

J.-S. Pan, S.-M. Chen, N.T. Nguyen (Eds.): ACIIDS 2012, Part III, LNAI 7198, pp. 256–265, 2012.
© Springer-Verlag Berlin Heidelberg 2012

A Cloud Computing Implementation
of XML Indexing Method Using Hadoop∗

Wen-Chiao Hsu1, I-En Liao2,**, and Hsiao-Chen Shih3

1,2,3 Department of Computer Science and Engineering
National Chung-Hsing University,

250 Kuo Kuang Road, Taichung 402, Taiwan
phd9510@cs.nchu.edu.tw, ieliao@nchu.edu.tw, nic3p1217@gmail.com

Abstract. With the increasing of data at an incredible rate, the development of
cloud computing technologies is of critical importance to the advances of
researches. The Apache Hadoop has become a widely used open source cloud
computing framework that provides a distributed file system for large scale data
processing. In this paper, we present a cloud computing implementation of an
XML indexing method called NCIM (Node Clustering Indexing Method),
which was developed by our research team, for indexing and querying a large
number of big XML documents using MapReduce. The experimental results
show that NCIM is suitable for cloud computing environment. The throughput
of 1200 queries per second for huge amount of queries using a 15-node cluster
signifies the potential applications of NCIM to the fast query processing of
enormous Internet documents.

Keywords: Hadoop, Cloud Computing, XML Indexing, XML query, Node
Clustering Indexing Method.

1 Introduction

XML (eXtensible Markup Language) is widely used as the markup language for the
web documents. The flexible nature of XML enables it to represent many kinds of
data. However, the representation of XML is not efficient in terms of query
processing. A number of indexing approaches for XML documents are proposed to
accelerate query processing. Most of these works provide mechanisms to construct
indexes and methods for query evaluation that deal with one or small amount of
documents in a centralized fashion. In the real world, an XML database may contain a
large number of XML documents which require the existing XML indexing methods
to be scalable for high performance.

The concept of the “cloud computing” has been received considerable attention
because it provides a solution to the increasing data demands and offers a shared,

∗ This research was partially supported by National Science Council, Taiwan, under contract

no. NSC100-2221-E-005-070.
** Corresponding author.

 A Cloud Computing Implementation of XML Indexing Method Using Hadoop 257

distributed computing infrastructure [2]. With the increasing popularity of cloud
computing, Apache Hadoop has become a widely used open source cloud computing
framework that provides a distributed file system for large scale data processing.
When a low-cost, powerful, and easily accessible parallel computational platform is
available, it is important to better understand how it can solve a given problem [3].

Although there are many published papers on the subject of XML indexing and
querying methods, most of them are confined to small data samples running in the
centralized system. As cloud computing becomes popular, the issues of parallel XML
parsing have been discussed recently. However, to the best of our knowledge, there is
very little work that addresses the problem of indexing as well as querying XML
documents on large distributed environments. Exploring whether the existing
XML indexing methods can be scaled out is an important issue due to the enormous
XML documents in the Web.

In our previous work [1], we presented an indexing method called NCIM (Node
Clustering Indexing Method) which compresses XML documents effectively and
supports complex queries efficiently. In this paper, we use Hadoop framework to
present a mechanism for distributed construction and storage of indexes as well as
distributed query processing for a large number of big XML documents on the basis
of NCIM.

The contributions of our work are as follows. We modify the NCIM (Node
Clustering Indexing Method) and design a system for indexing and querying a large
number of XML documents by using the Hadoop cloud computing framework. We
also consider two job processing modes, streaming query vs. batched query, for query
evaluation in our experiments. The results show that the batched query processing
will have much better throughput.

The rest of this paper is organized as follows. In the next section, we review related
work. Section 3 describes preliminaries on Hadoop. Section 4 presents the proposed
system that builds indexes for XML datasets and answers massive queries
simultaneously. Experimental results are discussed in Section 5. Finally, Section 6
concludes the paper.

