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Abstract

Artificial neural networks are an efficient tool for modelling production control processes using data from the actual
production as well as simulated or design of experiments data. In this study two artificial neural networks were combined
with the control process charts and it was checked whether the data obtained by the networks were valid for variable process
control in particleboard manufacture.
The networks made it possible to obtain the mean and standard deviation of the internal bond strength of the particle-

board within acceptable margins using known data of thickness, density, moisture content, swelling and absorption. The
networks obtained met the acceptance criteria for test values from non-standard test methods, as well as the criteria for
using these values in statistical process control.

Key words: Artificial neural networks (ANN), statistical process control (SPC), internal bond strength, wood based
panels.

Resumen

Redes neuronales artificiales en el control de procesos por variables: aplicación en la fabricación de tableros de par-
tículas

Las redes neuronales artificiales son una herramienta eficaz para el modelado de los procesos de control de producción,
tanto partiendo de datos de la propia producción como de datos simulados o procedentes de diseños de experimentos. En
este estudio se han combinado dos redes neuronales artificiales con los gráficos de control de procesos y se ha comproba-
do si los datos obtenidos con ellas eran válidos para el control de producción por variables en la fabricación de tableros de
partículas.
Las redes han permitido obtener valores de la media y la desviación típica de la cohesión interna del tablero de par-

tículas dentro de unos márgenes aceptables a partir de datos conocidos de espesor, densidad, contenido de humedad,
hinchazón y absorción. Las redes obtenidas han cumplido con los requisitos de aceptación de valores de ensayo por
métodos alternativos al normalizado y con los requisitos impuestos para su utilización en el control estadístico de pro-
cesos.

Palabras clave: Redes neuronales artificiales (RNA), control estadístico de procesos (CEP), resistencia a la tracción
interna, tableros derivados de madera.

1. Introduction

The application of statistical methods to production
quality control began in the early 1920s. The Bell Tele-

phone Company was the first to apply statistical control
charts and develop statistical acceptance sampling.
However, it was not until the SecondWorld War that the
importance of these techniques was really taken into
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account. The need to improve and control the quality of
manufactured products led several companies to adopt
production control techniques. 1946 saw the creation of
the American Society for Quality, which encouraged the
use of quality improvement techniques for both prod-
ucts and services. However, these techniques were not
applied in companies until the 1960s in Japan and the
1970s in Europe and America. The first companies to
apply them were from the chemical manufacturing
industry, in which the application of statistical tech-
niques to quality control enabled processing problems
to be eliminated and new products to be developed more
efficiently. Since the 1980s there have been major
developments in statistical quality control techniques in
numerous companies, resulting in a considerable
increase in competitiveness for the companies in which
they were applied (Montgomery, 2004).
One of the main tools used in statistical process con-

trol (SPC) is the control chart, also known as the She-
whart control chart, which consists of a centre line and
two lines drawn parallel to it. The centre line represents
the place where the characteristic measured should ide-
ally be located and the parallel lines represent the con-
trol limits of the characteristic (Fig. 1). The control lim-
its are determined by statistical considerations. The use
of control lines which group 99.7% of production data
is very common when the production process is work-
ing correctly (Montgomery, 2004).

In the particleboard industry, the mechanical proper-
ties of bending strength, modulus of elasticity and inter-
nal bond strength are used as the most appropriate
parameters for determining board quality. However,
determining these properties requires sophisticated test-
ing equipment and a great deal of time for preparing and
conditioning the test samples and conducting the test-
ing, which means that if a problem occurred, it would
only be detected once the board was manufactured
(Morris et al., 1994; Cook et al., 2000). This is why, in
terms of production control, it is very important to find
a relation between easily measured data and the final
properties.
Several studies exist which relate the composition

