N

ELSEVI

Available online at www.sciencedirect.com

ScienceDirect

S
ER Computer Standards & Interfaces 30 (2008) 315322

COMPUTER STANDARDS
& INTEREACES

www.elsevier.com/locate/csi

Advanced steps with standardized languages in the re-engineering process

Anna Medve

University of Pannonia (before named University of Veszprém), Faculty of Information Technology, Department of Information Systems, Veszprém, Hungary

Received 12 December 2006; received in revised form 20 August 2007; accepted 25 September 2007
Available online 12 October 2007

Abstract

Formal methods can be used at all stages of a software development project. In this paper we reflect on the roles of ITU-T standardized System
Design Languages and their interplay in design processes of cooperative systems, highlighting the usability of User Requirements Notation (URN)
standard to capture requirements with workflow-based re-engineering process of complex systems. In this paper we give our re-engineering
experiences with the URN-part Use Case Maps (UCM) language capabilities and also the transformation processes of the UCM model elements to
UML diagrams are presented. The new components can be very well documented and integrated into the existing system in a manner that even the

stakeholders get involved in it.
© 2007 Elsevier B.V. All rights reserved.

Keywords: Re-engineering; URN; UCM; UML-2.0; ITU-T System Design Languages

1. Introduction and motivation

In a previous article of the journal Computer Standards&In-
terfaces 27(3)(2005), Adamis et al. [1] have already presented
a survey of the most important standardized languages and
notations that belong to Z series [2] of languages of the Inter-
national Telecommunication Union. The Z series also contains
several standards [4—12], which are commonly named as ITU-T
System Design Languages. They are (please follow the list
of abbreviations) ASN.1, DCL, MSC, ODL, SDL, TTCN, and
URN composed by UCM and GRL, standards generally used in
a system modeling and development processes of telecommu-
nication systems. Adamis et al. [1] in this issue discuss the goals,

Abbreviations: ASN.1, Abstract Syntax Notation One [3]; DCL, Deploy-
ment Constraint Languages [12]; FMT, Formal Method Technique; GRL, Goal-
oriented Requirement Language [4]; ITU-T, International Telecommunication
Union [2]; IDL, Interface Definition Language; MDA, Model Driven
Architecture [13]; MSC, Message Sequence Charts [7]; OMG, Object-oriented
Management Group [13]; SDL, Specification and Description Language [8];
TTCN-3, Testing and Test Control Notation [11]; UCM, Use Case Maps [6];
UML, Unified Modeling Language [13]; URN, User Requirement Notation [5];
ODL, Object definition languages [9]; SAP, Systems, Applications and Products
in data processing.

E-mail address: medve@almos.vein.hu.

0920-5489/$ - see front matter © 2007 Elsevier B.V. All rights reserved.
doi:10.1016/j.¢s1.2007.09.004

the most important features and the basic syntactic and semantic
rules of the languages and notations. Showing the purposes and
the roles of these formal languages in the development process
of telecommunication systems, the authors point out the specific
features of the telecommunication systems that can be expressed
by these different languages.

In this paper we supplement the presentation of the ITU-T
System Design Languages familiarized in a previous article of
the Computer Standards&Intefaces 27(3)(2005) publication. We
present in Section 2 the scalability of roles of languages in their
interplay in the design processes of cooperative systems, high-
lighting the usability of User Requirements Notation standard to
capture requirements of complex systems with maps of work-
flow-based re-engineering processes.

Given in Fig. 1 the ITU-T multi-languages software process
includes different tool-dependent and/or manually adapted
language-mappings to serve as inputs for the combination of
language pairs in test or deployment tasks. Several combination
processes are given with transformations manually or automat-
ically between languages on a basis of standard supplements
that support transformations.

The ITU-T System Design Languages become in a class
by itself to support the MDA/UML standard [13]. The Super-
structure, that is the part of the language visible by the model-
er, comprise some well-known and established ITU-T formal

mailto:medve@almos.vein.hu
http://dx.doi.org/10.1016/j.csi.2007.09.004

316 A. Medve / Computer Standards & Interfaces 30 (2008) 315-322

MODELLING

—— m - modelling
—:=—+ i- inputdoc.
- --- c¢ - control

Software components

Installation
configuration

DPE platform
IMPLEMENTATION and EXECUTION

Fig. 1. The ITU-T System Design Languages roles in their interplay.

methods features like Message Sequence Charts (MSC) [7],
Specification and Description Language (SDL) [8], Real-Time
Object-Oriented Modeling (ROOM) [14] and others. Our in-
vestigation on ITU-T System Design Languages relates that
some concepts and methods of research in communicating
systems engineering are adaptable while introducing the IT
supports within socio-technical context rules in the organiza-
tions [15].

