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Abstract: Coping explicitly with failures during the conception and the design of soft-
ware development complicates significantly the designer's job. The design complexity leads 
to software descriptions difficult to understand, which have to undergo many simplifications 
until their first functioning version. To support the systematic development of complex, 
fault tolerant software, this paper proposes a layered framework for the analysis of the fault 
tolerance software properties, where the top-most layer provides the means for specifying 
the abstract failure semantics expressed in the initial conception stage, and each successive 
layer is a refinement towards an elaborated description of a fault tolerant software archi-
tecture. We present the logical vehicle that permits reasoning on the equivalence or the 
compatibility of the various expressions of fault tolerance properties at various abstraction 
levels. In addition, we propose a mapping schema, which permits the correct transformation 
of abstract entities into concrete ones, during a refinement process. 
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Architectures logicielles tolerantes aux fautes 
R e s u m e : La prise en compte de cMfaillances materielles et logicielles complique de maniere 
significative les phases d'analyse et de conception du logiciel. Cette complexity se traduit 
par des descriptions du logiciel difficiles a comprendre, et devant 6tre consid&ablement 
simplifies pour r^aliser la premiere version du logiciel. Afin de supporter le d^veloppement 
syst&natique d'un logiciel tolerant aux fautes, nous proposons une approche hi^rarchique 
pour l'analyse des propri6t6s lides a la tolerance aux fautes. Dans ce cadre hi6rarchique, le 
plus haut niveau fournit le moyen de specifier formellement les s^mantiques de d^faillance 
requises lors de la phase initiale de la conception, et les niveaux suivants permettent un 
raffinement graduel vers une description 61abor6e d'une architecture logicielle toMrante aux 
fautes. Dans ce rapport, nous pr&entons notre solution pour raisonner sur l'^quivalence ou 
bien la compatibility des specifications de propriety de tolerance aux fautes des difKrents 
niveaux. En outre, nous d^finissons une relation qui permet de garantir, lors du raffinement, 
la transformation correcte des entit^s abstraites en entit^s concretes. 

Mots -e le : Raffinement d'architectures, Tolerance aux fautes, Specifications formelles, 
Architectures logicielles. 
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1 Introduction 
Software development becomes extremely difficult as different nonfunctional aspects (e.g. 
availability, reliability, security, etc) interfere with the algorithmic aspects of the software 
(i.e. the specific purpose that the software serves). The software designer is confronted with 
numerous problems when trying to refine some abstract specifications into a well organized 
software structure, or when trying to incorporate existing solutions into a new application 
framework. Employing the principle of "separation of concerns" in order to independently 
analyze and understand the mutual interferences of the various software aspects, has been 
doubted since the independence assumption does not always hold. Particularly, in the 
domain of fault tolerant software, a lot of effort has been made to identify a number of 
abstractions that capture the important software properties and suppress the irrelevant 
details with respect to the fault tolerance software properties (e.g. see [5j and [14]). 

The focus of this paper is the analysis of fault tolerance software properties, and their 
incorporation in the description of a software architecture. Existing work in the field of fault 
tolerant software testifies that the system behavior in the presence of failures forms by its own 
a separate domain of software conception and design. A number of failure semantics have 
been defined to describe the possible failure modes of a software, and a wide range of generic 
fault tolerance techniques have been developed independently from some specific application 
domain. The consequent plurality of mechanisms providing fault tolerance, renders hopeless 
an exhaustive search performed by humans for the fault tolerant mechanism that best fits 
a given application. In addition, without a common basis to underpin the integration of 
the fault tolerance properties with other software aspects, verifying the correctness of the 
resulting software becomes impossible. 

Fostered by the aforementioned facts, our research aims at providing means to support 
the systematic analysis of fault tolerance software properties, and the reasoning on the 
correctness of their integration within a software architecture. We do not seek to provide 
some linguistic support for the declarative description of the fault tolerance software aspects 
at different development stages, nor to promote some lexicon of graphic terms that would 
facilitate the graphical representation of relations among software entities of each stage. Our 
primary motivation is to relieve the software designer from the burden of refining by hand 
the abstract software specifications in order to obtain a concrete system, and our objective 
is to provide a formal framework for the specification of fault tolerance software properties, 
which fulfills the following criteria: 

1. It is precise enough so as to allow the accurate expression of fault tolerant proper-
ties, while at the same time it should be generic enough so as not to restrict the 
independence of the algorithmic software aspects. 