2 Related Work

Many index methods and query evaluation algorithms have been proposed in the
literature. The most widely used approaches are structural summary and structural
join. The structural summary indexing methods merge the same sub-structures in an
XML document and form a smaller tree structure, which is used as the index of the
XML document. Thus, instead of matching an input query against the XML document
itself, the summarized index tree is used. The DataGuide [4] is a typical model. A
strong DataGuide holds all the P-C (Parent-Child) edges in an XML file. Each node in
a DataGuide has an extent for the corresponding nodes in the original XML
document. Therefore, the P-C (Parent-Child) and A-D (Ancestor-Descendant)
relationships can be evaluated using strong DataGuide directly. However, DataGuide
is not feasible for twig queries, since the structure of the summarized index is not the
same as the original XML document.

258 W.-C. Hsu, I-E. Liao, and H.-C. Shih

Structural Join [5] is one of the first proposed methods to process twig pattern
matching. A twig query is decomposed into several binary P-C or A-D relationships.
Each binary sub-query is separately evaluated and its intermediate result is produced.
The final result is formed by merging these intermediate results in the second phase.
This method generates a huge amount of intermediate results that may not be part of
the final results. In addition, the phase of merge is expensive. Various follow-up
techniques have been proposed to filter out useless partial solutions and avoid the
expensive merging phase [6, 7, 8].

The NCIM [1] method labels each element node of an XML data tree with 3-tuple
(level, n├, n┤) for non-leaf node and a 2-tuple (level, n├) for leaf node, where
"level" is the depth of the node n with the root as level 1, "n├" (start number) is the
serial number of node n derived from a depth-first traversal of the data tree (the root
node is assigned 1 also), and "n┤" (end number) is the serial number after visiting all
child nodes of n. The information is clustered with same (tag, level) pair and stores
them in four hash-based tables, two for node indexes and two for level indexes. The
advantage of using hash tables is to gain fast accesses on the needed data. NCIM can
deal with single-path query as well as more complex query patterns. The experimental
results show that NCIM can compress XML documents with high compression rate
and low index construction time. There have been many indexing methods proposed
in the literature for XML query processing. However, very few are known to scale out
for a large number of big XML documents.

In recent years, parallel XML parsing and filtering have been discussed for
processing streaming XML data in scientific applications. The results of parsing XML
can be DOM-style or SAX-style. The parallel DOM-style parsing constructs a tree
data structure in memory to represent the document [9, 10, 11]. The load-balancing
scheme is widely applied that assigns work to each core as the XML document was
being parsed. The parallel SAX-style parsing visits XML document in depth-first
traversal. It is much more suitable when XML documents are streaming. In Pan et al.
[12], they present algorithms on how to parallelize the parsing computations prior to
issuing the SAX callbacks (representing the events). Although some of parallel XML
parsing techniques have been proposed, indexing and querying XML documents on
large distributed environments remains a challenging issue.

3 Preliminaries on Hadoop

The Apache Hadoop software library, inspired by Google Map-Reduce and Google
File System, is a framework that allows for the distributed processing of large data
sets across clusters of computers using a simple programming model [13]. Hadoop
consists of two main services: high-performance parallel data processing using a
technique called MapReduce and reliable data storage using the Hadoop Distributed
File System (HDFS). Since Hadoop is well suited to process large data sets, the
proposed system uses Hadoop as the cloud computing framework.

The MapReduce, illustrated in Fig. 1, has two computation phases, map and reduce
[14]. In the map phase, an input is split into independent chunks which are distributed

 A Cloud Computing Implementation of XML Indexing Method Using Hadoop 259

to the map tasks. The mappers implement compute-intensive tasks in a completely
parallel manner. The output of the map phase is of the form <key, value> pairs. The
framework sorts the outputs of the mappers, which are then passed to the second
phase, the reduce phase. The reducers then partition, process and sort the <key, value>
pairs received from the Map phase according to the key value and make the final
output.