Experiments to model business processes with these lan-
guages are lesser-known and its rely to use of User requirements
Notations (URN) [5] and MSC languages in e-commerce by
Weiss et al. in [16] presenting the URN capability to satisfying
the goals of a Business Process Management (BPM) language
[17]. We use the architectural viewpoints of Use Case Maps
(UCMs) [6] the URN-part language for scenarios modeling
according to Buhrin [18], and according to Amyot and Musbach
in [19] the current UML features are presented as pieces of
puzzle in the UML development process and UCM is presented
as the missing piece. Gordijn in [20] relates on use URN to
develop system architectures supporting the business value and
process models. Medve in [21] presents the joint use of URN
with UML contributing to express enterprise models that can co-
evolve with enterprise engineering processes.

In Section 3 we present our results on the usability of User
Requirements Notation (URN) standard to capture requirements
for socio-technical systems by modeling with UCM the pro-
cesses of workflow based on software’s system. Our experiment
focuses on the adaptability of URN to capture users’ needs and to
derive UML2.0 features to express software components related
to the evolution of the ERP systems. Our experience in this area
is in the real case study in order to document the evolution of a
legacy system with UCM and UML [22].

Section 4 explains the transformation process of the UCM
model elements to UML diagrams. Finally, a discussion on
benefits of our experience and future plans is present.

2. ITU-T System Design Languages interplay in the
design processes

The ITU-T System Design Languages are continuously de-
veloped in Z series [2] of ITU-T Recommendations. These

languages are standardized formal and semiformal methods to
support the entire cycle of software development and standards
specification in telecommunication.

The leader role of the SDL (Specification and Description
Language) [8] and UML2.0 (Unified Modeling Language) [13]
cohesively generates the executable code. It is widely used
and supported by commercial tools including automatic code
generation, simulation and validation, it contain statements to
model both the architectural and behavioral aspects of systems.

The URN (User Requirements Notations) is a first standard-
ization effort for user requirements engineering. URN combines
two complementary notations: the GRL (Goal-oriented Require-
ment Language) [4] as Non-Functional Requirement frame-
work to capture business or system goals, alternative means of
achieving goals and rationales for contributions and decisions and
UCM (Use Case Maps) [6] as Functional Requirement framework
for scenarios modeling. The URN is applicable within standards
bodies, industry, and commercial organizations.

The MSC (Message Sequence Charts) [7] is very suitable for
modeling temporal behavior of the system by describing se-
quences of messages that are exchanged between system com-
ponents in order to achieve system functionalities, playing an
important part in modeling and controlling of SDL models.

ASN.1 (Abstract Syntax Notation One) [3] defines sets of
rules, which are suitable for converting any type of data into a
bit stream suitable for transmission. The ASN.1 translations to
IDL are the most recent results of ASN.1 Consortium for formal
description of data types such as ASN.1.

The ITU-ODL () [9] offers necessary key concepts to design
distributed telecommunication applications as Computational
Objects (COs) communicating via multiple well defined inter-
faces. ODL is redefined in eODL (Extended Object Definition
Languages) [10].

TTCN (Testing and Test Control Notation) [11] is designed
for functional black box testing and to describe Abstract Test
Suites (ATS) which are independent of a concrete test platform.
Test software can be modeled and developed in exactly the same
way as the functional system software.

DCL (Deployment Constraint Languages) [12] serves to
describe the Distributed Processing Environment (DPE)
Architecture for installing and configuring software compo-
nents in environments of applications in telecommunication and
information services.

In order to apply different techniques with their specific
advantages in a combined approach for the design of distributed
systems, the underlying concepts have to be integrated within a
common concept space. The multi-language space of ITU-T
System Design Languages have concepts on interrelations of
processing the distributed systems by dividing software pro-
cesses within co-operative autonomous languages to realize a
controllable software development.

Given in Fig. 1 the ITU-T multi-languages software process
includes different tool-dependent and/or manually adapted
language-mappings (m0-mo6) to serve as inputs (il-i5) for the
combination of language pairs of the Validation& Verification
tasks (cl, c1_b) or of the deployment and configuration tasks
(c2, c3) before and after code generation. It operates in the two

A. Medve / Computer Standards & Interfaces 30 (2008) 315-322 317

main parts of the languages space: the Modeling part and the
Implementation and Execution part of languages space.

There are several ways to combine languages to improve the
quality of requirements engineering and in order to obtain the
system architecture, as we can see in Fig. 1. The UMLI1.x model
of system could be converted into SDL specification [23]. Data
given in ASN.1 could be incorporated into SDL and TTNC
specifications. We can check the SDL specification with MSC
sequence diagrams. We can use SDL specification to generate
the test cases for TTCN testing. We can apply UCMs and MSC
and GRL to evaluate requirements. UCMs can be applied such as
input in transformation to UML activity diagrams and sequence
diagrams, as we present in Section 4. The UML 2.0 version
integrates completive the MSC language for dynamic analysis
purposes and SDL language for state machine implementation.

Several tools and methods that we can find at the SDL Forum
Society [24] and at the ITU-T [2] are issued to support the joint
use of combinations of ITU-T System Design Languages. The
combinations of languages exploit their modeling or controlling
force in the software processes and in the automation code
generation. In the rest of the paper we present URN details on
their advantages and the UCM-based re-engineering case. The
introduction of the computer may change the organization’s
processes, and, as a result, the majority of re-engineering cases
occur within the emergent and the consequential requirements,
and open up new ways of working which generate new system
requirements.