2. It is rich enough so as to allow the deduction of properties equivalence or compatibility. 

3. It supports means that guarantee the refinement correctness which represents a tran-
sition from a software development stage to the next one. It should also be possible to 
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use these means in the reverse sense, to identify the abstract specifications from which 
a given property is derived. 

The remainder of this paper is structured as follows: in the next section we present a 
layered decomposition of the software development process that provides an insight from 
different viewpoints on the analysis of the fault tolerance software properties. In Section 3 
we define the formal framework that supports the specification of fault tolerance software 
properties, the reasoning on the correctness of their refinements, and the deduction of the 
properties of their compositions. In Section 4 we propose a classification schema based on 
the previously introduced formal framework, which organizes the fault tolerance properties 
in a way that allows their systematic and efficient retrieval during a specification refinement 
process. The practical use of the classification schema is discussed in Section 5. A comparison 
with related work is presented in Section 6, and the paper concludes with a brief summary, 
a discussion on the originality of our contribution, and a presentation of current work and 
open issues. 

2 Software Development Stages 
Traditionally, the software development procedure has been decomposed into the following 
stages: requirements, specifications, design, coding, testing, and maintenance. In this sec-
tion we introduce a different decomposition that is better suited for the analysis of the fault 
tolerance software properties. The proposed decomposition reflects the successive refine-
ments of the abstract and macroscopic view on the fault tolerance software properties, into 
a microscopic and elaborated description of the software elements that accomplish a given 
fault tolerant functionality. Notice that the proposed development decomposition is com-
plementary to the traditional one rather than an alternative, and it permits the designer to 
focus on the fault tolerance aspects of software development. 

Macroscopically, the development of fault tolerant software starts by specifying the se-
mantics of the states that should be reached after the occurrence of a failure. These semantics 
refer in general to the relation of the state after the failure, with some correct state that 
can be reached by the software. For example, the Safety semantics can be defined as the 
constraint that the state after the failure should be a subset of some state preceding the fai-
lure (i.e. the functionality of the system might degrade but all failure effects are removed). 
In a similar way, the semantics of Availability and Reliability can be respectively defined 
as reaching a state that can be reached by some failure-free execution of the software (i.e. 
failure effects are repaired), and reaching a state that includes a correct state (i.e. after the 
failure there still exists a part of the system that correctly provides the complete software 
functionality). The formalization of these semantics is given in the next section, in the upper 
part of Table 1. 

The macroscopic specifications of failure semantics should be refined to provide more 
information about the properties of the reached state. For example, the designer has to 
distinguish among the re-initialization of the system, the removal of the part of the system 
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affected by the failure, and the replacement of the affected part by a correct one. This 
refinement of failure semantics at the second development stage, leads to constraints that 
give a strict definition of what state should be reached. Based on this definition, the designer 
has to specify how to reach that state. A new refinement takes place, that leads to the third 
development stage. In this stage, the system is viewed as a set of objects, and the set of 
object states forms a partition of the system state, i.e. there is no state sharing between 
any two objects, and the union of all object states gives the system state. Objects interact 
by performing I /O actions as defined by the CSP computation model. The goal of the 
refinement leading to this state is to decompose system state into sub-states that can be 
mapped onto objects and to identify the object actions that lead to a system state satisfying 
the predefined fault tolerance constraints. 

The next step in the development of fault tolerant software is to outline its abstract 
architecture. Borrowing the concepts from the field of software architectures, the designer 
needs to specify the system as a set of components interconnected by connectors. The 
object states and actions that have been previously identified, must be associated to com-
ponents and connectors of the software architecture in order to express their fault tolerance 
properties. The result is an abstract description of a fault tolerant software architecture. 
Elaborating on the fault tolerance properties assigned to components and connectors will 
result in another refinement leading to the decomposition of the architectural entities into 
more concrete ones that can be directly mapped onto the prevalent objects of a fault tole-
rant mechanism (e.g. the reliable broadcast protocol, the replication manager, the voting 
mechanism, etc). 

