
Available online at www.sciencedirect.com
www.elsevier.com/locate/jss

The Journal of Systems and Software 81 (2008) 747–763
Teaching disciplined software development

Dieter Rombach a, Jürgen Münch a, Alexis Ocampo a,*, Watts S. Humphrey b, Dan Burton b

a Fraunhofer Institute for Experimental Software Engineering, Fraunhofer-Platz 1, 67663 Kaiserslautern, Germany
b Software Engineering Institute, Carnegie Mellon University, 15213-3890 Pittsburg, USA

Received 1 April 2007; received in revised form 8 June 2007; accepted 9 June 2007
Available online 16 June 2007
Abstract

Discipline is an essential prerequisite for the development of large and complex software-intensive systems. However, discipline is also
important on the level of individual development activities. A major challenge for teaching disciplined software development is to enable
students to experience the benefits of discipline and to overcome the gap between real professional scenarios and scenarios used in soft-
ware engineering university courses. Students often do not have the chance to internalize what disciplined software development means
at both the individual and collaborative level. Therefore, students often feel overwhelmed by the complexity of disciplined development
and later on tend to avoid applying the underlying principles. The Personal Software Process (PSP) and the Team Software Process
(TSP) are tools designed to help software engineers control, manage, and improve the way they work at both the individual and collab-
orative level. Both tools have been considered effective means for introducing discipline into the conscience of professional developers. In
this paper, we address the meaning of disciplined software development, its benefits, and the challenges of teaching it. We present a quan-
titative study that demonstrates the benefits of disciplined software development on the individual level and provides further experience
and recommendations with PSP and TSP as teaching tools.
� 2007 Elsevier Inc. All rights reserved.

Keywords: Software development; Productivity; Defect density; Size estimation; Effort estimation; Yield; Personal software process; Team software
process; Experimental software engineering; Software engineering education
1. Introduction

In this paper, we use a definition of discipline that
relates to skill building. The ‘‘focus of discipline is on
improving performance . . . it concerns the fidelity with
which a defined process is actually followed’’ (Humphrey,
2006). Discipline is particularly important in software
development because many software products are used in
critical applications, and because undisciplined software
development work has a large potential for causing eco-
nomic or even physical harm. Over the last 20 years, a
growing family of technical and management practices
0164-1212/$ - see front matter � 2007 Elsevier Inc. All rights reserved.

doi:10.1016/j.jss.2007.06.004

* Corresponding author. Tel.: +49 631 6800 2167; fax: +49 631 6800
1399.

E-mail addresses: Dieter.Rombach@iese.fraunhofer.de (D. Rombach),
Juergen.Muench@iese.fraunhofer.de (J. Münch), Alexis.Ocampo@iese.
fraunhofer.de (A. Ocampo), watts@sei.cmu.edu (W.S. Humphrey),
dburton@sei.cmu.edu (D. Burton).
have been developed that, if properly used, will consistently
deliver quality products on committed schedules. However,
when team members do not properly follow these practices,
their projects are typically late, over cost, and produce
poor-quality products.

The Personal Software Process (PSP) course guides
faculty in teaching disciplined development practices to
software engineering and computer science students
(Humphrey, 2005). While the PSP has not yet been widely
adopted by academic programs, there is increasing indus-
trial use and the results show that, when engineers are dis-
ciplined in their personal practices, their performance
improves. This paper summarizes a study of the data gath-
ered while training 3090 engineers. Most of the students
were experienced engineers working for industrial software
development organizations, and the instructors were either
from the Software Engineering Institute (SEI) at Carnegie
Mellon University or were trained by the SEI.

mailto:Dieter.Rombach@iese.fraunhofer.de
mailto:Juergen.Muench@iese.fraunhofer.de
mailto:Alexis.Ocampo@iese.
mailto:watts@sei.cmu.edu
mailto:dburton@sei.cmu.edu

748 D. Rombach et al. / The Journal of Systems and Software 81 (2008) 747–763
1.1. Why is discipline important for software organizations?

The performance of a development organization is
determined by the performance of its engineering teams.
Further, the performance of an engineering team is deter-
mined by the performance of the team members. Finally,
the performance of the engineers is, at least in part, deter-
mined by the practices these engineers follow in doing their
work.

While communication skills, native ability, intelligence,
and experience have an unquestioned effect on engineering
performance, this study shows that the predictability, qual-
ity, and productivity of a software developer’s work can be
measurably improved through training in disciplined per-
sonal practices. Furthermore, studies have shown that this
improved performance at the personal level results in com-
parable improvements in team and project performance
(Davis et al., 2003; McAndrews, 2000). These benefits are
typically manifested by shorter development cycle times,
fewer test defects, and reduced development and mainte-
nance costs.

1.2. Why is discipline important for students?

Development work is becoming more challenging every
year, and to succeed at this work, aspiring engineers must
focus on building their personal capabilities. ‘‘Excellence
starts with the individual. Achieving excellence is a con-
stant struggle, principally because the world is changing.
What was once considered excellent no longer is. This
means that we must continually focus on improving our
personal capabilities’’ (Humphrey, 2000). The critical need,
then, is to understand how performance is evaluated and
know what would constitute excellence.

While the performance of students is largely determined
by their ability to get good grades, the technical proficiency
of practicing engineers is not as significant in performance
evaluations and promotions. Except for the occasional
high- and low-performing exceptions, most graduate engi-
neers are assumed to be technically competent. One of the
major differentiators in industry is the engineer’s ability to
consistently and predictably produce quality results. When
engineers follow the disciplines taught by the PSP, they can
accurately plan their work, make responsible commit-
ments, consistently meet their commitments, and produce
high-quality results.

While these skills are important to engineering manage-
ment, they are particularly important to practicing engi-
neers. The reason is that when engineers consistently
meet their commitments, their managers soon realize that
they can manage themselves and still produce excellent
results. Then, since managers are typically very busy
people, they will largely trust these engineers to manage
themselves, and they will continue to trust them for as long
as the engineers continue meeting their commitments.
Finally, as any experienced engineer will attest, the ideal
engineering job is to be given an interesting and challenging
assignment and to be trusted to manage the work yourself.
That is the benefit of doing disciplined engineering
work.

1.3. Why is discipline important for software education?

Today, a typical software education does not teach dis-
ciplined engineering practices. As a result, the most com-
mon experience in software development organizations is
that their products are late, over cost, and of poor quality.
This means that typical software professionals work long
hours under severe schedule pressure and spend a large
portion of their time fixing defective products. Few engi-
neers like to have pizza at their desks for dinner, work
on most weekends, and to stay late into the night fixing
defects in test.

Most people prefer more balanced and satisfying
careers. Software engineering, when done with proper dis-
cipline, can be rewarding. It involves teamwork, creating
exciting and useful products, and having the satisfaction
of seeing your own creations do what you intended them
to do. It is potentially a great career. However, today, soft-
ware engineering has a poor image and student enrolments
are falling world wide, despite the demand for software
professionals. To meet industry needs, and to have a grow-
ing and vibrant academic community in computer science
and software engineering, the software development career
must be made more attractive to potential students. This is
another important reason to teach disciplined software
development.

The rest of this article is structured as follows: Section 2
presents the main characteristics of disciplined software
development; Section 3 presents details of the study based
on data collected from 3090 engineers, who participated in
PSP trainings. The study’s main objective was to investi-
gate the effects of disciplined software development on
the engineer’s ability to consistently and predictably pro-
duce quality results; Section 4 presents a collection of expe-
riences and lessons learned from different institutions in the
world who have used PSP and the TSP introductory course
as part of their curriculum; Section 5 presents a set of rec-
ommendations for teaching disciplined software develop-
ment based on the study’s observations and the lessons
learned from several institutions; Section 6 presents the
conclusions of this article.

2. Disciplined software development

Developing software and software-intensive systems in a
disciplined way requires a significant transition from craft-
based to engineering-style development. While mature
organizations widely aim at transitioning organizational
structures and procedures towards engineering-style soft-
ware development, it is also important to apply engineering
principles on the level of individual developers. One of the
reasons is that most methods applied in software develop-
ment are significantly human-based. As a consequence, the

D. Rombach et al. / The Journal of Systems and Software 81 (2008) 747–763 749
effectiveness of most methods depends to a large extent on
the individual capabilities of the workforce. In order to
focus skill building for disciplined development, it is neces-
sary to understand the main elements of engineering-style
software and system development.

2.1. Elements of engineering-style software development

The term engineering is often associated with the follow-
ing: Planning is based on experience from the past (such as
evaluated models), processes are predictable, project execu-
tion is goal-oriented and adheres to defined processes, pro-
jects are traceable and controllable, and learning and
improvement cycles are established. These principles are
widely accepted and established in traditional disciplines
such as production engineering or mechanical engineering.
In applying these principles to software development, one
needs to consider the specifics of software (e.g., software
is rather developed than produced, the effects of techniques
depend on the development environment, software devel-
opment involves many creative activities, data is less fre-
quent and mostly of a non-parametric nature).