3. The UCM capabilities and the re-engineering case

UCM notations are very useful for descriptions of service
functionality in requirements elicitation phase, where usually
requirements suffer from heavy instabilities, whereas scenarios
and potential component topologies (structures of functional and
network entities) are volatile. UCMs fit well in approaches that
intend to bridge the gap between requirements and an abstract
system design, where a tentative distribution of system behavior
over a structure is being introduced. Thus, they represent useful
and powerful tools for the support of the thinking process and the
evaluation of functional alternatives. It is essential and that UCM
capabilities enable early reasoning on the basis of UCM model,
about developing and implementing the components to the
changed system’s processes.

In re-engineering, [35] we change the design and implemen-
tation, perhaps to satisfy new requirements or perhaps to improve
a system, say, to respond a customer feedback about inadequate
performance. Once end-users have experience of a system, new
requirements emerge for the different reasons of business pri-
orities that may change with consequent changes of IT supports.

Our research results in [15,21], show the usefulness of using
UCM maps to express the changed requirements. We deduct the
needed system requirements by expressing the actual workflow
processes of the systems. Consequently, we can involve the end-
user in UCM specification to discover the changed working
processes. Thus in bask-end an architect expresses system re-
quirements specification and makes performance analysis [25].
We apply Buhr method, who in [26] suggests the use of UCMs to

express architecture that should not be violated while re-
engineering actual systems at the detailed level, i.e. the enduring
requirements. If the original high-level design was well con-
ceived, re-engineering may require only modifying the detailed
level. The Buhr’s methods being important in actually needed
Model Driven Architecture (MDA) software processes steps.
Amyot in [27] presents some combination of forward engineer-
ing and reverse engineering may be used to try to achieve a
satisfactory re-engineering process.

Use Case Maps as part of the URN standard [5] to specify
functional requirements. Use Case Maps (UCM) is the language
used for the URN-FR is the notation [6]. UCM specifications
serve as a technology-independent bridge between requirements
and design when combining behavior and structure in one view,
providing a path-centric view of the system. It supports to ex-
press all traditional objectives of information system for en-
terprise modeling and understanding as socio-technical systems
with abstract components and constructs.

UCMs show related and interacting use-cases in a map-like
diagram (see Fig. 2). Paths are wiggle lines that in an UCM
diagram show the chain of events of a scenario. Scenarios may
interact, for example, by one path triggering or disabling another.

Basic notations of UCMs (see Fig. 2) start points, responsi-
bilities, end points and components. Start points are filled circles
representing pre-conditions or triggering causes. End points are
bars representing post-conditions or resulting effects. Responsi-
bilities are crosses representing actions, tasks or functions to be
performed. Components are boxes that represent, at the require-
ments level, abstract entities corresponding to actors, processes,
objects, containers, agents, etc. (See also Fig. 3).

A lengthy path specification can be fitted into a root map by
moving segments of it to child maps, using the stub and plug-in
mechanism. The diamond symbol indicates a sfub notion.
Multiple levels of stubs and plug-ins can be used, structuring
and integrating scenarios in various ways. Integration may

Causal Path Responsibilities

\ A -
\\ ‘// l \"\‘

Start Point — \\ chk vy upd ' Tﬁ"'/ End Point
req @ % {"ng
Timer
chkTime HnR
in1 . e Ll i louﬂ
finRange] ae P INN faiy
pd
Sute l i Time-out Path
OR (fork) Condition Dynamic Stub
Originating \‘ Dis'}!_ay,/up ’
N] INT,¢ NOUTT .
’ VT [idle] [, .—)(—' ring
~, b
Dua I u&f}pb prb AND (fork)
* ' /* \
Segment Label OR {join)

Fig. 2. Basic notations of an UCM path, stub and plug-in mechanisms, and
control elements.

318

A. Medve / Computer Standards & Interfaces 30 (2008) 315-322

Customers Dunafoldvar Factory
Private Customers Sales Department Production
Buying Office 1: Juhasz Julianna EndsS
End2)
.\ sh-desk: Anatl Liszléné n Endd Office 3: Menyhart Ferencne
Order 1 P
- Buyi
ansfer
payrgent wil tr:
— I \ﬂ o Payment with mpngy t
ig Companies ! o
Jae our2 . good acceptgnce
Paympnt wi
Order 2 Addr 2 [dat - Ei
. 1
Storekeepeg q.0.
Chddr 3 [dat 5 wigQ O 5E
f Costumer N 4
Waitl gfige 2: Racz Miklos (Leader) 9.9/6.(d)
External depots Lo ry of orders .0.(d
] Wait2 gl p. (&) f5od peceptafice
Order 3 rder 4 (d =
Summary of orders ? Ey
Lo L
| / Crdere orders (datgbase) Mi \
/ c¢-ordinate orders (database)
Internal depots S transhilh Dke) @ -
t(d)
Order] tid)
N
) 4

Fig. 3. The root-map of the Sales & Delivery UCM model for user’s highlighted workflow processes.

involve or static stubs, which contain only one sub-map, or
dynamic stubs, which may contain multiple sub-maps whose
selection can be determined at run-time according to a selection
policy based on numerous control elements OR-join, OR-fork,
AND-join, AND-fork, timer, abort, failure point, and shared
responsibilities.