or physical properties of the boards to their mechani-
cal properties using regression models of varying
complexity (Halligan and Schniewind, 1974; McNatt,
1974; Vital et al., 1974; Kelly, 1977; Hayashi et al.,
2003; Wong et al., 2003; Cai et al., 2004; Nemli et al.,
2007) or artificial neural networks (ANN) (Cook and
Chiu, 1997; Cook et al., 1991; Cook and Whittaker,
1993; Cook et al., 2000; García Fernández et al.,
2008b) for early detection of possible production prob-
lems.
ANNs are mathematical structures based on the

functioning of a biological neural network, which are
capable of solving problems using knowledge acquired
through a series of examples (Pérez and Martín, 2003).
These structures have a series of interconnected ele-
ments known as process elements or artificial neurons.
The interconnections between the artificial neurons
and the activation bias of each of the neurons are
responsible for storing the knowledge of the network
(Priore et al., 2002). Each neuron receives a series of
entry signals (Xi) and produces a single output (Sj)
(Fig. 2). In the case of feedforward networks, the
inputs of a neuron are either the outputs of the ele-
ments interconnected with the neuron or the input vari-
ables.
The neurons that make up an ANN are organised in a

series of layers. In general there are three layers in a net-
work, two of which have external connections, while the
third is an inner layer. The input layer receives the val-
ues from the initial variables, the hidden layer performs
the operations designed to obtain certain characteristics
from the dataset, and the output layer shows the network
answer for a given input.
There is no procedure to define the number of neu-

rons the ANN should have, which means that it can be
difficult to choose a model, even for an experienced

Figure 1. Control chart: (A) mean; (B) standard deviation.
CL: centre line, UCL: upper control limit, LCL: lower control
limit; Production: Observed data. ANN: data calculated by the
artificial neural network.
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user. In general, the ANN is obtained by a process of
trial and error (Lin and Tseng, 2000). Structures with
few neurons tend to be less sensitive to small changes in
the process, while adding an excessive amount of neu-
rons to the network does not greatly improve its results
(Cheng, 1995).
ANNs have been applied to production control

process modelling by several authors (Cook et al., 1991;
West et al., 1999; Bissessur et al., 1999; Cook et al.,
2000; Cook et al., 2001), using data from the actual pro-
duction as well as simulated or design of experiments
data (Sukthomya and Tannock, 2005).
They have also been used to complement SPC

(Cheng, 1995; Guh et al., 1999; Chen andWang, 2004;
Guh, 2005; Chen et al., 2007; Cheng and Cheng, 2008;
Abbasi, 2009), improving previously obtained results
in all cases.
In general, ANNs are applied in industry both to

production process modelling and to production mon-
itoring and control (García Fernández et al., 2008a).
In this study two artificial neural networks were com-

bined with control process charts in order to check if the
data obtained with the networks were valid for variable
process control in particleboard manufacture.

2. Materials and methods

2.1. Materials

148 particleboards of varying thickness, classified as
P2 in accordance with the UNE-EN 312 standard
(AENOR, 2004) and chosen at random from daily pro-
duction, were used to calculate the ANNs to obtain the
mean and standard deviation of the internal bond
strength of the boards. For the SPC, 15 extra boards
with a thickness of 16 mm were selected (statistical con-
trol group) (Table 1).
Physico-mechanical testing was carried out on all

the boards in order to determine the swelling and
absorption (UNE 56713) (AENOR, 1971), moisture
content (UNE-EN 322) (AENOR, 1994c), density
(UNE-EN 323) (AENOR, 1994d) and internal bond
strength (UNE-EN 319) (AENOR, 1994b). In the
case of swelling, the Spanish rather than the Euro-
pean standard was chosen (UNE-EN 317) (AENOR,
1994a), as it requires less testing time and also pro-
vides the measurement of the water absorbed by the
samples.
The samples were prepared in accordance with the

UNE-EN 326-1 standard (AENOR, 1995) and then
conditioned at a temperature of 20±2ºC and relative
humidity of 65±5% until constant weight was
reached.
The physical properties were determined by means of

a MITUTOYO Digimatic digital calliper with a 0-300
mm range and 0.01 mm scale division, a COBOS C-
600-SX digital balance with a 0-600 g range and 0.01 g
scale division, two MITUTOYO IDF 1050 digital dial
gauges with a 0-50 mm range and 0.01 mm scale divi-
sion, and an immersion tank with automatic temperature
control. The internal bond test was carried out using a
universal MICROTEST machine with a load cell of
5000N and Class 0.5%.