The elaborated description of a fault tolerant software architecture reveals the software 
properties related to fault tolerance aspects of a system, but leaves undefined a number of 
parameters indispensable for the configuration, deployment and correct functioning of the 
corresponding fault tolerant mechanism. Such parameters include the degree of replication 
for a given failure probability of the software and hardware constituents of a system, and the 
tuning of the timeout periods for specific network characteristics and specific load-patterns. 
These parameters have to be determined during the probabilistic analysis of the software 
that takes place in a separate development stage. The final software development stage 
consists of writing the code that corresponds to the specification resulting from the previous 
stages (for software created from the scratch), or assembling the existing pieces of code that 
satisfy the specification constraints (for software reuse). In the remainder of this paper, we 
do not address issues related to the last two software development aspects. 

3 Formalizing Fault Tolerance Software Properties 
To be beneficial for the designer, the decomposition of the software development process 
presented in the previous section must be underpinned by a formal framework, which should 
satisfy the following conditions: it should be easy to use, and it should be expressive enough 
to capture a big majority of the properties related to failure semantics of the software. We 
have chosen to use predicate logic extended with the precedence binary operator -< (originally 
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introduced in [10]), which defines a partial order in which predicates are verified. The 
extended predicate logic provides the designer with the means to combine the constraints 
on the system states that should be reached after a failure with the partial order of actions 
that should be performed to reach the given state. Hence, the designer obtains a global 
description of system's fault tolerance properties, both in terms of state semantics after a 
failure and of actions undertaken to reach that state. This description forms a blueprint of 
the fault tolerance mechanism that should be used and can be integrated in the software 
architecture of the system in a way similar to the one described in [8]. 

To express the fault tolerance software properties, it suffices to define the base predicates 
that formally describe system states and actions with respect to failures. We bring to the 
reader's attention that this set of base predicates is not unique; the designer is free to 
choose the base predicates that facilitate his reasoning. In the remainder of the paper 
we use the following computation model: a system state is a mapping of variables to values 
according to the software specifications. The value of some variables can be undefined in the 
specifications, but when the values of one or more variables lay outside the range given in the 
specifications, a failure is said to occur. The system state is partitioned by the states of the 
objects consisting the system, and state transitions are the result of the actions performed 
by the objects. To denote predicates on states, actions and their interplay, the following 
notations are used: ST, primed or followed by a subscript value, denotes the system state; 
lower-case greek letters denote objects (e.g. a, [3, etc), and object states are denoted by the 
object name (which can be neglected when it is obvious in a given context) followed by ST, 
primed or followed by a subscript value (e.g. a.ST, fi.STi, etc). System and object actions 
are written in italics (e.g. import(a, [3, data)), and the corresponding predicate verified when 
the action is realized is written in small-capitals (e.g. IMPORT (a, (3, data)). Moreover, when 
not otherwise stated, we write ST to denote the object state before executing a given action, 
and ST' to denote the state reached after the execution of the given action. Based on these 
notations, we define the following predicates: 

• [ST], which is true when the system is in state ST. Similarly we define [a.ST] for 
object states. 

• faulty(F), F C ST, which is true when some of the variables of F have been assigned 
values not defined by system's specifications. Similarly we define faulty(a.F) for 
object failures. 

• INIT(A, A), which is true when the object a. is appears for the first time in the system, 
with initial state A (i.e. fla.ST\[a.ST] -< INIT(Q;, A)). 

• EXIT(Q;), which is true when the object a. is removed from the system, (i.e. 
fla.ST\ EXIT(Q) -< [a.ST]). 

• EXPORT (a, (3, data), which is true when the object a. exports to object [3 the infor-
mation data, where data is a function of the object state before executing the export 
action, i.e. data = f(ST) for some function / defined in the system specifications. 
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• IMPORT (a, (3, data), which is true when the object (3 receives the information data sent 
by object a, where the state ST' of the object after executing the import action is a 
function of the previous state and of the parameter data, i.e. S T = g(ST,data) for 
some function g defined in the system specifications. 

• FAIL(Q;, action), which is true when the state ST' reached after the execution of action 
by a. verifies the predicate faulty (ST'). 