There are several approaches to applying engineering
principles to software development, including the prob-
lem-oriented Quality Improvement Paradigm (QIP) and
the solution-oriented Capability Maturity Model Integra-
tion (CMMI). Essential elements of disciplined software
development that are addressed at varying degrees in these
approaches include:

– Prerequisites for engineering-style development with

respect to processes: defined processes, prediction mod-
els (with respect to effort, schedule, quality), analytical
and constructive quality assurance processes throughout
the whole lifecycle, understanding of the context-depen-
dent aspects of key methods and techniques.

– Prerequisites for engineering-style software development
with respect to products: adequate documentation,
traceable documentation, evolvable architecture.

– Prerequisites for engineering-style software development
with respect to management: adequate workforce
capabilities and staffing, sufficient continuing educa-
tion and training, guaranteeing sustainability of core
competencies.

– Prerequisites for engineering-style software development
with respect to organizational improvement: traceable
quality guidelines, comprehensive configuration man-
agement, learning organization.

2.2. The role of empirical studies for disciplined software

development

A major element of engineering-style software develop-
ment is that organizations are able to understand the effects
of key techniques and methods in their project and devel-
opment environments. Empirical studies are an important
means to determine such effects. Having evidence about
the effects of methods in varying contexts significantly
reduces the risk of process changes, especially the risk that
results from introducing innovative technology into an
organization. Performing empirical studies such as con-
trolled experiments or case studies can be seen as process
prototyping. Being able to evaluate techniques requires
skills such as measurement and study design. Nowadays,
these aspects are only addressed to a minor degree in cur-
rent improvement models and skill schemas. It would be
beneficial for the future to also address those aspects on
the level of an organization and on the level of individual
skills.

This article presents the application of one of the princi-
ples of engineering-style development: The article presents
an evaluation of the effects of a combination of techniques
that are applied in the context of PSP courses. The evalua-
tion mainly consists of a replication that aims at increasing
the significance of the evidence for the benefits of disci-
plined software development.

3. Benefits of disciplined software development for

individuals

This section presents the definition and results of an
empirical study oriented to confirm the assumption that
disciplined software development at the individual level
(represented by PSP) is of benefit for developers. The study
was conducted by the Fraunhofer Institute for Experimen-
tal Software Engineering (IESE) jointly with the Software
Engineering Institute (SEI).

3.1. Study description

PSP is a self-improvement process designed to help soft-
ware developers to control, manage, and improve the way
they work (Humphrey, 1995). It can help students plan bet-
ter, track their performance precisely, and measure the
quality of their products. A previous analysis performed
by Hayes et al. (1997) on data obtained from the training
of 298 engineers who took the PSP course at SEI demon-
strated the benefits of PSP on estimation and planning,
on the quality of the software, and on the quality of the
work process. However, that study could not demonstrate
an improvement or benefits regarding the developers’ pro-
ductivity. A replication of this study was performed by
Wesslén (2000). The results of that replication confirmed
the results of the Over and Hayes study, although it was
performed with data from university students.

The motivation for the study presented in this article is
based on Hayes and Over‘s study, and on previous experi-
ences from process improvement programs where the use
of a strategic plan for improving process development
capabilities, based on the PSP approach, was considered
to be of significant value for software engineers and for
the software organization to which they belong (Ocampo
et al., 1999; Ocampo, 2001). The purpose of this study is
to examine the benefits of disciplined process management

Analyze the data collected at the PSP levels (0, 1, 2, 3)

for the purpose of evaluating performance differences

of engineers

with respect to size estimation accuracy/effort estima-

tion accuracy/defect estimation accuracy/ yield/ defect
density/productivity from the viewpoint of a researcher

in the context of the PSP training of 3090 engineers.

750 D. Rombach et al. / The Journal of Systems and Software 81 (2008) 747–763
as represented by PSP by extracting from the data of the
PSP training of 3090 engineers figures about the impact
of the improvement program of PSP on the developers’ size
estimation accuracy, effort estimation accuracy, defect esti-
mation accuracy, and productivity, as well as on the prod-
ucts’ defect density, and on the yield.1

This section provides a description of the context, the
definition of the study’s goal, and the steps we followed
to systematically perform our study.

3.1.1. Study context

The data to be analyzed was collected in the PSP sum-
mary reports during the training of 3090 engineers. The
engineers are professional developers, and the trainings
were done at the Software Engineering Institute as well
as at external locations. During the course, the students
were given 10 exercises, which were mainly programs for
statistical calculations. PSP has a maturity framework
much like CMM (Paulk et al., 1993), which shows its pro-
gression in improvement phases, also called levels. Students
complete their exercises while following the process
attained at each PSP level. The PSP levels introduce the fol-
lowing set of practices incrementally:

PSP0: Description of the current software process, basic
collection of time and defect data.
PSP0.1: Definition of a coding standard, basic tech-
nique to measure size, basic technique to collect process
improvement proposals.
PSP1: Techniques to estimate size and effort, documen-
tation of test results.
PSP2: Techniques to review code and design.
PSP2.1: Introduction of design templates.
PSP3: Introduction of the concept of cyclic
development.

3.1.2. Study goal
The Goal/Question/Metric Paradigm (Basili and Weiss,

1984) was adapted in order to structure the study’s goal
(Briand et al., 1997). The GQM supports empirical studies
on the specification of measurement goals. The GQM goal
template used for describing the goal of this study looks as
follows:

‘‘Analyze the hobjecti
for the purpose of hpurposei
with respect to hquality focusi
from the viewpoint of hperspectivei
in the context of hcontexti’’

The object defines the entity to be analyzed, i.e., PSP
levels 0, 1, 2 and 3. The purpose describes why the object
is analyzed, e.g., for characterization, evaluation, improve-
ment, control, prediction, comparison. In this concrete
1 Yield is the percentage of defects injected before the compile phase that
are removed before the first compile (Hayes et al., 1997).
study, the object was analyzed for the purpose of evalua-
tion. The quality focus defines the object’s attribute(s) to
be analyzed, which in this case were size estimation, effort
estimation, defect density, productivity, defect estimation,
and yield. The perspective defines who the expected user
of the outputs is, e.g., researcher, developer, manager,
and/or customer. Finally, the context defines the setting
where the analysis takes place. In this study, the setting cor-
responds to the training of 3090 engineers on PSP.

As a result, the goal of this study was stated as follows:
3.1.3. Hypotheses definition

The hypotheses investigated in this study are related to
the expected benefits of PSP, i.e., more accurate estimation
of size, effort, and defects, higher quality of the products
represented by fewer defects, a higher yield, and an increase
in productivity. We considered the hypotheses defined by
Hayes et al. (1997) to be appropriate for our study’s goal.
Additionally, two hypotheses were added in order to inves-
tigate defect estimation and yield. The following is the
detailed definition of each hypothesis.

H1: As engineers progress through the PSP training,
their size estimates gradually grow closer to the actual
size of the program at the end of the training. More spe-
cifically, with the introduction of a formal estimation
technique for size in PSP level 1, there is notable
improvement in the accuracy of the engineers’ size
estimates.
H2: As engineers progress through the PSP training,
their effort estimates gradually grow closer to the actual
effort expended for the entire life cycle. More specifi-
cally, with the introduction of a statistical technique (lin-
ear regression) in PSP level 1, there is notable
improvement in the accuracy of the engineers’ effort
estimates.
H3: As engineers progress through the PSP training, the
number of defects injected and therefore removed per
thousand lines of code (KLOC) decreases. With the
introduction of design and code reviews in PSP level 2,
the defect densities of programs entering the compile
and test phases decrease significantly.
H4: Productivity, expressed and defined in PSP by the
number of LOC per hour spent, increases with a higher
PSP level.

Table 2
Context vector

hAttribute, valuei
Number of developers 3090
Software products PSP exercises 1A–10A
Experience of developers Professional developers
Requirements guidelines PSP script for planning
Design guidelines PSP script for design
Implementation guidelines PSP script for development
Communication platform PSP scripts, templates, and forms
Review guidelines PSP script for development
Validation guidelines PSP script for development
Life cycle model Waterfall, iterative
Organizational context PSP training courses

D. Rombach et al. / The Journal of Systems and Software 81 (2008) 747–763 751
H5: As engineers progress through the PSP training,
their yield increases significantly. More specifically, the
introduction of design review and code review in PSP
level 2 has a significant impact on the value of the engi-
neers’ yield.
H6: As engineers progress through the last four exer-
cises of the PSP training, their defect estimates gradually
grow closer to the actual number of defects removed for
the entire life cycle.

3.1.4. Goal quantification

The GQM also supported our study on the derivation of
measures as part of the study design. The metrics were
extracted from the PSP summary report that engineers
had to fill out for each exercise. Exercises 1A, 2A, and
3A corresponded to level 0. Exercises 4A, 5A, and 6A cor-
responded to level 1. Exercises 7A, 8A, and 9A corre-
sponded to level 2. Exercise 10A corresponded to level 3.
The GQM study’s goal was quantified as presented in
Table 1.

Please note that the same estimation formulas used for
(Hayes et al., 1997) have been used in this study. Hayes
et al. (1997) justifies the use of the estimation formula as fol-
lows: ‘‘This formula differs from the one used in the PSP
training class. For the purpose of this study the Actual is
subtracted from the Estimate so that underestimates result
in a negative value and overestimates result in a positive
value. In the training class the equation used is (Actual –
Estimate)/Estimate.’’ The formulas corresponding to defect
density, productivity and yield are taken from the training
(Humphrey, 1995).

