the
changes. They can use secondary and tertiary storage. It is
not always possible to hold database in main memory.
MLGF and R-tree/R*-tree index structures support broad
range of operations (insertion, delete and retrieval). All
index structures are simple and can be integrated with
applications easily. MLGF can put index on many
attributes because it is multi-level. R-tree is especially
designed for spatial attributes (although we could extend
it to adapt it to a aspatial attribute in addition to spatial
attribute.) All index structures are scalable. They can
adapt as database size grows. Spatial searches are fast and
there is not a big performance difference between them
(t h e efficient). In the node level they hold just the
necessary attributes to reach to the data blocks. We can

.say that they are space efficient. We tested the access
methods in a single user environment so concurrency and
recovery issues should be tested in a multi-user
environment within a database management system.

References

[11 Asano, T., Ranjan, D., Roos, T., Wiezl. E., and Widmayer, P.
Space filling curves and third use in the design of geometric data
structures. Theoretical Computer Science. 181 (1):3-15,19%.

[2] Beckmann, N, Kriegel, H.P., Schneider, R. and Seeger, B.
The R* tree: An efficient and robust access method for points
and rectangles. In Proc. ACM SIGMOD, 1990, pp. 322-331.

[3] Gaede,V. and Gunther,O., Multidimensional access methods,
ACM computing surveys, Vol. 30/2, June 1998.

[4] Gunther 0. and Riekert W.F., The Design of GODOT An
Object-Oriented Geographic Information System, IEEE Data
Engineering Bulletin 16(3), 1993.

[5] Guting RH., An Introduction to Spatial Database Systems,
Special Issuc on Spatial Database Systems of the VLDB J o d
(Vol. 3, No. 4 October 1994)

[6] Guttman, A., R-trees: A dynamic index structure for spatial
searching, Proceedings SIGMOD International Con€
Management Data, pp. 47-57, ACM, 1984

[7] Helmer, S, Indexing Fuzzy Dam Roc. Joint 9th IFSA World
Congress and 20th NAFIPS Int. Cod., Vancouver, 2001: 2120-
2125

[8] Orenstein, J., and F. Manola, F'ROBE Spatial Data Modeling
and Query Processing in an Image Database Application. IEEE
Trans. on Sohare Engineering 14 (1988). 61 1-629.

[9] Papaidas, D., Sellis, T., Theodoris, Y. and Egenhofer, M.,
Topological relations in the world of minimum bounding
rectangles: A study with R-trees, Roc. SIGMOD International
Conference for Management Data, pp. 92-103, ACM, 1995.

[101 Sellis, T., Roussopoulos, N. and Faloutsos, C., The R'- tree:
A dynamic index for mu1tidi"ional objects, Proc. 13"
VLDB Conference, Brighton 1985'.

[I I] Whang ICY. and Krishnamurty R, The Multi level Grid
file- A dynamic hierarchical multidimensional file structure,
Database systems for advanced applications, pp.449-456,1991

[12] Yazici. A. and R George, Fuzzy database modeliig,
Springer-Verlag, Heidelberg, 1 999

388