Using the above predicates, we can give the abstract specifications and their refinements 
of the Safety, Availability, and Reliability semantics given informally in the previous section, 
as depicted in the upper- and the middle-parts of Table 1 respectively. In these formulas, the 
notation X° denotes a correct system execution, i.e. a partially ordered set of states where 
the predicate faulty (ST) is never verified, F represents the sub-state of faulty mappings 
(i.e. F = {rn 6 S T : faulty ({rn})}), dom(ST) denotes the variables of state ST (i.e. the 
domain of the mapping), and symbol \ denotes the operation of set subtraction. The 
lower-part of Table 1 introduces specification of fault tolerance properties based on action 
predicates, which are the result of the analysis done in the third software development 
stage. In these formulas, we assume a failure occurring during the transition from state ST 
to state ST', and we use the notation STq to denote the initialization state of the object 
(i.e. flct.ST : [a.ST] -< [a.STo]), and ST" to denote some object state occurring after state 
ST' (i.e. [ST'] [ST"]). 

Safety = ([STi] A faulty(STi)) => 
(3STj, STe : ([STi] [ST,-]) A ([STe] [ST]) A (STj C STe)) 

Availability EE ([ST] A faulty (STi)) => (3 SI } : ([ST] [ST,-]) A (ST,- G Xc)) 
Reliability i= ([STi] A faulty (STi)) => (3 S I ) : ([ST] -< [ST,-]) A 

(3STe G : (VST : [ST] [ S T ] [ST] [STJ) ) A (STC C STj)) 
Clean-up i= Safety A(STj = ST \ F) 
Crash EE Safety A (STj = 0) 
Re-initialize EE Availability A (STj = ST0, where fiST : [ST] -< [ST0]) 
Rollback EE Availability A(3STC : ([ST] [ST]) A (ST = STj)) 
Roll-Forward I= Reliability A (STe = STj) 
Replacement = Reliability A(dom(F) C STj \ STC) 
DOCLEAN-UP EE Clean-up AVa|,faulty (a) => EXlT(a) 
ATOMIC i= Rollback AVa, action] FAIL (a, action) => (ST" = ST) 
DOREPLAGE EE Replacement AVa\(faulty(a) -< INIT(a',a.ST')) A (a' = a)A 

( [ a . S T ' ] [a .ST] ) 

Table 1: Failure semantics related to Safety, Availability, and Reliability. 

Given the aforementioned framework for the formal expression of the fault tolerance 
software properties, the designer can reason on their compatibility, and on their combina-
tions. By combining different properties, the designer obtains a refinement of their initial 
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constraints, since the combination can be seen as the superposition of new properties on the 
existing constraints related to fault tolerance. These refinements, once proved to be correct, 
can be used any number of times to indicate to the designer a set of correct refinements 
for a given fault tolerance software property. We elaborate on this utilization of the formal 
framework in the next section. 

4 Refining Fault Tolerant Software Architectures 
The field of existing fault tolerance techniques keeps expanding continuously, and their proli-
feration is most unlikely to be ceased, since it is instigated both by the advances in the areas 
of hardware and operating system support, and by the increasing application requirements 
in tolerating failures. Given the immense number of fault tolerant mechanisms and their 
complexity, it is indispensable, from the standpoint of software correctness and robustness, 
to reach the final software development stage with a clear and detailed description of the 
fault tolerance software properties. For this, we need to provide the means that will guide 
the designer in refining the abstract constraints related to fault tolerance software aspects 
into an elaborated description of properties of the fault tolerant mechanism that should be 
used. 

4.1 Classifying Fault Tolerance Properties 
One way to provide the desired guidance for the designer, is to couple a given fault tolerance 
property with a set of corresponding alternative refinements. For example, the lower-part 
of Table 1 shows some possible refinements of the failure semantics given in its middle-
part, which, in turn, are some of the possible refinement of the failure semantics given 
in the upper-part. In general, we can associate to some fault tolerance property P, the 
set of fault tolerance properties {Qi\Qi => P}, i.e. the set of P's alternative refinements. 
This organization results in a classification of fault tolerance properties, which permits the 
designer to consider only correct refinements of some abstract software constraints regarding 
fault tolerance. Existing work (e.g. see [12]) suggests that once the refinement's correctness is 
verified, the refinement patterns represented by the classification schema can be used without 
needing to prove their correctness. This suggestion is valid in the case of fault tolerant 
software architectures, as long as the refinement process does not consider constraints related 
to other nonfunctional or algorithmic software aspects. 