Figure 2. General structure of an artificial neuron.

Number of particles boards considered Thickness Results achieved

148

ANN 110
(training group)

38
(testing group)

Variable
Mean and

standard deviation

SPC 15 mm 16 mm
Statistical

control group

Table 1. Number of boards used in the ANN and SPC analysis
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2.2. Artificial neural networks

In order to obtain the board internal bond strength
value and its variability, it was decided to design two
separate ANNs, in this way improving their perform-
ance (Sha and Edwards, 2007).
In both cases the input variables chosen were the

board thickness and the means and standard deviations
of the properties of moisture content, density, swelling
and absorption (García Fernández et al., 2008b). The
output variables were the mean and the standard devia-
tion of the internal bond test.
The ANN model chosen was a multilayer perceptron

trained by the backpropagation algorithm. This is the
most commonly used model in the references consulted,
both in the field of SPC and in particleboard production
control (Cook et al., 1991; Cook and Whittaker, 1993;
Cheng, 1995; Bissessur et al., 1999; Chen and Wang,
2004; Sukthomya and Tannock, 2005; Cheng and
Cheng, 2008; García Fernández et al., 2008b).
The transfer function used was the hyperbolic tangent

sigmoid (Eq. 1) (Garcia Fernández et al., 2008b), a vari-
ation of the hyperbolic tangent (Cheng, 1995; Chen and
Wang, 2004; Cheng and Cheng, 2008). The two func-
tions are mathematically equivalent but the hyperbolic
tangent sigmoid function produces an output much
more quickly, thereby improving the efficiency of the
network (Demuth et al., 2002).

(1)

f(x): Output value of the neuron, x: Input value of the
neuron.

The transfer function chosen produces an output in
the interval (-1, +1) and therefore the input data were
normalised before they were used to train the network
(Eq. 2) (Demuth et al., 2002; Cheng and Cheng, 2008;
García Fernández et al., 2008b).

(2)

X’: Vector X after normalisation, Xmin and Xmax: Minimum
and maximum values of vector X.

The learning method chosen was supervised learning
(Hagan et al., 1996; Haykin, 1998; Pérez and Martín,
2003; Isasi and Galván, 2004). The initial group of 148
boards was therefore divided into two groups: the train-
ing group (110 boards, 74% of the total) and the testing

group (38 boards, 26% of the total) (Table 1). These per-
centages are within the ranges used by other authors
(Cook and Whittaker, 1993; Cook and Chiu, 1997; Gar-
cía Fernández et al., 2008b).
To avoid the problem of overfitting of the ANN, the

early-stopping technique was used. Overfitting occurs
during the network learning process and is a clear indi-
cation that the network is not extracting the knowledge
from the initial data. The network is perfectly adapted to
the training group but is not capable of generalising.
When overfitting occurs, there is a decrease in the error
(differences between the value predicted by the network
and the test value observed) in the training group while
in the testing group the error begins to increase (Hagan
et al., 1996; Haykin, 1998; Malinov and Sha, 2003; Isasi
and Galván, 2004). In order to avoid this, the errors
were checked every 1000 epochs.
To assess the result of the ANN, the prediction error

was obtained (Eq. 3) in addition to the correlation coef-
ficient (R) between the predicted value and the
observed value. A prediction error of 15% was regarded
as acceptable for a production process and from 20 to
30% it was regarded as reject (Cook and Chiu, 1997;
Malinov et al., 2001).

(3)

E%: Prediction error, Vpred: Value predicted by network, Vobs:
Value observed in testing.