Multiple paths through the same component and by one path
triggering and another disabling show scenario interactions. For
further details can be found in Amyot et al. [28], in Buhr [26]
and [18], and in UCM Virtual Library [29].

The jUCMNav tool, [30] which supports the URN standard
actually, is user-friendly with graphical editor under Java-based
open-source Eclipse platform. The export-import possibilities in
JUCMNav are various by generating the follows types:

® We can generate industry-standard XML files [31], which
can be used as input to other tools that support XMI standard
and can be imported into an existing model [32].

® The textual MSC files, by scenario definitions used for
generating Message Sequence Charts in the Z.120 textual
form [7]. The MSC files can be visualized using commercial
and research tools [24] (e.g. Telelogic Tau 4.4).

® The intermediate XSLT files, by scenario definitions used for
generating scenarios in an intermediate XSLT transformed
into other representations such as MSC, UML sequence/
collaboration/activity diagrams, TTCN test cases, etc. [30].

e The DXL scripts generated to run in DOORS requirements
management system and update the DOORS database for
Telelogic DOORS version 7 or above [33].

® The CSM files, by UCM models exported to CSM (Core
Scenario Model), an intermediate format used by various
tools for performance analysis [25].

The UCM-based re-engineering case study, which we give an
overview of, the reengineering of Sales and Delivery processes
within the software evolution of legacy system at the industrial
unit Messer Hungary Dunaf6ldvar MbH (abbreviation on MH
in the following). The software evolution was caused by SAP
database inconsistencies, which result from novel business rules
to satisfy orders within outsourcing transports services, and
introduce changeable delivering services on-demand. Introduc-
ing IT support by two reports on intermediate order and inte-
grating their usage in workflow processes have composed the
solution.

There are growing the conflicts between the unique require-
ments of this work process versus the utilised off-the-shelf SAP
software applications. The UCM-based requirements specifica-
tion of work process dealt to performs the structure of work tasks
and subtasks, because the whole flow and interdependencies of
work enables the understanding, validation, and the prioritising
business needs in appropriate scope of processes [22]. This
UCM handled method results in specification of the views of the
requesting organisation, which is the functional rather than
the whole enterprise area. The requirements specifications for
system integration will be included, which contains views on the
enterprise area, in the system requirements specification UCM
model.

To deduct and solve the emergent inconsistencies we have
used UCM to map the actually workflow processes of sales
sub-domain involving the users in mapping phase of require-
ments elicitation. At back-end an architect can observe the
mapped processes and he has to set up the user requirements
specification and the requirements analysis to perform it before
the detailed design phase. After that, the decisions on changes
of IT supports and workflow processes have been made. The

A. Medve / Computer Standards & Interfaces 30 (2008) 315-322 319

complete UCM, UMLI1.3 and ABAP4 solution is given in
Medve et al. [34].

To construct UCM scenarios the structural and organizational
concepts of the Sales & Delivery domain will match the causal
relationship concepts of UCM model. In the case of ordering, a
product goes along the logistics chain via integrated processes.
The sales department accounts for the sale of the manufactured
goods, customer service, and the ongoing provision of stores. By
means of a document chain, a Sales&Delivery workflow is
established, which starts with the first contact with the customer,
and it lasts until invoicing of the shipped goods, and passing of
the data to Accounting. All phases and options appear on sales
documents, enabling all the sales activities to be processed, the
elements of the logistics chain to be identified, and real times
recorded. Sales and marketing activities can be planned and
controlled on the basis of these data. The main processes of
system are represented in the UCM root-map; the main activities
are detailed in the UCM sub-maps. The activities have allocated
workflow-based which follow organizational components as
Customer, Sales, Depot and Logistic.

Analyzing the main processes of this domain, we seek answers
to the following questions: who is interacting with whom, and
when is a certain job dealt with at a given location? Based on
informal requirements of sales and distribution services acquired
during interviews with employees, we have obtained the context
view of the sales subsystem.

The scenario of the main processes starts with a triggering
event on components Private Customer, Big Companies, Ex-
ternal Depot, Internal Depot, and ends with post-conditions (bar
labeled End_1, to End_5). These components are physically
diverse customers who are presented to help the discussions with
stakeholders. At the analysis phase these components will be
modeled in one abstract component Customers and they get
labeled conditions at the starting point indicated with a filled
circle. We can observe two of stubs, the Orders and the Buying
stubs, link to sub-maps plug-ins. Fig. 4 shows the Buying UCM
sub-map.