3.1.5. Selected test

The test selected for this study was the repeated mea-
sures ANOVA (Girden, 1992). The purpose of ANOVA
is to test for significant differences between means in differ-
ent groups or variables (measurements), usually arranged
by an experimenter in order to evaluate the effects of differ-
ent treatments or experimental conditions, or combinations
of treatments or conditions. This test helped us to observe
the differences between the PSP levels with respect to size
estimation accuracy, effort estimation accuracy, defect den-
sity, yield, defect estimation accuracy, and productivity.
Table 1
Goal quantification

Variable Name Value

Independent PSP level PSP 0, PSP1, PSP2

PSP exercisea 7A, 8A, 9A, 10A

Dependent Size estimation accuracy (H1) (Estimated LOC �
Effort estimation accuracy (H2) (Estimated minutes
Defect density (H3) (1000 · Total defec
Productivity (H4) (LOC/hour)
Yield (H5) 100 · (Defects rem
Defect estimation accuracy (H6) (Estimated defect d

a This variable applies only for defect estimation accuracy.
3.1.6. Data acquisition

The most important characteristics under which the
information was collected are summarized in Table 2.

The data for this study was collected by the Software
Engineering Institute from PSP classes taught from 1994
through mid-2005. All but a few of the very early classes
taught in 1994 and 1995 were taught by SEI-trained PSP
instructors. Class size averaged 10.5 students, with most
of the classes having between 6 and 15 students. A few clas-
ses were as large as 20 and a few as small as one student.
Most of the classes, 283 of 293, were taught in industry
to practicing software developers. Less than 4% of the data
is from students in a university setting.

When collecting this volume of data from individuals as
they work and producing the derived PSP measures on the
various PSP forms, the question is how accurate the data
and the derived measures are. Johnson and Disney did a
study of PSP data collection in 1999 from 10 students
who wrote 89 programs (Johnson and Disney, 1999). They
found that when the data was collected on paper forms and
the students manually manipulated the data and calculated
the derived measures, many errors were committed. They
found over 1500 errors of either: omission where a data
value was not collected, calculation where a derived mea-
sure was incorrectly calculated, or transcription where a
clerical error was made when transferring data from one
form to another.

Two aspects of data collection used in this study address
the problems cited by Johnson and Disney. The first one is
, PSP3

Actual LOC)/Estimated LOC
� Actual minutes)/Estimated minutes

ts removed/Actual new and changed LOC)

oved before the compile phase/Defects injected before the compile phase)
ensity � Actual defect density)/Estimated defect density

Table 3
Number of engineers who provided correct, consistent, and complete data

Size
estimation
accuracy

Effort
estimation
accuracy

Defect
density

Productivity Yield Defect
estimation
accuracy

2149 1854 1636 2196 1589 218

752 D. Rombach et al. / The Journal of Systems and Software 81 (2008) 747–763
the use of a tool by the students as they record their data,
and second one is the review of each student’s PSP data by
a trained PSP instructor. Since early 1997, students have
been recording their raw data in a tool provided by the
SEI. This tool calculates all the derived PSP measures from
the raw data the students enter. This eliminates calculation
errors and transcription errors caused by manually trans-
ferring data from one form to another form. Errors of
omission and consistency are primarily addressed by the
PSP instructor.

When a student completes a program assignment, an
instructor reviews the student’s PSP data to check whether
it is complete and accurate and whether the student fol-
lowed the process, and provides feedback to the student
on the work. This review is guided by a checklist where
checks are done to make sure that all the raw data was col-
lected and that the data is self-consistent. When problems
are found by the instructor, the assignment is returned to
the student to be corrected. The goal in the class is to pro-
vide this feedback before the student does the next assign-
ment. Because of the grading workload in larger classes,
two instructors were often used in the classes with 12 or
more students.

3.1.7. Threats to validity

The fact that the collection sheets were consistent and
completely filled in did not necessarily mean that trainees
were conformant to the PSP level. We considered the fol-
lowing independent variables as threats to validity because
they were not controlled at the time data was collected:

Complexity of the Exercises: The A series of exercises is
mainly a set of programs to perform statistical calculations.
Some of them seem to be more complicated to accomplish
than others. This fact can influence final results of the
studies.

Heterogeneity of Professional Experience: The data used
for the study corresponds to 3090 engineers who took part
in the training at the Software Engineering Institute (SEI)
or at external locations. The data provided no information
that could help us devise how experienced the program-
mers were. It is possible that more experienced program-
mers had better performance, impacting the indicators
defined in the hypotheses.

Heterogeneity of Programming Languages: PSP does not
mandate engineers to use a certain programming language,
but advises engineers to use the language they master the
best. The results of our observed indicators could be
affected by the fact that some programming languages
are more suitable for statistical calculations than others
(because they have more utilities or libraries). Fortunately,
we had information about the programming languages
used by the engineers. We used this information for cluster-
ing the developers into those who programmed using
object-oriented languages, those who used structured lan-
guages, and those who used other languages. This helped
us in performing separate ANOVA tests, comparing them
with the initial ANOVA tests (with all data), and drawing
conclusions about the influence of this threat on our
observations.

Training Adaptation: In 2002, the Software Engineering
Institute adapted the PSP training and instructors were
allowed to let students perform exercise 10A by following
PSP 2.1. Instructors at other sites may have continued
using PSP3. However, the data provides no means for dif-
ferentiating them. We decided to cluster the data into engi-
neers who took the training before 2002 and engineers who
did it during and after 2002. As in the previous threat, we
could then perform for each cluster separate ANOVA tests
for each hypothesis and compare the results to the initial
ANOVA tests (with all data).

3.2. Data validation

Data validation ensures the correctness and complete-
ness of the collected data. In the context of the PSP train-
ing, correctness, completeness, and consistency can be
checked against the guidelines defined in Humphrey
(2005) for filling out the scripts, forms, templates, and stan-
dards for the PSP levels of the training.

The guidelines define the formulas to correctly calculate
some fields, and the fields that must be filled out in order to
say that the data was completely collected. Equally, the
dependencies between forms, templates, and standards
define the consistency of the data. We have performed que-
ries and operations on the values of the summary reports
with the purpose of checking if trainees did follow the
PSP guidelines and complete the demanded exercises. Fur-
thermore, box plots were used to search for outliers origi-
nating from either inconsistent or corrupted data
collected on the PSP forms. We only used data from those,
whose data for all 10 exercises were correct, complete, and
consistent. This was necessary in order to observe the per-
formance of engineers throughout the entire PSP training.
For example, if one engineer included inconsistent or incor-
rect data in exercise 6A, then most probably the resulting
trends would not be credible. Table 3 shows the number
of engineers who remained after having their data validated
with respect to correctness, consistency, and completeness.

3.3. Study results and interpretations

3.3.1. Size estimation accuracy

Fig. 1 shows that the distribution of size estimation
accuracy gradually narrows, from level to level, with an
exception between levels 2 and 3.

Distribution PSP level 0

0

50

100

150

200

250

300

350

400

450

500

-400 -360 -320 -280 -240 -200 -160 -120 -90 -70 -50 -30 -10 10 30 50 70 90

Size estimation accuracy in %

N
um

be
r o

f o
bs

er
va

tio
ns

Distribution PSP level 1

0

50

100

150

200

250

300

350

400

450

500

-400 -360 -320 -280 -240 -200 -160 -120 -90 -70 -50 -30 -10 10 30 50 70 90

Size estimation accuracy in %

N
um

be
r o

f o
bs

er
va

tio
ns

Distribution PSP level 2

0

50

100

150

200

250

300

350

400

450

500

-400 -360 -320 -280 -240 -200 -160 -120 -90 -70 -50 -30 -10 10 30 50 70 90

Size estimation accuracy in %

N
um

be
r o

f o
bs

er
va

tio
ns

Distribution PSP Level 3

0

50

100

150

200

250

300

350

400

450

500

-400 -360 -320 -280 -240 -200 -160 -120 -90 -70 -50 -30 -10 10 30 50 70 90

Size estimation accuracy in %

N
um

be
r o

f o
bs

er
va

tio
ns

Fig. 1. Size estimation accuracy distribution.

Table 4
Number of engineers whose size estimation accuracy (SEA) ended up
±20%

PSP level 0 1 2 3

SEA ±20% 730 910 1312 1029

Repeated Measures ANOVA
Size Estimation

Current Effect: F(3,6444)=153.95, p<0.01
Vertical bars denote 0.95 confidence intervals

Level 0 Level 1 Level 2 Level 3
-40

-35

-30

-25

-20

-15

-10

-5

0

5

10

15

Si
ze

 E
st

im
at

io
n

Ac
cu

ra
cy

 in
 %

Fig. 2. ANOVA repeated measures for size estimation accuracy.

D. Rombach et al. / The Journal of Systems and Software 81 (2008) 747–763 753
The number of observations around 0 increases from
level to level, and especially in the level 2, when engineers
have more experience with the size estimation technique
introduced in level 1.