To assess R, the criteria used was that specified in the
UNE-EN 326-2 standard (AENOR, 2001), where 0.70
is the acceptable value for the relation between the val-
ues obtained by a standard test method and those
obtained by alternative methods.
The ANNs were created using the Neural Network

Toolbox® ver. 4.0.2 application, which is part of the
MATLAB® Ver. 6.5.0. Release 13 programme.

2.3. Statistical quality control

In order to perform the SPC it was necessary to first
check the networks obtained against the 15 extra 16 mm-
thick boards chosen at random from the production line
(Table 1). To assess the results, it was checked not only
that the two conditions imposed on the networks were
met, but also that the data obtained by the networks had
the same classification of in control/out of control as the
real data, in order to ensure acceptability of the numeri-

( )
obs

obspred

V

VV
E

−
⋅= 100%

( ) ( ) 1
1

2
2

−
+

= − xe
xf

minmax

min

XX

XX
X

−
−

=′



96 L.G. Esteban et al. / Invest Agrar: Sist Recur For (2009) 18(1), 92-100

cal output of the network for the mean and the standard
deviation as well as the production classification.
Particleboard production control is based on deter-

mining the quantitative values corresponding to the
physico-mechanical properties of the boards, which are
defined by the mean (m) and the standard deviation (σ).
The control chart equations of the centre line and con-
trol limits can be expressed by equation (4) (Mont-
gomery, 2004):

UCL = µ + L · σ
CL = µ (4)

LCL = µ – L · σ

UCL: upper control limit, CL: centre line, LCL: lower con-
trol limit; L: constant, µ: mean of some quality characteristic
of interest,σ: standard deviation of some quality characteris-
tic of interest.

L is the distance from the control limits to the centre
line. Normally L=3 is used, which ensures a type I error
probability of 0.0027; that is, only 27 test samples out
of 10,000 would cause a false alarm (Montgomery,
2004).
In this study, control charts were prepared both for

the mean and the standard deviation. As the best estima-
tor of µ, the unbiased estimator of the grand mean was
used (Eq. 5).

(5)

X: Grand mean, Xi: sample means, m: number of samples.

The sample standard deviation (S), which is not an
unbiased estimator of σ, was used as the estimator of σ.
In fact, S is an estimator of c·σ, where c is a constant
that depends on the number of data per sample (n) (Eq.
6), with the standard deviation of S being

(6)

c: constant, n: number of data per sample.

If there is no known value for σ, it must be estimated
using the average of the sample standard deviations (Eq. 7).

(7)

S : Mean of standard deviations, Si: sample standard devia-
tion, m: number of samples.

In this case, the control lines correspond to equation
(8) for the mean and to equation (9) for the standard
deviation.

(8)

X : Grand mean, S : Mean of standard deviations, c: constant,
n: number of data per sample.

(9)

S : Mean of standard deviations, c: constant.

Of the 148 boards selected for the calculation of the
ANNs, 41 had a thickness of 16 mm, and these were
used to obtain the estimators of the mean and standard
deviation of the process to plot the Shewhart charts.
Using these charts, the data of the 15 extra boards from
the statistical control group were checked.
For the SPC calculations and charts the Microsoft®

EXCEL 2003 spreadsheet was used.

3. Results and discussion

3.1.Artificial neural networks

The networks obtained for the mean and standard
deviation of the internal bond strength of the boards
consisted of a hidden layer made up of three sublay-
ers of [10 8 1] neurons in the case of the mean and [20
15 11] neurons in the case of the standard deviation
(Fig. 3).
Table 2 shows the result obtained in the training

process for the mean and the standard deviation.
The amount of data available for the training process

is less than the specified number for mathematically
defining the networks obtained (Sha, 2007). However,
the aim is not to define single networks in which all the
parameters are perfectly defined, but rather to find net-
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works which guarantee a correct generalisation (Tom-
pos et al., 2007) and also meet the criteria of the UNE-
EN 326-2 standard (AENOR, 2001).
Table 3 shows the results obtained for the mean and

