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a  b  s  t  r  a  c  t

We  propose  a  novel  particle  swarm  optimisation  algorithm  that  uses  a set  of  interactive  swarms  to
track  multiple  pedestrians  in  a crowd.  The  proposed  method  improves  the standard  particle  swarm
optimisation  algorithm  with  a  dynamic  social  interaction  model  that enhances  the  interaction  among
swarms.  In addition,  we integrate  constraints  provided  by  temporal  continuity  and  strength  of  person
detections  in the  framework.  This allows  particle  swarm  optimisation  to  be able  to  track  multiple  moving
eywords:
nteractive swarms
article swarm optimisation
ulti-target tracking

ocial behaviour
rowded scenes

targets  in  a complex  scene.  Experimental  results  demonstrate  that the  proposed  method  robustly  tracks
multiple  targets  despite  the  complex  interactions  among  targets  that  lead  to several  occlusions.

©  2012  Elsevier  B.V.  All  rights  reserved.
. Introduction

Multi-target tracking in crowded scenes still remains a challeng-
ng problem due to several aspects. The complex interactions and
nter-occlusion between targets are major challenges encountered
or the problem of tracking in a crowd. To address this problem,
everal methods [1–5] have proposed to integrate the social inter-
ctions among targets in the tracking algorithms. This direction has
hown promising performance to track multiple targets in crowded
cenes. An early example which models the social interaction of tar-
ets is Markov chain Monte Carlo (MCMC) based particle filter [2].
heir method models social interactions of targets using Markov
andom field and adds motion prior in the sampling process of a
oint particle filter.

In this paper, we address the problem of multi-target tracking
ased on the particle swarm optimisation framework. Recently,
article swarm optimisation (PSO) [6] has gained attentions of
any researchers because of its nature of interacting particles has

roved to be effective in finding the optimum in a search space.

n contrast to the particle filter [7] where particles move inde-
endently, PSO allows particles to interact; each particle, which

s a candidate solution, searches the optimum using both social

∗ Corresponding author.
E-mail address: mthida@i2r.a-star.edu.sg (M.  Thida).

568-4946/$ – see front matter © 2012 Elsevier B.V. All rights reserved.
ttp://dx.doi.org/10.1016/j.asoc.2012.05.019
interaction and cognitive knowledge [8,9]. This idea of PSO is
inspired by behaviour models of bird flocking where each bird finds
its target (food) in the search space by sharing information with
other birds in the swarm. This underlying phenomenon resembles
the social interaction of pedestrians in a crowd and motivates us
to employ the particle swarm optimisation framework for tracking
multiple targets in a crowded scene.

However, the standard PSO is generally used to find a single
optimum in a static search space. In contrast, the nature of track-
ing is dynamic where optima change over time. Thus, the standard
PSO cannot be directly used to address the problem of tracking
multiple targets. The idea of multiple independent swarms within
a PSO, as in our earlier work [10], is not a viable option to track
multiple interacting targets. In this paper, we formulate the prob-
lem of multi-target tracking as an optimisation problem of finding
dynamic optima (pedestrians) where these optima interact fre-
quently. We incorporate motion prediction and social interaction
in the PSO framework such that each swarm finds the best local
optimum based on its best knowledge and exchanges information
with others.

The main contributions of our method can be summarised as
follows: (1) introducing an idea of multiple interactive swarms to

the standard PSO to track moving targets in a crowd; (2) incorpo-
rating higher level information such as social behaviour (motion
information among pedestrians) in the process of finding optima
in a high dimensional space; (3) integrating constraints provided

dx.doi.org/10.1016/j.asoc.2012.05.019
http://www.sciencedirect.com/science/journal/15684946
www.elsevier.com/locate/asoc
mailto:mthida@i2r.a-star.edu.sg
dx.doi.org/10.1016/j.asoc.2012.05.019
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y temporal continuity of target tracks and the strength of person
etections; (4) initialising a separate swarm for each new person
ntering the scene.

The rest of the paper is organised as follows. Section 2 describes
elated work on multi-target tracking using particle swarm opti-
isation framework. In Section 3, the standard particle swarm

ptimisation algorithm is briefly explained. Section 4 explains
etails of our proposed method. Experimental results are presented

n Section 5 and followed by conclusions in Section 6.

. Related work

Related work to our method can be divided into two  main
trands of research.

The first strand is tracking algorithms which incorporate social
nteractions of targets in the tracking process. This idea of integrat-
ng social interactions of targets in tracking algorithms is motivated
y the behaviour of targets in a crowd. In crowded scenarios, the
ehaviour of each individual target is influenced by the proxim-

ty and behaviour of other targets in the crowd. Several methods
3–5,11] have proposed to integrate the social interactions among
argets in the tracking algorithms. This direction has shown promis-
ng performance to track multiple targets in crowded scenes. An
arly example which models the social interaction of targets is
arkov chain Monte Carlo (MCMC) based particle filter [11]. Their
ethod models social interactions of targets using Markov random

eld and adds motion prior in a joint particle filter. The traditional
mportance sampling step in the particle filter is replaced by a

CMC  sampling step. French et al. [3] extended the method in [11]
y adding social information to compute the velocity of particles.