Table 4 shows that the number of engineers per PSP
level increases from level 0 to level 2, and then decreases
from level 2 to level 3.

Fig. 2 shows the results of the repeated measures
ANOVA for H1. The vertical bars denote the confidence
interval of 95%, which means that the value of estimation
accuracy is likely to be found between the upper and lower
confidence limits. For each PSP level, we can observe the
mean represented by the filled circle and the upper and
lower confidence limits represented by the horizontal lines.
The value 0% means that engineers estimated size perfectly.
The expected trend should show a convergence towards
0%, which means that engineers incrementally improved
their estimates. Fig. 2 shows a detriment of size estimation
accuracy from level 0 to level 1, an improvement from level
1 to level 2, and another drop between levels 2 and 3,
although not as strong as between levels 0 and 1. The
repeated measures ANOVA revealed that the differences
in size estimation accuracy across the four PSP levels are
statistically significant (p-value < 0.01). Differences
between adjacent levels are also statistically significant (p-
value < 0.01).

We used the information on the programming languages
used by developers, in order to look into this threat to
validity more carefully. We did this by clustering the data
containing all sorts of programming languages into
object-oriented, structured, and other languages. After-
wards, we repeated the ANOVA test, and analyzed the

Repeated Measures ANOVA
Size Estimaiton, PSP Exercises

Current effect: F(8,17184)=157.20, p<0.01
Vertical bars denote 0.95 confidence intervals

Exercise 2
Exercice 3

Exercise 4
Exercise 5

Exercise 6
Exercise 7

Exercise 8
Exercise 9

Exercise 10
-80
-70
-60
-50
-40
-30
-20
-10

0
10
20
30
40

Si
ze

 E
st

im
at

io
n

Ac
cu

ra
cy

 in
 %

Fig. 4. ANOVA repeated measures for size estimation accuracy – PSP
exercises.

754 D. Rombach et al. / The Journal of Systems and Software 81 (2008) 747–763
results. Fig. 3 shows the results for those developers who
programmed their exercises using object-oriented program-
ming languages. Similar trends as the one shown in Fig. 2
allow us to assume that this threat does not influence our
interpretations.

We performed the same exercise for the threat to valid-
ity concerning the adaptation of the training. We did not
find notable differences between the set of engineers
trained before 2002 and the one trained after 2002. There-
fore, we also assume that this threat does not affect our
interpretations.

Interpretation: It may be useful to consider how the esti-
mation process works for the interpretation. There are four
levels or methods the engineers chose from, ranging from
the most informal (method D; engineering judgment) to
the most structured (method A; regression using object
LOC estimates). When estimating is introduced in PSP1,
engineers must start with one of the most informal methods
(because they do not have enough historical data to use the
most structured methods) and by the time they reach pro-
gram 7 (the first PSP2 program), they have enough data
that many can use the most structured method, method
A. This is one reason why developers do not improve from
PSP0 to PSP1 (i.e., because they start with the most infor-
mal method) and then show a considerable improvement in
estimating from PSP1 to PSP2. We interpret the detriment
from PSP2 to PSP3 in size estimation accuracy as an
expected behavior, especially because developers need to
incrementally build a credible set of historical data for their
estimations. However, the difference is much smaller than
between PSP0 and PSP1. In fact, when looking more care-
fully at each exercise, one can see how the curve tends to
stabilize (see Fig. 4).

Based on the previous discussion and on the results of
the repeated measures ANOVA across four levels, we see
ourselves facing a dilemma concerning the acceptance or
rejection of hypothesis H1. On the one hand, when looking
Repeated Measures ANOVA
Size Estimation, OOL

Current effect: F(3,1896)=71.644, p<0.01
Vertical bars denote 0.95 confidence intevals

Level 0 Level 1 Level 2 Level 3
-40

-35

-30

-25

-20

-15

-10

-5

0

5

10

15

Si
ze

 E
st

im
at

io
n

Ac
cu

ra
cy

 in
 %

Fig. 3. ANOVA repeated measures size estimation accuracy OO pro-
gramming languages.
at the ANOVA tests results, one may conclude that there is
a detriment in general concerning size estimation. On the
other hand, when looking at Fig. 1 and Table 4, one can
see that the number of engineers whose estimation accu-
racy improved clearly increased from level 0 to level 4.
Therefore, we neither accept nor reject the hypothesis
and leave the issue to further research, meaning that data
should be looked at in more detail and new tests should
be performed.
3.3.2. Effort estimation accuracy

Just like in the previous size estimation results, the value
0%, means that engineers estimated effort perfectly. The
expected trend should show a convergence towards 0%,
meaning that engineers incrementally improved their esti-
mates. Fig. 5 shows that estimation accuracy decreases
between PSP Levels 0 and 1 and increases and gets closer
to 0% on the next levels. A drastic increase can be observed
from PSP1 to PSP2. The results of the repeated measures
Repeated Measures ANOVA
Effort Estimation

Current effect: F(3, 6420)=39.337, p<0.01
Vertical bars denote 0.95 confidence intervals

Level 0 Level 1 Level 2 Level 3
-30

-25

-20

-15

-10

-5

0

Ef
fo

rt
Es

tim
at

io
n

Ac
cu

ra
cy

 in
 %

Fig. 5. ANOVA repeated measures for effort estimation accuracy.

Table 5
Number of engineers whose effort estimation accuracy (EEA) ended up
being ±20%

PSP level 0 1 2 3

EEA ±20% 817 822 1107 967

D. Rombach et al. / The Journal of Systems and Software 81 (2008) 747–763 755
ANOVA tests showed that the differences across
(p-value < 0.01) and between adjacent levels (p-value(0–
1) < 0.01; p-value(1–2) = 0.01, p-value(2–3) = 0.01) are
statistically significant.

Table 5 shows the number of engineers with an effort
estimation accuracy of ±20%. The number of engineers
increased from level 0 to level 2, and decreased from level
2 to level 3, similar to what we observed for size estimation
accuracy. We also observed that effort estimation accuracy
increased more in level two because engineers had more
experience with the technique introduced in level 1. Just
like we did with the previous hypothesis, we analyzed the
validity threats concerning the heterogeneity of program-
ming languages and the training adaptation. We observed
similar trends for each group of data: object-oriented,
Repeated Measures ANOVA
Defect Density, Compile

Current effect: F(3, 4893)=1494.6, p<0.01
Vertical bars denote 0,95 confidence intervals

Level 0 Level 1 Level 2 Level 3
5

10

15

20

25

30

35

40

45

50

55

60

65

D
ef

ec
ts

/K
LO

C
 R

em
ov

ed

Repeated Measur
Defect Density

Current effect: F(3, 4893
Vertical bars denote 0,95 c

Level 0 Level 1
40

50

60

70

80

90

100

110

120

D
ef

ec
ts

/K
LO

C
 R

em
ov

ed

Fig. 6. ANOVA repeated measures for defect den
structured, and other programming languages, as well as
for engineers trained before and after 2002.

Interpretation: The repeated measures ANOVA con-
firmed that the difference with respect to effort estimation
between levels is significant. Especially after level 1, the
trend shows a much clearer improvement in effort estima-
tion accuracy than in the case of size estimation. In the
PSP training, developers start to estimate effort in PSP1
using the estimated size as basis. Considering that effort
estimation depends on size estimation, one can observe
how smaller improvements in size estimation result in lar-
ger ones regarding effort estimation by looking at Figs. 3
and 5. Hypothesis H2 claiming that those engineers who
took their PSP training improved with regard to effort esti-
mation can be accepted based on the results of the statisti-
cal tests and reinforced by the previous observations.

3.3.3. Defect density

The repeated measures ANOVA was applied to test the
significance of differences between PSP levels with respect
to defect densities obtained in the compile and test phase
as well as in overall development (see Figs. 6a, 6b, and 6c).
Repeated Measures ANOVA
Defect Density, Test

Current effect: F(3, 4893)=1110.2, p<0.01
Vertical bars denote 0,95 confidence intervals

Level 0 Level 1 Level 2 Level 3
5

10

15

20

25

30

35

40

45

50

D
ef

ec
ts

/K
LO

C
 R

em
ov

ed

es ANOVA
, Overall
)=703.75, p<0.01
onfidence intervals

Level 2 Level 3

sity (compile phase, test phase, and overall).

Repeated Measures ANOVA
Productivity, OOL

Current effect: F(3, 1656)=42,895, p<0.01
Vertical bars denote 0,95 confidence intervals

Level 0 Level 1 Level 2 Level 3
30

32

34

36

38

40

42

44

46

48

50

52

Li
ne

s
of

 C
od

e
pe

r H
ou

r

Fig. 8. ANOVA repeated measures for productivity object-oriented
languages.

756 D. Rombach et al. / The Journal of Systems and Software 81 (2008) 747–763
We observed similar and significant decreasing trends
concerning defect density for the compile and test phases
(p-values < 0.01). In the case of overall defect density, a gen-
eral decreasing trend was observed with the exception of the
trend between levels 1 and 2, where we found no significant
difference (p-value = 0.93797). As in the previous studies,
we evaluated threats to validity such as the heterogeneity
of programming languages, and training adaptation. We
observed similar trends, which allowed us to assume that
these threats do not influence our interpretations.