Given the above observation, the classification schema can serve as a structured repre-
sentation of the knowledge about correct refinements of fault tolerance properties that has 
been obtained in the past. We have adopted the straight forward implementation of the 
classification schema as a disconnected directed acyclic graph (DAG), where a node repre-
sents a fault tolerance property, its parents represent the abstractions for which the property 
represented by the given node is a correct refinement, and its children represent the known 
correct refinements of the given fault tolerance property. Figure 1 illustrates graphically a 
part of the disconnected DAG that corresponds to the failure semantics given in Table 1. 
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There is a trivial (although not very efficient) construction of a software tool that mani-
pulates such a classification schema. Based on the results of the process that verifies the 
correctness of a given refinement, the tool can insert a new fault tolerance property into the 
classification schema. Moreover, given a fault tolerance property, the tool may retrieve both 
its refinements or the abstractions for which the given property forms a correct refinement. 

Figure 1: The DAG corresponding to the specification given in Table 1. 

The refinements captured in the classification schema, represent a gradation from the 
abstract specifications of failure semantics to concrete descriptions of fault tolerance proper-
ties, which can be detailed enough so as to serve as precise specifications of a fault tolerant 
mechanisms. Hence, it is possible to associate pointers to DAG nodes that point into a 
repository of fault tolerant mechanism, and then use the classification schema as guidance 
means for the selection of a fault tolerant mechanism as the last step of a refinement process. 
We bring to the reader's attention that the same fault tolerant mechanism can be classi-
fied under more than one DAG node, since it might provide more than one fault tolerance 
property. Consider for example the case of an implementation of ISIS [3j, which satisfies 
all three predicate ABCAST, 0B0AST, and GBGAST given in Table 2. The corresponding me-
chanism should not be registered only as implementation of one of the three fault tolerance 
properties. 

The classification schema provides a considerable aid in indicating possible choices for 
the appropriate fault tolerant mechanism with respect to some fault tolerance requirements. 
However, this issue in its globularity is far from considered as settled. The number of 
incarnations that may correspond to a single fault tolerance property can be more than 
one, and still the fault tolerant mechanisms may have radically different attributes. The 
differences can be due to factors influenced by other software aspects, irrelevant to failure 
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semantics (e.g. synchronization characteristics). Hence, the reader should consider that 
the classification schema can be employed to help the designer reject those fault tolerant 
mechanisms that are not related in any way with the software failure requirements, rather 
than as a tool for selecting a set of fault tolerance mechanisms conforming with software 
requirements. 

4.2 Iterative Architecture Refinement 
Until this point, we have dealt with the analysis of fault tolerance properties as a domain 
specific software architecture, independently from the other nonfunctional or algorithmic 
software aspects. This is useful for the construction of a fault tolerant mechanism, in which 
case however, we can no longer consider the fault tolerance properties as nonfunctional 
software aspect, but rather as its algorithmic aspects. While the utility of studying the 
construction of fault tolerant mechanisms is incontestable, our research was fostered by 
the need to support the analysis of fault tolerance properties as a nonfunctional aspect of 
a distributed application. Hence, besides the capability to analyze and to express fault 
tolerance properties, we need to be sure that the proposed formal framework allows the 
designer to consider the conjunction of failure semantics with the constraints placed by other 
nonfunctional and algorithmic software aspects. The fact that the proposed framework is 
based on predicate logic, which has been successfully used for program specification, suggests 
an a priori compatibility with the expressions of general program specifications (e.g. see 
[11]). This implies that it is possible to express the constraints related to various software 
aspects in the same formal framework with little effort. Our experience so far has shown that 
software properties related to fault tolerance [13], and security [2] can be uniformly expressed. 
Moreover, we have not encountered any problems yet with transactional properties, although 
our experience in this domain is still preliminary (e.g. see [8]). 

The advantage of expressing the algorithmic and the various nonfunctional software pro-
perties on a unified basis, is that we can reason on their combinations and detect possible 
incompatibilities among the constraints related to different software aspects. For example, 
let us consider the case of a software architecture that has defined all aspects but those 
related to fault tolerance, and that failure considerations should be introduced, without 
altering the constraints placed by the rest of the software aspects. The designer can start 
with some initial failure constraints and verify their compatibility with existing software 
properties. Once the compatibility is verified, the designer, using the proposed classification 
schema, may choose some refinement of the failure constraints. While the correctness of the 
refinement with respect to the fault tolerance properties is not necessary, the compatibility 
of the refinement results with the existing software properties must be checked again. Notice 
however, that deducing that a combination of nonfunctional properties is free from incompa-
tibilities does not imply that we obtain a description of how to accomplish the combination. 
This is another issue that lies out of the topics discussed in this paper. 