The HDFS is a distributed file system designed to store and process large
(terabytes) data sets. HDFS is highly fault-tolerant and is designed to be deployed on
low-cost hardware. HDFS provides high throughput access to application data and is
suitable for applications that have large data sets [15]. HDFS has a master/slave
architecture that consists of a single NameNode and a number of DataNodes. The
NameNode, the master of the HDFS, maintains the critical data structures of the entire
file system. The DataNodes, usually one per node in the cluster, manage storage
attached to the nodes that they run on. Internally, a file is split into one or more blocks
that are stored in a set of DataNodes with replication. The NameNode executes file
system namespace operations like opening, closing, and renaming files and
directories. It also determines the mapping of blocks to DataNodes. The DataNodes
are responsible for serving read and write requests from the file system’s clients. The
DataNodes also perform block creation, deletion, and replication upon instruction
from the NameNode [15].

Parallel processing

Map0

Map1

Map2

Mapn

Reduce0

…

Reduce1

Reducem

…

Input

split0

split1

split2

splitn

part0

part1

partm

HDFS
replication

HDFS
replication

HDFS
replication

Fig. 1. The processing of MapReduce

Hadoop MapReduce framework runs on top of HDFS. Typically the compute
nodes (the Map/Reduce framework) and the storage nodes (the HDFS) are running on
the same set of nodes [14]. Thus data processing is co-located with data storage. A
small Hadoop cluster will include a single master and multiple slaves. Fig. 2 [16]
shows a hadoop system with multi-core cluster. The master for the MapReduce
implementation is called the "JobTracker", which keeps track of the state of
MapReduce jobs and the workers are called "TaskTrackers", which keep track of
tasks within a job. The job tracker assigns jobs to available task tracker nodes in the
cluster as close to the data as possible. If a task tracker fails or times out, that part of
the job is rescheduled by job tracker.

260 W.-C. Hsu, I-E. Liao, and H.-C. Shih

Multi-node cluster

task
tracker

task
tracker

job
tracker

name
node

data
node

data
node

MapReduce
layer

HDFS
layer

master salve

Fig. 2. The Hadoop system overview [16]

Since the release of Hodoop system, more and more researches use Hadoop as a
framework to develop applications on large-scale data sets. For example, Zhang, et al.
[17] describe a case study that uses the Hadoop framework to process sequences of
microscope images of live cells. Dutta, et al. [2] address the problem of time series
data storage on large distributed environments with a case-study of
electroencephalogram using Hadoop.

4 The Proposed System

Consider a database that contains a large number of XML documents with different
structures and sizes. It is a challenging task to retrieve required information from such
huge amount of documents. In this paper, we develop a Hadoop-based XML query
processing system for indexing and querying large number of XML documents. The
proposed system consists of two subsystems. The first one is the preprocessor that
parses XML documents and builds indexes. The second subsystem is the query
processor that accepts queries from users and does query evaluation with the help of
indexes.

4.1 Index Construction

The indexing method used in the proposed system is NCIM with some modification.
We choose NCIM because the experimental results show that NCIM can compress
XML documents effectively and support complex queries efficiently. The original
NCIM method constructs and stores the indexes, which consist of four hashed-based
tables, in main memory to support fast accesses. However, this implementation is not
suitable for big data size of XML documents. Therefore, we write the indexes into
files in the proposed system. The Non-leaf node index and the leaf node index are
stored based on the hash keys. That is, data in each linked list to which a hash entry
points is written into a file named using the corresponding hash key. Using this
storage strategy, we need only to load required data while a query is processed. There
is another modification in the proposed implementation of NCIM. Only text contents

 A Cloud Computing Implementation of XML Indexing Method Using Hadoop 261

which are less than 20 characters in the leaf node index are stored in the file for
saving space. However, this restriction will be lifted in the future implementation for
supporting wildcard characters in the queries.

In this phase, the input (see Fig. 1) is a sequence of files and each file represents an
XML document. We refer to each file as a split, according to the Hadoop
terminology, and feed splits to the map tasks. The splits are then processed in parallel.
The SAX parser is used to parse the input XML document and the modified NCIM
method is used to construct indexes. These two utilities reside in the Map function.
Each Map function produces a list of <key, value> pairs, where key is a (tag, level)
pair and the value is the corresponding label of a node. After that, the MapReduce
framework collects all pairs with the same key from all lists and groups them
together. The Reduce function is then applied in parallel to each group, which in turn
produces a collection of values in the same key, and then the results are written into
files. The output files may reside in different data nodes depending on HDFS. The
flow of index construction is shown in Fig. 3.