Interpretation: In this case, there are two places where a
defect density decrease can be seen, i.e., from level 0 to level
1, and from level 2 to level 3. We assume that the first one is
due to the impact produced after engineers see their indi-
vidual results for the first time, i.e., how many defects they
have introduced. The second one confirms the hypothesis
that after PSP level 2, where design and code reviews must
be followed, developers introduce fewer defects. In general,
a reduction of defect density can be observed in all cases. A
reduction in total defect density translates directly into a
Repeated Measures ANOVA
Productivity

Current effect: F(3, 6222)=194.99, p<0.01
Vertical bars denote 0,95 confidence intervals

Level 0 Level 1 Level 2 Level 3
28

30

32

34

36

38

40

42

Li
ne

s
of

 C
od

e
pe

r
H

ou
r

Fig. 7. ANOVA repeated measures for productivity.

Repeated Measures ANOVA
Productivity, before 2002

Current effect: F(3, 2970)=85.475, p<0.01
Vertical bars denote 0.95 confidence intervals

Level 0 Level 1 Level 2 Level 3
20

25

30

35

40

45

50

LO
C

 p
er

 H
ou

r

Fig. 9. ANOVA repeated measures for
reduction of the amount of rework for a software develop-
ment organization. The results of the statistical tests and
the previous observations support us in confirming hypoth-
esis H3, which proposes a decrease of defect density in the
compile and test phases, as well as for the entire life cycle.
3.3.4. Productivity
Fig. 7 shows the results of the repeated measures

ANOVA for H4.
The results of the repeated measures ANOVA tests

showed a significant difference across PSP levels (p-
value < 0.01). Between adjacent levels, differences are
significant between 1 and 2 (p-value < 0.01), and 2 and 3
(p-value < 0.01), with the exception between 0 and 1 (p-
value = 0.062). Examining the averages, we can see that
there is an increase in productivity between levels 0 and
1, a reduction between levels 1 and 2, and a drastic increase
between levels 2 and 3. The drastic increase from level 2 to
level 3 called our attention, especially because the 10th
Repeated Measures ANOVA
Productivity, after 2002

Current effect: F(3, 3249)=121.94, p<0.01
Vertical bars denote 0.95 confidence intervals

Level 0 Level 1 Level 2 Level 3
20

25

30

35

40

45

50

LO
C

 p
er

 H
ou

r

productivity before and after 2002.

Repeated Measures ANOVA
Pre-Compile Defect Yield

Current effect:F(3,4764)=4639.1, p<0.01
Vertical bars denote 0.95 confidence intervals

Level 0 Level 1 Level 2 Level 3
0

10

20

30

40

50

60

70

Yi
el

d
(in

 %
)

Fig. 10. ANOVA repeated measures for yield.

D. Rombach et al. / The Journal of Systems and Software 81 (2008) 747–763 757
exercise is one of the most demanding ones of the series,
and because the PSP process demands quite a large set of
information from the students. Concerning the program-
ming languages’ threat to validity, in all of the cases, i.e.,
object-oriented, structured, and other programming lan-
guages, we obtained similar results: the difference across
levels is statistically significant (p-value < 0.01); the differ-
ence between adjacent levels is also statistically significant
with the exception between levels 1 and 2 (p-value = 0.786);
finally, a drastic increase from level 2 to level 3 was
observed as shown in Fig. 8. Based on these results, we
assume that the programming languages used by develop-
ers have no influence on our interpretation of the results.

We performed additional ANOVA tests in order to
investigate the impact of the training modification on the
interpretation. Figs. 9a and b show how in each case, i.e.,
before and after 2002, trends appear that are similar to
the ones that correspond to the test performed for all data.
The improvement in productivity after 2002 is higher than
before 2002. We assume that this occurs because engineers
got accustomed to working with PSP 2.1 and did not have
to learn a new process, i.e., PSP3. In any case, we observed
an important improvement.

Interpretation: The results of the ANOVA test showed
that the difference in productivity across the different levels
is statistically significant. Looking at the results concerning
size estimation, effort estimation, and defect density, we
could say that engineers benefit from PSP by improving
these without losing on productivity. Furthermore, it is
also known that exercise 10A is considered by PSP trainees
to be the most demanding one of the series, which led us to
assume that at this point engineers have mastered PSP so
well that they can even increase their productivity. Based
on the results of the ANOVA tests, and the previous anal-
ysis we accept the Hypothesis H4.

3.3.5. Yield

The repeated measures ANOVA revealed that the differ-
ences in Yield across the four PSP levels are statistically
significant (p < 0.01). Differences are not significant
between adjacent levels 0 and 1 (p-value = 0.91), and 2
and 3 (p-value = 0.8). A drastic increase in the yield can
be observed between levels 1 and 2 (see Fig. 10). An
increasing trend can be observed, especially accentuated
between levels 1 and 2.

The shift to the right of the bars in the histogram con-
firms the ANOVA test (Fig. 11). The Yield increases, espe-
cially with the introduction of the design and code reviews
in level 2. Threats to validity were treated in the same way
as in the previous analyses. The statistical results showed
similar trends, which leads us to assume that such threats
do not significantly affect our interpretation.

Interpretation: We interpret that the increase in average
yield from approximately 5% to nearly 55% from PSP level
1 to PSP level 2 is due to the introduction of formal code
and design reviews in level 2. This is the major process
change that occurs between these two levels. The result is
very similar to the one provided by Hayes et al. (1997),
where the increase went from 10% to 55%. The non-signif-
icant difference between levels 0 and 1 can be explained in
the same manner. Developers were not aware of the tech-
niques or methods that they could use to remove defects
injected before the first compile. An important observation
is that the yield does not drop on the last level but holds,
especially because the last exercises are quite complex.
Finally, hypothesis H5 can be accepted because of the clear
improvement that can be observed in the engineers.
3.3.6. Defect estimation accuracy
The results of the repeated measures ANOVA tests

showed a significant difference across the PSP exercises
(p-value < 0.01). Differences are significant between adja-
cent exercises 8A and 9A (p-value < 0.1), and between 9A
and 10A (p-value < 0.01), with the exception between exer-
cises 7A and 8A (p-value = 0.1).

The number of engineers whose estimation ended up
being ±20% increased slightly from 7A to 9A and then
slightly decreased.

Interpretation: The procedure introduced in PSP for esti-
mating defects differs from the one for estimating size.
Defects are estimated based on the historical data of
defects per LOC. Developers underestimated defects after
the new method was introduced, then got closer to 0, and
finally overestimated. We deduce by looking at the trends
of size and effort estimation that these fluctuations are nor-
mal while developers master the new method. Looking at
the improvement in the defect density and yield results,
we observe that developers have more control of the prod-
uct’s quality as they progress through the training. We
assume that this can have a positive impact and result in
more accurate defect estimations. Finally, we observe a
similar case as the one observed for hypothesis H1. On
the one hand Fig. 12 shows fluctuations without a clear
improvement trend. On the other hand, we observe in
Table 6 that the number of engineers that improve their

Repeated Measures ANOVA
Defect Estimation, Overall

Current effect: F(3, 651)=13.564, p<0.01
Vertical bars denote 0,95 confidence intervals

7A 8A 9A 10A
-80

-70

-60

-50

-40

-30

-20

-10

0

10

20

30

D
ef

ec
t E

st
im

at
io

n
Ac

cu
ra

cy
 (%

)

Fig. 12. ANOVA repeated measures for defect estimation accuracy.

Table 6
Number of engineers whose defect estimation accuracy (DEA) ended up
being ±20%

PSP exercise 7A 8A 9A 10A

DEA ±20% 65 73 88 72

Trend of Yield

Pre-Compile Defect Yield
Overall

N
um

be
r o

f O
bs

er
va

tio
ns

- 10 0 10 20 30 40 50 60 70 80 90 100

PSP Level 0

0

200

400

600

800

1000

1200

1400

- 10 0 10 20 30 40 50 60 70 80 90 100

PSP Level 1

0

200

400

600

800

1000

1200

1400

- 10 0 10 20 30 40 50 60 70 80 90 100

PSP Level 2

0

200

400

600

800

1000

1200

1400

-10 0 10 20 30 40 50 60 70 80 90 100

PSP Level 3

0

200

400

600

800

1000

1200

1400

Fig. 11. Zoom in the overall group trend.