The procedure described above is iteratively employed until the point where the designer 
obtains an elaborated software architecture that describes globally the various software as-
pects. The invariant that should be verified in all iteration steps, is that the set of constraints 
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should remain coherent, i.e. there are no conflicting constraints in the various software as-
pects. If an incompatibility is detected during some iteration, then the designer is called to 
choose another alternative of possible refinement. In the case where incompatibilities raise 
for all alternative refinements registered in the classification schema, the designer has to de-
cide either to remove some of the constraints related to other software aspects, or to expand 
the classification schema by introducing new refinements of the problematic property. 

In the general case, we expect that the refinement of software aspects will be done in 
parallel and hence, in the case of incompatibilities, the designer will have more than one 
choice on what refinement to change. Figure 2 illustrates graphically the iterative refinement 
process. When all software properties are refined in parallel, there must be some priority 
that will define which software aspects are most significant and hence should be the last to 
change. Otherwise, the designer will be confronted with a large variety of choices without 
any indication on which should be preferred. 

Figure 2: The iterative refinement process that leads to the elaborated software architecture 
description. 

5 An Example 
To demonstrate how the designer operates in the various software development stages, we 
consider the example of a file system, focusing primarily on the specification of the fault 
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tolerance properties. The first two stages should define what are the state that should be 
reached after a failure occurrence and what are the permissible intermediate states, i.e. what 
should be done and what should be prevented. If erroneous data caused by the failure must 
be eliminated, the designer may specify that after the failure the system reaches a state 
that is a subset of some state preceding the failure, and become more precise by stating 
that this state should be reached by removing the erroneous data, or by re-initializing the 
file contents. The actions that lead the file system after a failure to a state where the files 
affected by a failure are inaccessible, would correspond to a rejection of importing requests 
referring to operations on these files. 

To exemplify the utility of the formal documentation of failure semantics, let us consider 
the case of a file system providing only the operation readffn, buf) that places in buffer buf the 
contents of the file fn. A first architectural description of the system's structure may consist 
of two components, representing the client and the server of the file system, interconnected 
by a connector employing an RPC communication protocol. To satisfy certain reliability 
constraints with respect to client accesses to files, we have to express those constraints in 
the description of the architectural entities that interact with the one representing the client 
(i.e. the component representing the server and the connector binding the client to the 
server). We assume that the designer wishes to build the system in such a way that a failure 
would neither prevent the client from reaching a correct state, nor degrade the system's 
functionality (e.g. by rendering inaccessible the read operation). Using the specifications 
given in Table 1, the aforementioned constraint corresponds to the Replacement refinement 
of the Reliability failure semantics. 

Notice that the Replacement constraint does not have any impact on the graphical repre-
sentation of the system's architecture, as given in the upper-part of Figure 3. Therefor, we 
need to refine the constraint in order for the fault tolerance properties to appear in the gra-
phical architecture representation. Otherwise, it is not possible to assign the functionality 
related to fault tolerance properties, to concrete architectural entities, and hence to move 
towards a more elaborated and concrete descriptions of the file system. One possible refine-
ment can be achieved by specifying that the server component described above is actually a 
set of replicas of the file server, and that the connector used for the communication between 
the client and the server diffuses a client request as a broadcast to the group of file servers. 
We can formally specify these fault tolerance properties, based on the abstractions used 
in the ISIS environment [3j. The formal expressions of the ISIS abstractions are given in 
Table 2, by the three predicates ABCAST, OBOAST, and GBCAST that represent respectively 
the atomic broadcast where messages are delivered in the the same order at all members of 
a group, the causal broadcast where causally related messages are delivered in their causal 
order, and group broadcast where ordinary messages are delivered atomically and messages 
indicating the failure of a group member are delivered after the delivery of all messages sent 
by the failed member1. 