<Tag1L1,Label11>
<Tag2L2,Label21>

<Tag1L1,Label12>
<Tag3L2,Label31>

…..

XML Map Reduce Output
<Tag1L1, Label11-Label12- …>

<Tag2L2, Label21-Label22-
…>

…..

Fig. 3. The flow of index construction

4.2 Query Evaluation

After building XML indexes in the cloud servers, users may start sending queries to
the cloud servers. The cloud servers may receive tens of thousands of queries per
second and must be designed to respond in a very fast way. Fig.4 shows the overview
of the proposed XML-Cloud service system. The cloud frontend receives user queries
and submits them to the JobTracker. The JobTracker decides how many map tasks are
required and distributes these tasks to the chosen TaskTracker nodes. Because the
indexes are stored in HDFS, the JobTracker schedules tasks on the nodes where data
is present or nearby. The TaskTracker loads indexes from HDFS and performs query
evaluation. In this case, no reducer tasks are needed.

The query evaluation in our system is based on the algorithm of NCIM. The
difference is that NCIM keeps indexes in main memory and the proposed system
saves indexes in HDFS. Loading corresponding indexes are necessary before doing
query evaluation in our system.

In the proposed system, we design two query processing modes. One is called
streaming mode (Mode I). The second one is called batch mode (Mode II). In
streaming mode, we treat user queries as a stream, and then each query is treated as a
split and assigned to a map task. However, this may require a large number of I/O
because each query will load corresponding part of indexes for evaluation. Two
queries over the same documents may be assigned to different machines. The

262 W.-C. Hsu, I-E. Liao, and H.-C. Shih

Map

Client

Cloud Frontend

Input

….

Output

Q1
….Q2 Q3 Qn

JobTracker

HDFS (Indexes)

TaskTracker

….

TaskTracker TaskTracker

Buffer in
Memory

Buffer in
Memory

Buffer in
Memory

Cloud

Query
Evaluation

Scheduling

Fig. 4. The overview of XML-Cloud service system

common parts of indexes are loaded and released in different nodes. This will impose
high cost for servers and result in poor performance.

In the batch mode, user queries are collected for a time period, e.g., one second, in
the cloud frontend, and then classified into groups according to some similar
characteristics. A query group is then treated as a split and assigned to a machine that
loads common parts of indexes once and releases them after all queries in a group are
finished. There may be a delay between query being entered into the system and the
query being processed. However, the throughput of the system increases substantially
when there are many user queries at the same time.

5 Experimental Results

In the experiments, we use a homogeneous cluster, which is composed of 15 slave
nodes on Linux X86-64 with 4 CPUs and 8GB DRAM1. The Hadoop 0.20.1 is
installed to run the experiments. Because it is a small cluster, the test datasets are not
big comparing to real world datasets. The maximum size of datasets is about 2.5GB,
which contains 50 XML files with different sizes. The maximum and minimum size
of XML files are 75MB and 32MB, respectively. All essential functionalities are put
inside the cloud. There is also a simple user interface at the client side for submitting
XML documents and queries.

5.1 Performance of Index Construction

In the index construction phase, a set of XML files are parsed, and indexes are
produced, which are then stored as HDFS files. In order to evaluate the performance

1 Thanks to the National Center for High-Performance Computing, Taiwan, for providing the

Hadoop computing cluster.

 A Cloud Computing Implementation of XML Indexing Method Using Hadoop 263

of the system under different data size, we form 5 datasets of size 0.5GB, 0.9GB,
1.4GB, 1.9GB, and 2.5GB with 10, 20, 30, 40, and 50 files, respectively. Fig. 5 shows
the execution time for one file per task. The execution time includes loading XML
files, executing MapReduce program, and saving index files to HDFS. It can be seen
that the execution time is not increased linearly in terms of the number of files. The
reason is because there are 15 slave nodes in the cloud, and the tasks are distributed
unevenly when the number of input files is not the multiple of 15. We also observed
that the Hadoop spent most of times in reduce tasks, where the HDFS creates multiple
replicas of data blocks and distributes them on compute nodes. The replication factor
is set to 3 for all tests.