758 D. Rombach et al. / The Journal of Systems and Software 81 (2008) 747–763
estimation increases. Therefore, we neither accept nor
reject the hypothesis and leave the issue to further research.
4. Experiences with PSP and TSP as teaching tools

In the following section, we present some observed com-
monalities at various locations around the world that char-
acterize the teaching of PSP and TSP introductory courses
in universities, together with impressions from the teachers
and students about their experience with PSP/TSP as tech-
niques for building self-management skills. We have done
this based on information described in Börstler et al.
(2002), Carrington et al. (2001), Casallas et al. (2005), Hil-
burn and Humprey (2002), Johnson and Disney (1999) and
Wesslén (2000), and additional interviews with instructors.
4.1. Observed commonalities in PSP applications

Students’ level: Universities that teach PSP usually intro-
duce it in computing science or information system pro-
grams either in early introductory programming courses
as a complementary technique, or in 1–4th year software
engineering courses. This introduction to PSP is usually

D. Rombach et al. / The Journal of Systems and Software 81 (2008) 747–763 759
based on what Börstler et al. (2002) call PSP-lite, which is a
book especially written for teaching first-year students
(Humprey, 1997). A more PSP-oriented course called
PSP-full (Börstler et al., 2002) based on Humphrey
(1995) is preferred for senior students or post-graduate
courses, since it is intended for professional software devel-
opment. According to (Hilburn and Humprey, 2002), more
than 30 institutions offer introductory and graduate PSP
courses around the world.

Programming experience: Many institutions introduce
PSP after students have learned how to program in previ-
ous courses (Börstler et al., 2002; Carrington et al.,
2001). The idea behind this is not to have students concen-
trate on the peculiarities of the language more than actually
needed and to have them concentrate more on PSP tasks.
In cases where PSP is offered as an optional activity, stu-
dents usually concentrated more on the programming tasks
(Börstler et al., 2002).

Exercises: (Humphrey, 1995) proposes two series (i.e., A
and B) of 10 exercises each for applying the concepts
learned during the PSP training. However, ten exercises
seem a bit too much for academic terms and for the
‘‘dynamics of typical student populations’’ (Hilburn and
Humprey, 2002). Therefore, many institutions prefer to
re-use their own exercises (Carrington et al., 2001). They
are usually small to medium-size exercises. In some cases
where PSP is taught in parallel, the exercises are designed
to highlight programming topics. Other institutions
demand between 7 and 9 of the PSP’s exercises, but not
all of them (Johnson and Disney, 1999; Wesslén, 2000).

Content adaptation: Those institutions that teach the
PSP-lite version and integrate it into their curriculum usu-
ally prepare special lectures (2–5) for introducing the con-
cepts, and tutorials for coaching students on how to use
the forms, tools, and materials that PSP provides (Börstler
et al., 2002). Such lectures are introduced early in the
semester, so that students can apply their PSP knowledge
during their programming exercises. Regarding the PSP
sequence, important alterations are reported in Börstler
et al. (2002) and Carrington et al. (2001), where the quality
management techniques (e.g., defect collection, code/
design reviews) are introduced as the first part of PSP
instead of as the second part as advised by Humphrey
(1995). The rationale behind this is that these techniques
would provide more immediate and impressive results for
students instead of size and effort estimation techniques.
The institutions that follow the structure of PSP usually
shortened the number of exercises and leave few lectures
for postmortem analysis and students’ reflection.

Tool support: Most institutions use automatic mecha-
nisms for collecting the data and assuring their quality.
Some institutions adapt the forms provided by PSP and
develop their own Excel sheets or tools. Examples of such
tools are: Leap, Pase, PSP Studio, and PSP Toolkit (Car-
rington et al., 2001). The other variant is to encourage stu-
dents to collect the data manually, i.e., to copy and use the
forms provided by the PSP-lite or PSP-full books.
Students’ reported impressions: In general, the following
remarks can be found in Börstler et al. (2002), Carrington
et al. (2001), Johnson and Disney (1999), Wesslén (2000)
and Hilburn and Humprey (2002) regarding the reactions
of students who learned PSP. Students felt that they gained
important knowledge in software engineering and that it
was an important preparation for future jobs. This was
in part because they felt more aware of their programming
skills and shortcomings. Students recommended separating
courses for learning a programming language from PSP
lectures. They felt that learning both at the same time could
be too much work. A typical reaction that confirmed this
was shown by students in early stages of their education.
They had to concentrate on both the programming lan-
guage and PSP, and usually felt that PSP imposed an exces-
sively strict process on them and that extra work would not
pay off. Those students who used tool automation to col-
lect PSP data showed more motivation to collect data, in
contrast to those who did not have such tools.

Teachers’ reported impressions: Teachers found PSP to
be an effective mechanism for teaching software engineer-
ing practices to their students. They observed that immedi-
ate feedback is a powerful tool to motivate students. One
mechanism to keep motivation high was to assume the role
of coaches who monitor and control that students under-
stand the principles well. Finally, most teachers agree that
the potential benefits of PSP can only be obtained if careful
adaptation to and integration into the actual curricula has
been performed.

4.2. Observed commonalities in TSP applications

According to Hilburn and Humprey (2002), more than a
dozen computing programs have used the introductory
Team Software Process (TSPi) in software project courses.
TSPi introduces techniques for successful teamwork and
exposes students to more realistic software development
tasks, which contributes to closing the gap between univer-
sities and industry. Please note that TSPi does not contain
all aspects of the TSP that will need to be used for larger-
scale industrial projects (Humphrey, 2000). The following
is the result of identifying the most common features
observed among academia while using TSPi.

Students’ level and programming experience: Some insti-
tutions introduce TSPi during the second and third year of
undergraduate courses on software engineering (Hilburn
and Humprey, 2002; Casallas et al., 2005; Oktaba et al.,
2003). At this point in time, students usually feel comfort-
able with a specific programming language and could be
seen as accomplished programmers. Most institutions pre-
fer object-oriented programming languages such as Java or
C++, especially because these are part of their academic
program (Hilburn and Humprey, 2002; Casallas et al.,
2005; Oktaba et al., 2003).

Software project: Humphrey provides requirements for a
software project to be completed in 15 weeks while apply-
ing TSPi (Humphrey, 2000). However, as in the case of

760 D. Rombach et al. / The Journal of Systems and Software 81 (2008) 747–763
Casallas et al. (2005) and Oktaba et al. (2003), some aca-
demic institutions start with the original software projects
and after a while replace them with their own projects.

Content adaptation: The TSPi course has been designed
to be deployable in a normal university semester. It is sug-
gested to last 15 weeks covered by two to three cycles in
which a group of students participate in a software devel-
opment project. The group of students should go through
the following phases in each cycle: Launch, Strategy, Plan,
Requirements, Design, Implementation, Test, and Post-
mortem. It is reported that institutions usually deploy
TSPi in two cycles (Oktaba et al., 2003; Casallas et al.,
2005; Hilburn and Humprey, 2002) because three cycles
seems to be too tight and leave little time for discussing
and analyzing the results. Some institutions avoid the
use of the techniques proposed by TSPi for requirements
and design and propose the use of others, such as tech-
niques described in the Rational Unified Process (RUP)
(Gornik, 2004).

Tool support: Aside from the forms and materials pro-
vided in the TSPi course, a tool for supporting the univer-
sity courses is offered.2 Institutions usually use this tool in
the first trials and then customize it for subsequent courses
(Oktaba et al., 2003). More sophisticated solutions consist
of providing a complete virtual learning environment as a
platform to support active collaborative learning as in the
case of Casallas et al. (2005), where students develop their
project guided by such a platform. Apart from providing
the students with the required information about the TSPi
process and theory, the platform provides an ‘‘all in one
place’’ perception to the students by supporting team orga-
nization and communication activities with private spaces
and planning and tracking tools.

Students’ reported impressions: According to (Hilburn
and Humprey, 2002), about 75% of the students who
learned PSP were ‘‘positive about TSPi’’. Similar reactions
can be seen from students in the cases of Casallas et al.
(2005) and Oktaba et al. (2003). Students most liked the
fact of having a very clear process and role descriptions
that supported them in executing their tasks. Students also
saw more benefits in the TSPi course after having attended
PSP courses. They recognized the importance of TSPi by
the end of the course with respect to planning and perfor-
mance tracking, although they complained concerning the
effort needed for collecting data.

Teachers’ reported impression: In general, teachers
underlined as the most important TSPi strength the capa-
bility that it gives to students to organize themselves in a
very straightforward way. The central axis of TSPi is team-
work, which is achieved by the interdependence and inter-
action described in the TSPi scripts. Additionally, the TSPi
course is a very good means for teaching a project course
where software engineering must be applied. Teachers also
2 TSP Tool. Available at: http://www.sei.cmu.edu/tsp/tsp.html, Novem-
ber 2006.
considered it feasible to adapt TSPi to the unique charac-
teristics of their institution.

5. Recommendations for using PSP and TSP as discipline

drivers in education

Software engineering or project development courses
should build up the self-management skills of students in
a way that they can perform well in their future real jobs.
However, barriers such as lack of motivation to follow a
structured process, teamwork reluctance, and lack of com-
mitment to quality impact the chances of success of such
courses (Casallas et al., 2005). Lack of motivation to follow
a process is attributed to the fact that accomplished pro-
grammers do not see the need for doing things differently,
because they already think they know how to do them
right. Teamwork reluctance is based on distrust in others
and sometimes in oneself. Students tend to finish their
work without having to depend on others. Lack of commit-
ment to quality stems from the fact that usually, the final
program delivered by the students to their teachers will
not have any impact on other systems or affect anybody.

The results shown in this and previous studies regarding
the impact of PSP on an engineer’s performance and the
experience of universities with PSP/TSPi give us confidence
in assuring that both of them are suitable mechanisms to
overcome such barriers. The following are our suggestions
to take into account when using PSP/TSPi to build up the
self-management skill of potential software engineers.