The predicates defined in Table 2, can be used in the file system example to describe the 
broadcast of a message (predicate BCAST), the group of replicas (predicate REPLICA(M)), 

1For simplicity, we do not consider the recovery of group members, which is treated by the GBCAST [3J. 
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GBCAST(M) 

MEMBERSHIP(M) 
BCAST(Q?, G, D) 
REPLICA(M) 
FMASK(CJ) 
ABCAST(M) 

CBCAST(M) 

( ( a € M)A IMPORT(7, a , D)) € M| IMPORT(7, /3, D) 
V/3 € G| EXPORT (a, /?, D) 
MEMBERSHIP(M) A(Va, /? € M | a = 0) 
(3M\(a € M ) A REPLICA(M) A MEMBERSHIP(M) A(V/3 € M | C r a s / j ) ) 
(MEMBERSHIP(M) A ( a € M ) A (IMPORTED?, D) -< IMPORT^' , a , £>'))) =>• 
V/3 € M | (IMPORT(7,/3, D) -< IMPORT^' , /? , £) ' ) ) 
(MEMBERSHIP(M) A (BCAST(Q?, M , -D) -< B O A S T ( f ) , M , D ' ) ) ) 
V7 € M | IMPORT(A,7, D ) -< IMPORT(/3, 7, £)') 
ABCAST(M) A ((/3 € M ) A BCAST(O, M , FP) => 
V7 € M , IMPORT(Q?, 7, Z^) -< IMPORT(/3, 7, £))), 
where 3A ^ /3| FAIL(/3, action) -< BCAST(A, M, f p ) 

Table 2: Formal expressions of the abstractions used in ISIS. 

and the Failure Masking property (predicate FMASK(A)). Informally, the Failure Masking 
property based on the replication of an object a. is verified when there exists a group of 
objects identical to a. that verify the MEMBERSHIP property (i.e. when one group member 
imports some data, then all group members import the same data), and that follow the 
Crash failure semantics defined in Table 1. Given these fault tolerance properties of the file 
server and the connector, the system description can no longer be graphically represented 
by the simple structure of the two boxes interconnected by a single line. Figure 3 illustrates 
graphically the results of the refinement. 

6 Related Work 
The need to master the conceptual complexity stemming from the interference of the al-
gorithmic software aspects with the fault tolerance properties, has fostered the research 
towards the identification of abstractions that simplify the analysis and design of fault tole-
rant software. Some of the most significant results are reflected in [5], where a small set of 
intelligible concepts is used to analyze the hierarchical software construction and to express 
the relevance of fault tolerance properties to the entities of different hierarchy levels. This 
approach can be supported by the formal specifications of failure semantics in a variation of 
Hoare's logic, introduced by the same author in [4J. The occurrence of failures considered 
in the software specifications are tolerated, in the sense that the resulting system behavior 
is specified. Our work builds on these results in two ways: first we adopt the considera-
tion of failures as part of the software specifications, and second we use an extension of the 
predicate logic to formally describe the fault tolerance software properties at each stage of 
its development. However, we go one step further in allowing the description of fault tole-
rance properties at different abstraction levels and in supporting the refinement mappings 
of abstract levels to concrete ones. 
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Group of 
servers 

Figure 3: The results of the specifications refinement reflected in the graphical representation 
of the corresponding software architecture. 

Another important research direction followed in defining abstractions for modeling fault 
tolerance software properties, is the one of specifying a fixed set of failure semantics which 
thereafter can be used as design patterns for the construction of a certain range of fault 
tolerant software. A representative example is the work presented in [14], where a set of 
constraints on object execution is given, concerning the Agreement, Order, Failure Detec-
tion, and Stable storage abstractions. These abstractions capture the important software 
properties and suppress the irrelevant details, and can be used to map the specifications of 
the failure behaviors onto some concrete fault tolerant mechanisms. This is very close to 
the mapping of an abstract software architecture on executable code of a computing system. 
However, the use of these abstractions presumes that the previous software development 
stages were accomplished successfully and that the designer knows exactly what failure se-
mantics to employ in order to meet the initial constraints of the software. Compared to 
our work, similar approaches lack the flexibility to easily adapt in changes to their initial 
assumptions caused by the evolution of the fault tolerance requirements on the software. 