0

50

100

150

200

250

1 2 3 4 510 20 30 40 50

Num. of Files

E
xe

cu
tio

n
tim

e
(s

ec
.)

Fig. 5. Execution time of index construction

5.2 Performance of Query Evaluation

In the query evaluation phase, we feed a large number of queries to the system and
examine the performance of query evaluation. The queries used in the experiments are
generated by YFilter [18]. The query patterns may be either P-C or A-D relationships.
We randomly choose required quantity of queries from the set of distinct queries.
Duplicates are allowed in the experiments. We consider two types of query processing
modes. Mode I is the streaming mode in which the incoming queries are entered as a
stream. Each query is treated as a split and is assigned to a map task. Mode II is the
batch mode. A set of queries over the same documents are classified as a group and
also treated as a map task. We performed our experiments by using 30 files (1.4GB),
a multiple of 15, to maximize the difference between two modes. Fig. 6 (a) shows the
results of the execution time on the number of input queries form 4.5 thousand to 22.5
thousand in an increment of 4.5 thousand.

As we mentioned in Subsection 4.2, in Mode I, the system will load corresponding
parts of indexes and release them once the end of a query evaluation is reached. The
execution time increases steadily with the increase of the number of queries. In Mode
II, the system holds the loaded indexes in memory until a group of queries is finished.
The indexes can be reused and the cost of I/O is reduced. There is no obvious increase
in execution time with the increase in the number of queries for Mode II. The reason
is because the time spending on query evaluation is very low comparing to the time
spending on I/O. Also because the queries may be duplicated, the loaded indexes in

264 W.-C. Hsu, I-E. Liao, and H.-C. Shih

different tests may be similar. Therefore, the differences in query processing time are
not significant. Fig. 6 (b) illustrates the throughput of query evaluation. The
throughput is defined as the average number of queries that can be processed in one
second. It shows the throughput in Mode I is not improved when the number of
queries increases. However, the throughput in Mode II increases rapidly due to the
batch processing of the queries.

0

200

400

600

800

1000

1200

1400

1 2 3 4 5

Mode I

Mode II

0

20

40

60

80

100

120

1 2 3 4 5

Mode I

Mode II

4.5 9.0 13.5 18.0 22.5

E
xe

cu
tio

n
tim

e
(s

ec
.)

4.5 9.0 13.5 18.0 22.5
Total Number of Input Queries (thousand)

T
hr

ou
gh

pu
t (

pe
r

se
c.

)

Total Number of Input Queries (thousand)

(a) Execution time of query evaluation (b) Throughput of query evaluation

Fig. 6. Performance comparisons of query evaluation

6 Conclusions

In this paper, we proposed a system that builds indexes and processes enormous
amount of queries for a large number of XML documents using Hadoop framework.
The suitability of NCIM, which was developed by our research team, for large
number of XML documents is demonstrated in this paper. The experimental results
show that the proposed system can deal efficiently with large input XML files. The
experimental results also show the throughput of the batch query processing mode is
much higher than the streaming mode. In the batch processing mode, the throughput
of 1200 queries per second for huge amount of queries using a 15-node cluster
signifies the potential applications of NCIM to the fast query processing of enormous
Internet documents.

References

1. Liao, I.-E., Hsu, W.-C., Chen, Y.-L.: An Efficient Indexing and Compressing Scheme for
XML Query Processing. In: Zavoral, F., Yaghob, J., Pichappan, P., El-Qawasmeh, E.
(eds.) NDT 2010. CCIS, vol. 87, pp. 70–84. Springer, Heidelberg (2010)

2. Dutta, H., Kamil, A., Pooleery, M., Sethumadhavan, S., Demme, J.: Distributed Storage of
Large Scale Multidimensional Electroencephalogram Data using Hadoop and HBase. In:
Grid and Cloud Database Management. Springer, Heidelberg (2011)