5.1. Customization of PSP and TSPi courses

Several authors underline the importance of customizing
either the PSP training or the TSPi course to the context of
the faculty. This can be accomplished by customizing the
exercises, and adapting the contents and/or the tool sup-
port. However, please note that only those institutions that
have tried PSP or TSPi several times and whose faculty was
familiar with such technologies dared to do this customiza-
tion. This means that customization has better chances of
success if faculty members are confident about the goals
and PSP/TSPi processes (Hilburn and Humprey, 2002;
Carrington et al., 2001; Börstler et al., 2002). Institutions
that plan to introduce either PSP or TSPi are advised to
iteratively and incrementally customize the courses. This
means that they can start with the original trainings and
modify them incrementally as they acquire experience with
them.

5.1.1. Exercises

It seems easier for institutions to use or adapt their own
predefined project course exercise(s) instead of using the
project defined by default for TSPi or PSP in Humphrey
(2000) and Humphrey (1995), respectively. However, insti-
tutions must very carefully design such exercise(s), trying to
cope with the goals of the ‘‘by default’’ exercises, i.e., ‘‘to
give students team experience in developing intermediate-

http://www.sei.cmu.edu/tsp/tsp.html

D. Rombach et al. / The Journal of Systems and Software 81 (2008) 747–763 761
sized software products’’ in the case of TSPi or ‘‘to provide
students with experience and with data on their own disci-
plined software methods’’ in the case of PSP. The exercises
should be adapted to the students’ current programming
skills and should try to avoid the introduction of new tech-
nologies that could deviate the students’ attention from the
goals intended by PSP/TSPi.

5.1.2. Contents adaptation

One particular adaptation of the PSP process consists of
first teaching students how to collect defects and under-
stand the importance of quality management, and after-
wards introducing the concepts related to size and effort
estimation (Börstler et al., 2002; Carrington et al., 2001).
Also, the use of the PSP-lite version seems more adequate
than the full one for those institutions short on resources.
In the case of TSPi, a common pattern was that the maxi-
mum number of cycles to be followed in the semester was
two. The time needed by the students to reflect about what
they did, how well they did, and what they learned is a rel-
evant issue (Casallas et al., 2005; Hilburn and Humprey,
2002) that seems to be easier to accommodate in one semes-
ter if the number of cycles is two.

5.1.3. Tool Support

The availability of a comprehensive tool as in the case of
Casallas et al. (2005) was cataloged as a very important
motivation for following TSPi when accomplishing the
assigned software project. In some cases, the existent
PSP/TSPi tools were used in the first trials and then mod-
ified or replaced by a new tool that better fit the students’
and the faculty’s needs. Creating a comprehensive tool
means connecting the PSP/TSPi material with the labora-
tory setting and the classroom as suggested by Hilburn
and Humprey (2002) and implemented by Casallas et al.
(2005). Such a tool should facilitate: data collection, data
validation, communication and discussion among team
partners, access to process material (forms, templates,
scripts, tools), visualization of performance indicators
(for the group and the individual), visualization of previous
experiences (e.g., previous interviews with students in video
format), defect management, and configuration manage-
ment. Additionally, for non-English speaking institutions,
translation of specific materials could facilitate the stu-
dents’ work. We recommend starting with a tool that pro-
vides basic functionalities, e.g., data collection, data
validation, and communication among team partners,
and that can be enhanced incrementally.

5.2. Integration of PSP as part of TSPi

The recommendation per-default is that PSP should be
taught before TSPi (Humphrey, 1995). The reason is that
students should really master techniques such as collecting
data, estimating size, and effort, analyzing their results, and
proposing self-improvement, before assuming a role in a
software development group and working following the
TSPi process. However, some institutions do not have the
infrastructure and resources for following this advice. In
those cases, other possibilities exist such as to either inte-
grate them, or customize and teach them separately.

We consider it reasonable to integrate and teach PSP
basic concepts inside TSPi, because several PSP tasks are
demanded when following the TSPi process (for example,
time and defect data collection, or size and effort estima-
tion). These concepts can be introduced by demand in
the TSPi-oriented course. In this way, students can learn
important basic individual activities in the context of a pro-
ject team reaching a common goal. TSPi effectively com-
bines elements of collaborative learning, creating a more
enjoyable environment for students and increasing their
motivation (Casallas et al., 2005; Oktaba et al., 2003). In
this way, the risks associated with the lack of motivation
of students and faculty can be minimized. Teaching PSP
or TSPi separately is advised for those institutions with
enough resources for customizing the training in a goal-ori-
ented and incremental manner. The institution might be
aware of the risks and might manage them. For example,
we observed that the experience of some institutions with
PSP showed some frustration of the students, because of
very intensive paper work in addition to quite complex pro-
gramming exercises within a short period of time (Börstler
et al., 2002).

6. Summary and outlook

This paper has been written with the purpose of under-
lining once more the importance for industry of disciplined
software development at both the individual and organiza-
tional level and the responsibility that academia carries in
making this possible. The main rationale behind our belief
lies in the fact that self-organized developers are a source of
personal and team satisfaction, and that this is only possi-
ble if potential engineers (i.e., students) are taught to dis-
cover, use, and manage their personal capabilities as part
of a team with a common goal.

We argue that PSP and TSP are a good means to intro-
duce discipline concepts to potential engineers, and that
they provide a basic and useful training framework. We
have shown the benefits at the individual level, based on
a replication and extension from a previous study, where
we measured the impact of PSP as a representative of dis-
ciplined software development with respect to the devel-
oper’s size, effort, and defect estimation accuracy, to the
quality of products, the yield, and the productivity.

We observed how, despite heterogeneous data sets (i.e.,
different years, different programming languages, and dif-
ferent programming experience), the results continue to
show benefits for engineers.

We have also summarized and compared several univer-
sity experiences, looking for patterns regarding teaching
contents, students’ reactions, and faculty reactions. The
feeling that PSP and TSPi are good means for teaching
software engineering at the personal and group level is

762 D. Rombach et al. / The Journal of Systems and Software 81 (2008) 747–763
generally present among the institutions studied. We
extracted a set of recommendations based on such experi-
ences and the quantitative study that could be used as start-
ing points for those interested. The following are topics
that we consider important for future research work:

Size estimating accuracy should be more concerned with
balanced estimates than percentage error. We have
observed that developers always have some error in their
personal estimations. However, if developers made bal-
anced estimates, they would underestimate as often as they
overestimated and as a consequence, when they work as
part of a team, the total team’s total estimates would be
more accurate. We find this is the case with the TSPi. A fur-
ther study could examine the degree to which PSP students
make more balanced estimates.

Another topic consists of investigating the relationship
between productivity and effort estimation accuracy. With
the estimation method introduced in PSP 1, i.e., Proxy
Object Based Estimation (PROBE), new effort estimates
are based on past performance (i.e., actual hours per esti-
mated object lines of code). Thus, when productivity
improves, effort estimates should have a consistent bias
toward underestimates. This bias should not show up with
size estimates. By examining size and effort estimating
error, productivity, and the degree of process change, one
could better understand the consequences of process
change and learning.

There is also the overhead required for planning and
process postmortem. With larger programs, the relative
time required to plan a project and do the postmortem
analysis should be less. The question to address with a fur-
ther study concerns whether planning time and postmor-
tem time are dependent on project size or whether they
are more or less constant and could be viewed as overhead.
In the latter case, the planning process could be made more
accurate by allocating a relatively fixed amount of time for
either planning or postmortem or both, and a percentage of
time per phase for the rest of the work.

We observed the need to answer additional important
questions such as: How will defect estimation behave in
further studies? How could we prepare a set of exercises
that allows us to separate the complexity of exercises from
the PSP levels? To what extent is a virtual environment the
most appropriate tool for teaching discipline teamwork?
What kind of feedback is received best as motivation by
the students: defects? size estimation? effort estimation?

Finally, we believe that through the constant observa-
tion of students during software engineering courses and
the design and execution of empirical studies, a better
understanding of the most appropriate possibilities for
teaching disciplined software development can be achieved.

Acknowledgements

We would like to thank Marcus Ciolkowski from the
Fraunhofer Institute for Experimental Software Engineer-
ing (IESE) for his valuable support during the execution
of the study. We would also like to thank Anita Carleton
and Jim Over from the Software Engineering Institute
(SEI) for their important ideas during the definition of
the study. Additionally, we thank Professor Rubby Casa-
llas from Los Andes University (Colombia), Professor
Hannah Oktaba from the National Autonomous Univer-
sity of Mexico (Mexico), and Professor David Carrington
from the University of Queensland (Australia) for provid-
ing us with valuable input and sharing their experiences
with us. Finally, we would like to thank Sonnhild Namin-
gha from Fraunhofer IESE for preparing the English edit-
ing of this paper.
References

Basili, V.R., Weiss, D., 1984. A methodology for collecting valid software
engineering data. IEEE Transactions on Software Engineering 10 (3),
728–738.

Börstler, J., Carrington, D., Hislop, G.W., Lisack, S., Olson, K., Williams,
L., 2002. Teaching PSP: challenges and lessons learned. IEEE Software
19 (5), 42–47.