Except from the explicit specification of fault tolerance software properties, the research 
results in areas coping with the more general issue of refining abstract specifications can be 
used in the fault tolerance domain. These research results (e.g. see [11]), assert that the 
correct specifications refinement must be underpinned by a formal basis which should allow 
the designer to reason on the composition and the equivalence of the software properties 
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based on the rules of composition [6j and specification matching techniques (e.g. see [16j). 
The refinement process can be supported by some given refinement patterns that are proved 
to be correct (e.g. see [12]). However, the refinement patterns cannot be used for the 
fault tolerance software properties independently from the other software aspects, since the 
refinement correctness must be proved with respect to the constraints regarding the entire set 
of software aspects. As a result, refinement patterns specific to fault tolerance properties can 
be used only in cases where the software system conforms with some given failure semantics 
(e.g. the four-layer RCP architecture [15] can be used for developing fault tolerant software 
based on the semantics of the State Machine Approach). 

Software architectures that express the relations of the architectural entities consisting a 
software can also be employed for analyzing the fault tolerance software properties. Existing 
work focuses on the analysis of the coordination and synchronization of software entities [1], 
and on the description of the allocation function that assigns functionality to the entities of 
a software architecture [9]. Our work is complementary to these research directions, since 
it permits to integrate the fault tolerance properties within the description of a software 
architecture. Our experience towards this direction has shown that it is possible to des-
cribe the nonfunctional software properties in general, without sacrificing the clarity of the 
architectural description [8]. 

We bring to the reader's attention that the related work cited in this section is only a 
representative sample of the research results published in numerous conferences and jour-
nals. The goal was to show that existing work either does not separate the algorithmic from 
the nonfunctional software aspects, or when it does, it does not provide means combine the 
constraints stemming from the various software aspects and to reason on their correctness. 
By this we are not advocating that directions followed in existing work are wrong or incom-
plete. On the contrary, we believe that there is a tremendous evolution on the analysis and 
the comprehension of different stages of software development and from different viewpoints. 
Thus, our goal is to benefit from the research results in the aforementioned areas in order 
to provide a framework that allows the designer to survey easily and safely the development 
procedure of fault tolerant software. 

7 Conclusions 
In this paper we presented a formal framework that supports the development and the 
refinement of fault tolerant software architectures. We have used this framework for the 
formal documentation of software properties related to fault tolerance, and based on the 
specifications refinements and their correctness derived from its use, we have proposed a 
classification schema for organizing fault tolerance software properties. The classification 
schema is used to indicate to the designer a number of possible correct refinements for a given 
fault tolerance software property. We did not aim at providing some linguistic or graphical 
support for the expression of the fault tolerance software properties. Rather, we focused on 
the formal basis underpinning the refinement process of some abstract specifications into an 
elaborated description of a fault tolerant software architecture. 
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The originality of our contribution is that we provide the designer with means to reason 
on the composition, refinement and equivalence of fault tolerance software properties at 
different stage of software development. We build on our previous work [7], where, based on 
predicate logic and specification matching techniques, we reason on the equivalence and the 
compatibility of software properties in general. Our current research departs from the point 
in which we realized that the incorporation of fault tolerance requirements in a predefined 
application structure leads to several inconsistencies among the constraints placed by various 
software aspects. Based on this observation, we reached the conclusion that the selection of 
a fault tolerant mechanism with appropriate semantics should be guided by a classification 
schema in order to be both correct and efficient [13]. The mathematical basis proposed 
in this paper provides the means to construct such a classification schema, and to keep 
enriching it with newly specified fault tolerance properties. In addition, the formal basis 
permits the integration of our work with existing approaches on reasoning on the algorithmic 
software constraints, that are based on predicate logic. 

In parallel with specifying fault tolerance properties and introducing them into the clas-
sification schema, we also focus on the security software aspects [2], where we are facing the 
problem of systematically combining security constraints with fault tolerance properties. In 
some specific cases, the priority between those two nonfunctional aspects can be deduced 
by the correctness of their combination in a given order (e.g. confidentiality constraints 
should be satisfied before prior to the satisfaction of constraints related to communication 
reliability). However, we are not aware of any methods that provide systematic rules for 
combining these two nonfunctional aspects in a wide spectrum of possible scenarios. It is 
in our intentions for the near future, to look more closely into the combinations of fault to-
lerance software properties with other nonfunctional and algorithmic software aspects. We 
believe that this research direction is of great interest not only for the Aster project, but 
more generally for the construction of fault tolerant software architectures. 
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