In the process of directly purchase the BUYING in OFFICE_1
we can see at Fig. 4, who we distinguish old and news consumers
in the steps of payment and the CHARGE BUYING sub-map process.
The features that conform to the domain of business processes can
easily be identified and specified in sub-UCM diagrams.

In the rest of paper we present the UCM model transforma-
tion into UML2.0 diagrams, as we can observe in Fig. 1 cor-
responding to the path (m0-ml-il-m2) of the UCM-MSC-
UML2.0 languages interplay. Depending on the tools, UCM or
MSC will be the input document language.

4. UCM model transformations into UML2.0 diagrams

Our experiences in UCM model-based process on combina-
tion of UML, UCM, languages we illustrate using the diagram-
based method to build UML2.0 model elements with Telelogic
Tau G2 tools [33].

In UCM model transformation into UML2.0 diagrams, an
important aspect is the fact that the UML modeler builds the
diagrams without having any contact with the stakeholders

respectively with the UCM modelers, being in touch only with
the project manager. This facts follows the most important
changes in UML2.0, namely decoupling of activity modeling
concepts from state machines and the use of notations popular in
the business modeling community. We build the model elements
iteratively with focus on architecture and the business rules
interoperability. We note that the UCM standard Z.152 [6]
express the properties of path traversal mechanisms for UCM,
which help to autotrain in translation in mind within the se-
mantics of languages.

In the rest of the paper we present a modification issue with
an emergent user requirement improvement. The entire solution
is given in [36].

In order to translate UCM maps in UML diagrams we have
oriented along to the root UCM and this responsibilities de-
scriptions. At first, we start the analysis at one starting point.
We have used the diagram-based method, realising Use Case,
Sequence and Class Diagrams by their iterative improvements
applying manual translation of the UCM models. During this
preparation, when we realise a certain kind of control of the
sequence diagram, possible imperfections of the builded di-
agram or mistakes in the processes’ order can be identified. This
is very important, because using the sequence diagram in this
way increases the chance of continuing without a mistake. With
this early discovering of mistakes, only the reconstruction of the
diagram is needed. It leads to a significant time saving.

4.1. Building use case diagrams: they show use cases and
actors, and their interrelationships

Use cases and relations have been derived from UCM
scenarios and UCM Description Report. We go along one path,
which originates in this point by creating a Use Case Diagram,
and if we find a responsibility point, we create a use case. We
have mapped the components in the UCM diagrams which
have organisational or functional roles as actors. The semantics
of “extend” and “include” relations in use case diagrams allow
insertion of sub-scenarios into an existing scenario according to
a selection policy based on numerous control elements (see
Fig. 2) OR-join, OR-fork, AND-join, AND-fork, timer, abort,
failure point, and shared responsibilities. In case a stub or a
plug-in occurs, it is inevitable to make a decision on relation
aspects of “include” or “extend” or a simple use case. The
“generalise” relation allows systematic modification of scenar-
ios with objectering from workflow-based instances of UCM
components and responsibilities of business processes i.e. Ex-
ternal depots, Internal depots, or Payment modalities, which
will be generalised in Depots or Payment objects in type class
or interface class (See Fig. 3).

4.2. Building class diagrams: they show a collection of static
model elements such as classes

We have mapped the components in the UCM maps which
have organizational or functional roles as active classes or
interfaces into Class Diagrams. We create a new or complete
existing class method when we are at a responsibility point. We

320

Start Customer check (database) Debt check (database)

® ¥ —

-

A. Medve / Computer Standards & Interfaces 30 (2008) 315-322

Cash-Desk: Antal Laszlone

[There is debt]

LY

[Paying]
»

L4
[Old customer]

[New customer]
Account maling (datbase)

[There is not debt]

Account making (database)

Lease agreement making (database)

Lease agreement making (database)

bottle purchase chasa

Rent pyying

Ol

Cd L4

[loop]
Permisskn request
debt paying

[Permissicg request]
End1

Bottle claimfeceptior

propgrty check (database)

(loop)

[Hired bot]

hried B

Pay an extrg/Charge for the bottle

ny
Charggbuying

9

check delifery claim
(228

Paying account in cash

account paymegt assessment
[loop]

make account final
[paying with money]

paying with money transfer]

’ . paying in cash
Paying with money transfer

Fig. 4. The UCM sub-map of Buying plug-in.

have mapped the components representing resources of work
processes as typed classes into Class Diagrams. When we map
guarded ports of active classes, we highlight it with this static
structure of behavior aspects of the communications among
objects to accomplish goals.

4.3. Building sequence diagrams: they model the sequential
logic, that is, the time ordering of messages between classifiers

UML sequences diagrams and MSC diagrams can be
translated from UCM maps following transformation rules of
Amyot et al. [28]. The components are mapped in instances, the
start and end points of path in messages, the responsibilities in
actions, the And-Forks in inline-statements, the timers in timers.
Abstract messages are derived from an issue when there is a
path through components.

We have synthesized our experiences to map abstract mes-
sages, as follows:

® We can use the visual design draw-drop advantages when we
first complete the objects of class diagrams.