Briand, L.C., Differding, C.M., Rombach, H.D., 1997. Practical guidelines
for measurement-based process improvement. In Software Process:
Improvement and Practice 2 (4), 253–280.

Carrington, D., McEninery, B., Johnston, D., 2001. PSP in the large
class. Proceedings of the Conference on Software Engineering Educa-
tion and Training (CSEE& T). IEEE Computer Society Press, pp. 81–
88.

Casallas, R., Osorio, L.A., Lozano, A., 2005. The challenge of teaching a
software engineering first course. In: Proceedings of the fifth interna-
tional workshop on Active Learning in Engineering, Delft-Amster-
dam, The Netherlands.

Davis, N., Mullaney, J., 2003. Team Software Process (TSP) in Practice.
SEI Technical Report CMU/SEI-2003-TR-014.

Girden, E.R., 1992. ANOVA. Repeated Measures. Sage Publications,
Thousand Oaks, Quantitative Applications in the Social Sciences 84.

Gornik, D., 2004. IBM Rational Unified Process: Best Practices for
Software Development Teams, Rational Software White Paper
TP026B, Rev 11/01.

Hayes, W., Over, J.W., 1997. The Personal Software Processs (PSP): An
Empirical Study of the Impact of PSP on Individual Engineers.
Software Engineering Institute Technical Report, CMU/SEI-97-TR-
001.

Hilburn, T.B., Humprey, W.S., 2002. Teaching teamwork. IEEE Software
19 (5), 72–77.

Humphrey, W.S., 1995. A Discipline For Software Engineering, re-printed
ed. Reading, Addison-Wesley.

Humprey, W.S., 1997. Introduction to the Personal Software Process.
Reading, MA, Addison Wesley.

Humphrey, W.S., 2000. Introduction to the Team Software Process.
Reading, MA, Addison Wesley.

Humphrey, W.S., 2005. PSP: A Self-Improvement Process for Software
Engineers. Reading, MA, Addison Wesley.

Humphrey, W.S., 2006. TSP: Coaching Development Teams. Addison
Wesley, Reading, MA.

Johnson, P., Disney, A., 1999. A critical analysis of PSP data quality:
results from a case study. Empirical Software Engineering 4 (4), 317–
349.

McAndrews, D.R., 2000. The Team Software Process (TSP): An Overview
and Preliminary Results of Using Disciplined Practices. Carnegie
Mellon University Technical Report CMU/SEI-2000-TR-015.

Ocampo, A., Casallas, R., Soto, M., 1999. An implementation of the PSP
in an industrial context: a case study. Proceedings of the 2nd European
Software Measurement Conference (FESMA). the Netherlands,
Amsterdam.

D. Rombach et al. / The Journal of Systems and Software 81 (2008) 747–763 763
Ocampo, A., 2001. Looking for the path to the PSP enactment.
Proceedings of the 4th European Software Measurement Conference
(FESMA). Heidelberg, Germany.

Oktaba, H., Ibaguengoitia, G., 2003. Quality in Software Proceses. In:
Piatini, M., Garcı́a, F. (Eds.), TSPi Example (in Spanish). Desarrollo y
Mantenimiento de Software. RAMA.

Paulk, M., Curtis, B., Chrisis, M.B., 1993. Capability Maturity Model for
Software Version 1.1, Software Engineering Institute Technical
Report, CMU/SEI-93-TR.

Wesslén, A., 2000. A replicated empirical study of the impact of the
methods in the PSP on individual engineers. Empirical Software
Engineering. 5 (2), 93–123.

Dieter Rombach is a Full Professor in the Department of Computer Sci-
ence at the University of Kaiserslautern, Germany. He holds a chair in
software engineering, is executive and founding director of the Fraunhofer
Institute for Experimental Software Engineering (IESE), and chairs the
Fraunhofer ICT group, which aims at shortening the time needed for
transferring research technologies into industrial practice. His research
interests are in software methodologies, modeling and measurement of the
software process and resulting products, software re-use, and distributed
systems. Results are documented in more than 180 publications in inter-
national journals and conferences. In 2000, he was awarded the Rhine-
land-Palatinate State Service Medal. In January 2003, the Institute of
Electrical and Electronical Engineers (IEEE) elected him to the grade of
Fellow for contributions to experimental Software Engineering. He heads
several research projects funded by the German government, the Euro-
pean Union, and industry, and leads a federally funded project (VSEK)
aimed at building up a German repository of knowledge about innovative
software engineering technologies.

Jürgen Münch is Division Manager for Quality Management at the Fra-
unhofer Institute for Experimental Software Engineering (IESE) in
Kaiserslautern, Germany. Before that, he was an executive board member
of the temporary research institute SFB 501 ‘‘Development of Large
Systems with Generic Methods’’ funded by the German Research Foun-
dation (DFG). He received his Ph.D. degree (Dr. rer. nat.) in Computer
Science from the University of Kaiserslautern, Germany. His research
interests in software engineering include: (1) modeling and measurement
of software processes and resulting products, (2) software quality assur-
ance and control, (3) technology evaluation through experimental means
and simulation, (4) software and system product lines and (5) technology
transfer methods. He has been teaching and training in both university
and industry environments, and also has significant project management
experience. He is a member of IEEE, the IEEE Computer Society, and the
German Computer Society (GI), a member of the program committee of
various software engineering conferences, and has published more than 60
international publications. He has been program co-chair of the Profes
2006 and Profes 2007 conferences and will serve as program co-chair for
ESEM 2008.
Alexis Ocampo received his Masters degree in Systems Engineering and
Computation from Los Andes University, Colombia, in 1999 and his title
as Systems Engineer from the Industrial University of Santander,
Colombia, in 1997. Since February 2002, he has been a research scientist at
the Fraunhofer Institute for Experimental Software Engineering (IESE) in
Kaiserslautern, Germany, in the Department of Processes and Measure-
ment. Before that, he worked for 5 years as a research developer on new
technologies and methodologies with the software company Heinsohn
Associates, Bogotá Colombia. His master thesis entitled ‘‘Implementation
of PSP in the Colombian Industry: A case study’’ was developed within
this company. He also worked as an instructor at the University of Los
Andes in the Department of Systems and Computation. His research
interests in software engineering include: (1) modeling and measurement
of software processes and resulting products, (2) software quality assur-
ance and control and (3) technology transfer methods.

Watts Humphrey received his B.Sc. degree in Physics from the University
of Chicago in 1949 and an MS in Physics from the Illinois Institute of
Technology in 1950. In 1951, he obtained an MBA degree from the
University of Chicago. He worked for Sylvania Electric Products, Inc. in
Boston, MA from 1953 until 1959 on computer design. From 1959 until
1986, he was with the IBM Corporation in Armonk, New York. Among
other jobs, he was Director or Programming, Director of Systems and
Application Engineering, and Vice President of Technical Development.
In 1986, he joined the Software Engineering Institute, where he was
Director of the Process Program and is now an Institute Fellow. He has
been a member of the Malcolm Baldrige National Quality Award Board
of Examiners and is on the editorial board of numerous technical journals.
He has published 11 books and numerous papers. In 1998, he was granted
an honorary Ph.D. in Software Engineering by Embry Riddle Aeronau-
tical University. In 2000, the Watts Humphrey Software Quality Institute
in Chennai, India was named in his honor and, in a White House cere-
mony, the President of the United States awarded him the 2003 National
Medal of Technology.

Dan Burton received his Bachelor of Science degree in Electrical Engi-
neering from Carnegie Mellon University in 1967 and a Master of Science
in Electrical Engineering from the US Air Force Institute of Technology in
1974. From 1968 through 1988, he was an officer in the US Air Force and
served in numerous software engineering positions. In his last position in
the Air Force, he was a member of the government team that established
the Software Engineering Institute at Carnegie Mellon University and
then headed up the on-site liaison office. From late 1988 through mid-
1991, he worked at Tartan Labs, where he led the development of an Ada
compiler for a digital signal processor. In mid-1991, he rejoined the
Software Engineering Institute as a member of the technical staff. Since
1995, he has been working with Watts Humphrey on the Personal and
Team Software Process.

	Teaching disciplined software development
	Introduction
	Why is discipline important for software organizations?
	Why is discipline important for students?
	Why is discipline important for software education?

	Disciplined software development
	Elements of engineering-style software development
	The role of empirical studies for disciplined software development

	Benefits of disciplined software development for individuals
	Study description
	Study context
	Study goal
	Hypotheses definition
	Goal quantification
	Selected test
	Data acquisition
	Threats to validity

	Data validation
	Study results and interpretations
	Size estimation accuracy
	Effort estimation accuracy
	Defect density
	Productivity
	Yield
	Defect estimation accuracy

	Experiences with PSP and TSP as teaching tools
	Observed commonalities in PSP applications
	Observed commonalities in TSP applications

	Recommendations for using PSP and TSP as discipline drivers in education
	Customization of PSP and TSPi courses
	Exercises
	Contents adaptation
	Tool Support

	Integration of PSP as part of TSPi

	Summary and outlook
	Acknowledgements
	References