3. Thiébaut, D., Li, Y., Jaunzeikare, D., Cheng, A., Recto, E.R., Riggs, G., Zhao, X.T.,
Stolpestad, T., Nguyen, C.L.T.: Processing Wikipedia Dumps: A Case-Study comparing
the XGrid and MapReduce Approaches. In: 1st International Conference on Cloud
Computing and Services Science (2011)

 A Cloud Computing Implementation of XML Indexing Method Using Hadoop 265

4. Goldman, R., Widom, J.: DataGuides: Enabling Query Formulation and Optimization in
Semistructured Databases. In: 23rd International Conference on Very Large Data Bases,
pp. 436–445 (1997)

5. Al-Khalifa, S., Jagadish, H.V., Koudas, N., Patel, J.M., Srivastava, D., Wu, Y.: Structural
Joins: a Primitive for Efficient XML Query Pattern Matching. In: 18th IEEE International
Conference on Data Engineering, pp. 141–152. IEEE Press, Washington, DC (2002)

6. Bruno, N., Koudas, N., Srivastava, D.: Holistic Twig Joins: Optimal XML Pattern
Matching. In: 2002 ACM SIGMOD International Conference on Management of Data, pp.
310–321. ACM Press, New York (2002)

7. Chen, S., Li, H.G., Tatemura, J., Hsiung, W.P., Agrawal, D., Candan, K.S.: Twig2Stack:
Bottom-Up Processing of Generalized Tree-pattern Queries over XML Documents. In:
32nd International Conference on Very Large Data Bases, pp. 283–294 (2006)

8. Qin, L., Yu, X.J., Ding, B.: TwigList: Make Twig Pattern Matching Fast. In: 12th
International Conference on Database Systems for Advanced Applications, pp. 850–862
(2007)

9. Pan, Y., Lu, W., Zhang, Y., Chiu, K.: A Static Load-Balancing Scheme for Parallel XML
Parsing on Multicore CPUs. In: 7th IEEE International Symposium on Cluster Computing
and the Grid, Brazil (2007)

10. Lu, W., Chiu, K., Pan, Y.: A Parallel Approach to XML Parsing. In: 7th International
Conference on Grid Computing, pp. 28–29. IEEE Press, Washington, DC (2006)

11. Pan, Y., Zhang, Y., Chiu, K.: Simultaneous Transducers for Data-Parallel XML Parsing.
In: 22nd IEEE International Parallel and Distributed Processing Symposium (2008)

12. Pan, Y., Zhang, Y., Chiu, K.: Parsing XML Using Parallel Traversal of Streaming Trees.
In: Sadayappan, P., Parashar, M., Badrinath, R., Prasanna, V.K. (eds.) HiPC 2008. LNCS,
vol. 5374, pp. 142–156. Springer, Heidelberg (2008)

13. Welcome to ApacheTM HadoopTM!, http://hadoop.apache.org/ (retrieved date:
June 27, 2011)

14. Map/Reduce Tutorial, http://hadoop.apache.org/common/docs/r0.20.2/
mapred_tutorial.html (retrieved date: June 27, 2011)

15. Welcome to HadoopTM Distributed File System!,
http://hadoop.apache.org/hdfs/ (retrieved date: June 27, 2011)

16. Wikipedia, Apach Hadoop, http://en.wikipedia.org/wiki/Apache_Hadoop
(retrieved date: June 29, 2011)

17. Zhang, C., De Sterck, H., Aboulnaga, A., Djambazian, H., Sladek, R.: Case Study of
Scientific Data Processing on a Cloud Using Hadoop. In: Mewhort, D.J.K., Cann, N.M.,
Slater, G.W., Naughton, T.J. (eds.) HPCS 2009. LNCS, vol. 5976, pp. 400–415. Springer,
Heidelberg (2010)

18. YFilter: Filtering and Transformation for High-Volume XML Message Brokering,
http://yfilter.cs.umass.edu/code_release.html (retrieved date: June
29, 2011)

	A Cloud Computing Implementation of XML Indexing Method Using Hadoop
	Introduction
	Related Work
	Preliminaries on Hadoop
	The Proposed System
	Index Construction
	Query Evaluation

	Experimental Results
	Performance of Index Construction
	Performance of Query Evaluation

	Conclusions
	References