® We propose to derive the interacting instances in parallel
with building active classes from components.

Time sequenced responsibilities and their environment
constraints are mapped in the mind;

Communication flows statements of business-protocols
related message sequences corresponding of control points
are to be made;

The messages and their attributes are to be supplemented
with goals of business process interoperability.

Qualitative analysis of process models must be made
according [28] et [37].

Selections policies of path ramifications to build inline
operators are to be applied [23].

The decisions on refactoring use cases given for obtaining
documentation segments to highlighting sentences of DFT
(design for test) and AO (aspect oriented) of views in the
model must be made according to Medve in [38].

The obtained sequence diagrams show a flattened view of
the scenarios, while the hierarchical structure of UCMs crowded
with stubs and plug-ins disappears. We can model a system with

A. Medve / Computer Standards & Interfaces 30 (2008) 315-322 321

(a) (b) Tru

Time recenciiiation —'

— Truck attachme

ack
Truck Handiing “1>E:|—
- Trucks < = atta:l:n‘g‘_\

Truck_ataching

r | ngis7inwe- i

Truck_attaching()

(d)

sd SequenceDiagrami I Trafisporting -
Truck_attaghing
Customerl | Logistics I Tlruck_harl\dl
- C aFrying_tyns
1 _Time of Carrving() i Waiting
Ack(r A
. [Waiting
Truck_attachingt, L
Frme Trucic acin)
Ack

Fig. 5. The diagram-based steps to adding the new component to the UCM-based UML model.

several separate but related viewpoints with sequence diagrams
of interacting objects.

4.4. Building activity diagrams: they depict high-level business
processes, including data flow

UCM and UML Activity diagrams are complementary.
Well-nested UCM maps depending on tool support can be
translated into Activity diagrams [19]. Depending on tool
support and its visual design forces, we can take advantage to
construct Activity diagrams from UCM maps before building
sequence diagrams, which are the benefits of controlling the
coverage of UCM model before the transformation to reduce
the number of iterations.

4.5. Manage changes and assets: an MDA process is applied
with reuse

In the following we present a model modification issue with
an emergent user requirement improvement. We will attach a
truck protocol to Sales&Delivery business rules.

When the UML model is complete and a modification need
appears, we recur to the UCM framework and follow an MDA
software process. We reach this by creating a new component in the
UCM diagram (see Fig. 5 a.) and the related path segment and
responsibility for this modification. We have to create a new actor in
the use case, and in the sequence diagram (Fig. 5 c.), and we have to
create a new class for this component see at Fig. 5 b. In addition, we
have to create new methods in the classes, and we have to modify
the existing methods and create new state chart diagrams (Fig. 5 d.).

5. Conclusion

In this paper, we have given a survey of the ITU-T System
Design familiarised in a previous article of the Computer
Standards&Intefaces 27(3)(2005) publication, and a presenta-
tion of techniques in re-engineering processes.

In the presentation of languages (ASN.1, URN, MSC, SDL,
eODL, TTCN, and UML) used for system modeling and

development, we highlight the roles of languages in their
interplay in the design processes. Their roles help to model
software, data and business through a combination of multiple,
open industry standards that are converging.

The UCM techniques are useful to help the mind processes
and conversations between modelers and their audiences, often
professional consultants, in the phase of elicitation of the
business processes and rules. Besides, we can ensure that all
members have a similar understanding of the legacy systems
process’ and a consistent message is transferred to the future
documentation users excluding conflicting interpretations
which may cause the failure of reengineering.

Our re-engineering experiences with UCM capabilities and
also the diagram-based transformation processes of the UCM
model elements into UML diagrams are presented. The new
components can be very well documented and integrated into
the existing system in a manner that even the stakeholders are
involved in it. Our workflow-based requirements elicitation
with UCM tool-based support of conversations between
stakeholders and developers makes it easier to understand
user’s needs and to correlate with software evolution aspects.

We claim that the initial emotional impact of understand-
ing, and eventually acceptance and positive experience lead
the stakeholders to the use of UCM symbols (paper read-
write form) in communication between project team and the
employees. This contributes to the success of reengineering.
We claim that the stakeholders do not need to understand
the UCM or UML in detail. They must understand it well
enough to discuss the results of the UML, and not model the
diagrams.

In the future, we plan to exploit the experience gained during
this study on a research of the UCM and GRL roles in the
separated specification of domain specific properties and the
communication’s properties of interactions.

Acknowledgement

We are grateful to Prof. Gyorgy Kozmann and to Prof. Katalin
Tarnay, for their inspiring research work and for their comments

322 A. Medve / Computer Standards & Interfaces 30 (2008) 315-322

on stimulating discussions. We are also grateful to Miklos
Raécz, the Sales Delivery Department chief at Messer Hungary
Dunafoldvar MbH, for his collaboration in requirements
elicitations as far as the industrial case study is concerned.

At last but not least we are also grateful to Tamas Molnar,
Ferenc Menyhart respectively Sandor Pintér, all of them being
students and members of the re-engineering project team.