the standard deviation in the ANN testing process. The
determination coefficient (R2) indicates that the model
obtained is capable of explaining 85% of the data cal-
culated for the means and 96% for the standard devia-
tions. In the case of R, the values obtained are very

similar to the findings of other authors in studies on
the application of ANNs to particleboard (Cook et al.,
1991; Cook et al., 2000; García Fernández et al.,
2008b) and higher than the values required by the
UNE-EN 326-2 standard (AENOR, 2001). Moreover,
the prediction errors calculated on the testing group
are lower than 15% (see subsection 2.2), which means
that the networks calculated can be regarded as valid
(Cook and Chiu, 1997).

Figure 3. Structure of the ANNs obtained: (A) mean; (B) standard deviation.
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3.2. Statistical process control

With the two networks obtained, it was checked that
the 15 extra boards from the statistical control group
met the two initial conditions imposed on the network
and also that the production classification for the
observed values was the same as the classification for
the values calculated by the networks.
Table 3 shows the ANN results for the statistical

control group. R2 indicates that the networks obtained
are capable of explaining 79% of the data calculated
for the means and 88% for the standard deviations of
the statistical control group. As in the prior testing
process, the values of R are similar to those obtained
by Cook et al. (1991), Cook et al. (2000) and García
Fernández et al. (2008b), and higher than the 70%
value specified in the UNE-EN 326-2 standard
(AENOR, 2001) for accepting the correlation
between the test results obtained by the standard
method and by an alternative method. In addition, all
the errors obtained are lower than 15% (Cook and
Chiu, 1997).
Table 4 shows the results of the estimators for the

mean and standard deviation of the internal bond
strength, obtained from the 41 boards with a thickness
of 16 mm within the overall group of 148 boards. The
control lines (Table 5) and the Shewhart charts (Fig. 1)
for the two variables were obtained from the estimators.

Both the real results of the mean and the standard
deviation of the 15 boards from the statistical control
group and the results obtained by the ANNs can be
classified as in control (Fig. 1), which means 100%
success has been obtained. As the three conditions
imposed for the network to be accepted in statistical
production control were met (R>0.70, E<15% and the
same classification for the production values), it can
be concluded that the ANNs obtained are valid and
considerably improve process control by allowing ear-
lier detection of problems in the final product (Morris
et al., 1994).

Conclusions

The use of ANNs enabled the mean and standard
deviation values of the particleboard internal bond
strength to be obtained within acceptable margins using
known data of thickness, density, moisture content,
swelling and absorption.
The ANNs obtained met the criteria of the UNE-EN

326-1 standard (AENOR, 2001) for accepting test val-
ues from non-standard methods.
The ANNs met the criteria for them to be used in sta-

tistical process control, obtaining the same classifica-
tion for all the points obtained, and therefore constitute
a very useful complement in SPC.

Group Parameter R2 R
Linear regression E%

model (mean and range)

Testing Mean 0.85 0.92 y=1.130x-0.050 7.86 (0.08 - 14.45)
Standard deviation 0.96 0.98 y=0.975x+5.82·10-4 6.22 (2.84 - 7.75)

Statistical control Mean 0.79 0.89 y=0.830x+0.096 5.37 (0.01 - 9.09)
Standard deviation 0.88 0.94 y=0.984x+7.91·10-4 8.03 (0.34 - 16.34)

R2: determination coefficient, R: correlation coefficient, E%: prediction error.

Table 3. ANN. Results of the testing group and the statistical control group for the mean and the standar deviation

Parameter
Structure of Linear regression

R2 R E%
the ANN model

Mean [9 10 8 1 1] y=0.965x+0.019 0.96 0.98 2.57

Standard deviation [9 20 15 11 1] y=0.951x+0.002 0.97 0.99 5.27

R2: determination coefficient, R: correlation coefficient, E%: prediction error.

Table 2. ANN. Results of the training process
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