References

[1] G. Adamis, R. Horvéth, Z. Pap, K. Tamay, Standardized languages for
telecommunication systems, Computer Standards & Interfaces 27 (3) (2005)
191-205.

[2] ITU-T Recommendations Z series Languages and general software aspects
for telecommunication systems, http://www.itu.int/rec/T-REC-Z/en.

[3] ITU-T — International Telecommunications Union Draft Recommendation
Z.680 (02/03) ASN.1: Abstract Syntax Notations One, Geneva, Switzerland,
2003.

[4] ITU-T — International Telecommunications Union Draft Recommendation
Z.151 (02/03) GRL: Goal-oriented Requirement Language, 2003.

[5] ITU-T — International Telecommunications Union Recommendation
Z.150 (02/03) URN: User Requirements Notations — Language require-
ments and framework, 2003.

[6] ITU-T — International Telecommunications Union Draft Recommendation
Z.152 (02/03) UCM: Use Case Map Notation. Geneva, Switzerland, 2003.

[7] ITU-T — International Telecommunication Union, Recommendation
Z.120: Message Sequence Chart (MSC), Geneva, 1999.

[8] ITU-T — International Telecommunication Union, Recommendation
Z.100: Formal description techniques (FDT)—Specification and Descrip-
tion Language (SDL), Geneva, 1999.

[9] International Telecommunication Union, Recommendation Z.130: Object
Definition Language (ODL), Geneva, 1999.

[10] ITU-T - International Telecommunication Union, Extended Object
Definition Language (¢ODL): Techniques for Distributed Software Compo-
nent Development Conceptual Foundation, Notations and Technology
Mappings, Geneva, 2003.

[11] ITU-T - International Telecommunication Union, Recommendation
X.292: The Tree and Tabular Combined Notation (TTCN), Test and Test
Control Notation — TTCN3, 2003.

[12] ITU-T — International Telecommunication Union, Recommendation
Z.600: Information technology—open distributed processing—Deploy-
ment Configuration Language(DCL), draft, Geneva, 2003.

[13] OMG Unified Modelling Language: Superstructure, Version 2.0, OMG
Final Adopted Specification ptc/03—08-02, January 10 (2003 from http://
WWW.0omg.org.

[14] B. Selic, G. Gullekson, P.T. Ward, Real-Time Object-Oriented Modeling,
John Wiley & Sons, 1994.

[15] A. Medve, K. Szakolczay, G.Y. Kozmann, IT models for e-health
application processes, Book chapter, in: M. Duplaga, K. Zielinski (Eds.),
Overcoming the barriers to e_he@]lth growth in Enlarged Europe, Health
and Management Press, Krakow, 2005, pp. 9-28.

[16] M. Weiss, D. Amyot, Business process modeling with URN, International
Journal of E-Business Research 1 (3) (2005) 63—90.

[17] Business Process Modeling (BPM): www.bpm.org, Business Process Rules:
www.brcommunity.org.

[18] R.J.A. Buhr, Use case maps as architectural entities for complex systems,
IEEE Transactions on Software Engineering 24 (12) (1998) 1131-1155.

[19] D. Amyot, G. Mussbach, On the extension of UML with use case maps
concepts, The 3rd International Conference on the Unified Modelling
Language, York, UK, October (2000).

[20] Jaap Gordijn, Hans de Bruin, Hans Akkermans, Scenario Methods for
Viewpoint Integration in e-Business Requirements Engineering, HICS,
2001 Retrieved September 25 2003 from cs.vu.nl/~gordijn/h3411.pdf.

[21] A. Medve, Entreprise modeling with the joint use of user requirements
notations and UML, in: P. Rittgen (Ed.), Enterprise Modeling and

Computing with UML, Development Editor IDEA Group, Inc., Hershey,
USA, 2006, pp. 46—69.

[22] A. Medve, Workflow-based re-engineering process of socio-technical
systems, in: M. Raffai (Ed.), ISBIS’2007 Symposium on Business
Information System, 9-10 of November 2007, Széchenyi Istvan University,
Gyor, Hungary, Novadat, 2007, p. 36.

[23] A. Medve, Standardized formal languages for reliable model engineering,
international scientific conference, MicroCAD’2005 International Scien-
tific Conference, Applied Information Engineering,ITTC Miskolc, Hun-
gary (2005) 315-321.

[24] SDL Forum Society: www.sdl-forum.org;

[25] D.B. Petriu, D. Amyot, M. Woodside, Scenario-Based Performance Engi-
neering with UCMNav, SDL Forum, 2003 Retrieved January 10, 2005
from ftp:/ftp.sce.carleton.ca/pub/cmw/sd103-PetriuAmyotWoodside.pdf.

[26] RJ.A. Buhr: Use Case Maps for Object-Oriented Systems, Retrieved
September 25 2003 from http://www.usecasemaps.org/pub/UCM_book95.pdf.

[27] Hamou-Lhadj, E. Braun, D. Amyot, T. Lethbridge, Recovering Behavioral
Design Models from Execution Traces, 9th European Conference on
Software Maintenance and Reengineering, CSMR, 2005, Retrieved
September 2, 2006 from http://jucmnav.softwareengineering.ca/twiki/bin/
view/UCM/VirLibCsmr05 (2005).

[28] D. Amyot, X. He, Y. He, D.Y. Cho, Generating Scenarios from Use Case
Map Specifications, 2003 Retrieved January 10, 2004 from http://www.
usecasemaps.org/pub/QSIC03.pdf.

[29] UCM Virtual Library: http://jucmnav.softwareengineering.ca/twiki/
virtuallibrary.

[30] jJUCMNav: http://jucmnav.softwareengineering.ca/twiki/bin/view/
ProjetSEG/WebHome.

[31] W3 Consortium Extensible Markup Language (XML) 1.0. W3C Recom-
mendation, 10 February 1998. http://www.w3.org/TR/REC-xml, (1998).

[32] D. Amyot and A. Miga: Use Case Maps Linear Form in XML, version
0.20, July 2000. http://www.UseCaseMaps.org/xml.

[33] Telelogic Tau G2: www.telelogic.com.

[34] F. Menyhart, T. Molnar, A. Medve, Kovetelményelemzés-¢és specifikalas
egy termékgyartd vallalat értékesitési folyamatanak ujratervezéséhez,
(in Hungarian: Requirements engineering for Re-engineering of supply
and delivery process and SAP integration), Technical Report, University of
Pannonia, 2004.

[35] G. Mussbacher, D. Amyot, M. Weiss, Visualizing Aspect-Oriented

Requirements Scenarios with Use Case Maps REV’°2006, 2006 Retrieved

September 25, 2006 from http:/jucmnav.softwareengineering.ca/twiki/

bin/view/UCM/VirLibRev06.

S. Pintér, A. Medve, Termékgyartd vallalat értékesitési folyamatanak

UCM alapt részletes objektumterve UML2.0 és SDL formalis nyelveken,

(in Hungarian: UCM-based re-engineering of supply and delivery process

with UML2.0 and SDL), Technical Report, University of Pannonia, 2006.

[37] A. Pataricza, A. Balogh, L. Gonczy, Verification and validation of
nonfunctional aspects, in: P. Rittgen (Ed.), Enterprise Modeling and
Computing with UML, Development Editor IDEA Group, Inc., Hershey,
USA, 2006, pp. 261-303.

[38] A.Medve, MSC and the aspect-oriented paradigm in protocol engineering,
MicroCAD’2003 International Scientific Conference, Applied Information
Engineering, 6—7 March 2003, Innovation and Technology Transfer Centre
Miskolc, Hungary, 2003, pp. 71-78.

136

=

Anna Medve is an assistant professor at the University of
Pannonia. Her current research field is the application of
formal methods supported with standards of software
development in domain specific fields. Her research
interests primarily concentrate on the field of require-
ments engineering and design for testability, patterns
of conceptual frameworks. She is a member of the
J. Neumann Society, the SDL Forum Society, the IEEE
and the IEEE Computer Society.

http://www.itu.int/rec/T-REC-Z/en
http://www.omg.org
http://www.omg.org
http://www.bpm.org
http://www.brcommunity.org
http://www.sdl-forum.org
ftp://ftp.sce.carleton.ca/pub/cmw/sdl03-PetriuAmyotWoodside.pdf
http://www.usecasemaps.org/pub/UCM_book95.pdf
http://jucmnav.softwareengineering.ca/twiki/bin/view/UCM/VirLibCsmr05
http://jucmnav.softwareengineering.ca/twiki/bin/view/UCM/VirLibCsmr05
http://www.usecasemaps.org/pub/QSIC03.pdf
http://www.usecasemaps.org/pub/QSIC03.pdf
http://jucmnav.softwareengineering.ca/twiki/virtuallibrary
http://jucmnav.softwareengineering.ca/twiki/virtuallibrary
http://jucmnav.softwareengineering.ca/twiki/bin/view/ProjetSEG/WebHome
http://jucmnav.softwareengineering.ca/twiki/bin/view/ProjetSEG/WebHome
http://www.w3.org/TR/REC-xml,
http://www.UseCaseMaps.org/xml
http://www.telelogic.com
http://jucmnav.softwareengineering.ca/twiki/bin/view/UCM/VirLibRev06
http://jucmnav.softwareengineering.ca/twiki/bin/view/UCM/VirLibRev06

	Advanced steps with standardized languages in the re-engineering process
	Introduction and motivation
	ITU-T System Design Languages interplay in the design processes
	The UCM capabilities and the re-engineering case
	UCM model transformations into UML2.0 diagrams
	Building use case diagrams: they show use cases and actors, and their interrelationships
	Building class diagrams: they show a collection of static model elements such as classes
	Building sequence diagrams: they model the sequential logic, that is, the time ordering of mess.....
	Building activity diagrams: they depict high-level business processes, including data flow
	Manage changes and assets: an MDA process is applied with reuse

	Conclusion
	Acknowledgement
	References