n [5], the authors formulated the tracking problem as a problem
f minimising an energy function. The energy function is defined
ased on the both social information and physical constraint in the
nvironment. Their preliminary results indicate that social infor-
ation provides an important cue for tracking multiple targets in

 complex scene.
The second strand is tracking algorithms that employ the PSO

ramework. PSO was first introduced to the problem of target track-
ng by Kölsch and Turk [12]. Particles were represented by the
ositions of KLT (Kanade, Lucas, and Tomasi) feature points [13].
he movement of particles were spatially confined based on the
warm behaviour using two thresholds: first one to define the max-
mum distance between feature points and the other to define the

inimum distance between a particle and the swarm. A similar
pproach can be found in [14] where the object of interest is repre-
ented by N pixels. A swarm with N particles is initialised to track
he target in an image space. The above approaches define a particle
s a point and hence, their search space is limited to a 2 dimen-
ional space. A higher dimensional search space is considered in
15] where the target is represented by the centroid, the width and
he height of its bounding box. Similarly, Zhang et al. [16] proposed

 sequential PSO algorithm where temporal information is incor-
orated into the standard PSO. In [17], Yang et al. incorporated PSO
lgorithm into unscented particle filter-based tracking to avoid an
mpoverishment problem which is a known problem in particle
lter-based tracking. They have demonstrated that incorporating
SO improves the performance of the particle filter-based tracking
n terms of accuracy and robustness. Recently, other hybrid track-
rs that incorporate PSO algorithm into particle filter [18], Kalman
lter [19] and mean shift [20] have shown that swarm optimisation

mproves the performance of the tracker. For instance, compared

o the standard mean-shift tracker, PSO-based mean shift provides
etter performance in tracking fast moving targets.

Our earlier work [10] extended the standard PSO algorithm to
rack multiple targets. Assuming that the number of targets are
uting 13 (2013) 3106–3117 3107

known a priori, we track multiple targets using a set of swarms
where each swarm tracks a target independently. Our preliminary
work in [10] has shown that the PSO algorithm is a promising
framework for tracking multiple targets. Zhang et al. [21] proposed
a species-based PSO where the global swarm is divided into many
species to track multiple targets. These species track targets inde-
pendently and interact only when the overlapping area between
targets is greater than a particular threshold. Hence, their method
[21] requires occluded targets to be detected explicitly and a selec-
tive appearance updating scheme is used to handle occlusion. In
addition, the number of targets is assumed to be fixed and known
a priori, which is hard to achieve in real applications. This lim-
its its applicability and may  fail in crowded situations with heavy
interactions and frequent occlusions.

In this paper, we extend our earlier work [10] to track mul-
tiple pedestrians in a crowd. In contrast to [10] and [21], our
method tracks multiple targets using a set of interactive swarms.
A new velocity-updating mechanism is proposed which incorpo-
rates motion prediction and social interaction among pedestrians
and thus, naturally handles the occlusion problem and improves
tracking accuracy and precision.

3. Standard particle swarm optimisation

In this section, we briefly introduce a standard PSO and its nota-
tions. PSO is a population-based optimisation technique in which
a set of particles {xi}N

i=1 iteratively find the optimum solution in a
search space. Each particle is a candidate solution equivalent to a
point in a d-dimensional space, so the ith candidate can be rep-
resented as xi = (xi1, xi2, · · · , xid). The movement of each particle
depends on two  important factors: xb

i
the best position that the ith

candidate has found so far and xg the global best position found by
the whole swarm (all particles). Based on these two  factors, each
candidate updates its velocity and position in the (n + 1)th iteration
as follows:

vn+1
i

= ωvn
i + ϕ1r1(xb

i − xn
i ) + ϕ2r2(xg − xn

i ) (1)

xn+1
i

= xn
i + vn+1

i
(2)

where ω is the inertia weight, the parameters ϕ1 and ϕ2 are positive
constants, which balance the influence of the individual best and
the global best position. The parameters, r1, r2 ∈ (0, 1) are uniformly
distributed random numbers. Over the last decade, many variants
of particle swarm optimisation algorithms have been proposed [22]
and some algorithms have addressed dynamic optimisation prob-
lems [23,24]. One of the influential approach is the one proposed
by Clerc and Kennedy [25] where a factor is introduced to avoid the
unlimited growth of the particles’ velocity. Eq. (1) is then modified
as:

vn+1
i

= �(vn
i + ϕ1r1(xb

i − xn
i ) + ϕ2r2(xg − xn

i )) (3)

where � < 1 is a constraining factor and defined as:

� = 2

‖2 − ϕ −
√

ϕ2 − 4ϕ‖
, where ϕ = (ϕ1 + ϕ2) > 4.0. (4)

This method has been used by many researchers subsequently due
to its stability and convergence ability in high-dimensional prob-
lems [22,26]. From Eq. (3), it can be observed that the movement of
each particle depends on three components: inertial velocity, cog-
nitive effect and social effect. The first component maintains the
direction of the particle during the optimisation process while the
second component allows each particle to move based on its own

information, i.e., its best known position xb

i
in the previous itera-

tion. The third component gives the social effect where the particle
moves towards the global best position xg defined by all members
of the swarm.
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Table 1
Notations adopted in our proposed method.

Xt
k A swarm corresponds to target k at time t

xb,t
i,k

Individual best for target k at time t

xg,t
k

Global best of the swarm for target k at time t
xd

k
State of the target k given by the object detector

K  Number of targets (number of swarms)
N  Number of particles for each swarm
i  Particle index
n Iteration index
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k  Target index
t  Frame (time) index

Here, the individual best, xb
i

and the global best, xg positions
re chosen at each iteration by evaluating a fitness function at the
osition xi. In general, the higher the fitness value, the closer to the
ptimum position. Hence, each particle will update its best position
nly if the fitness value of the current position is greater than the
revious best value, otherwise the previous best position will be
ept. The global best is the position that has the highest fitness
alue among all individual best positions. Mathematically, this can
e formulated as follows:

b
i =

{
xn

i
, if f (xn

i
) > f (xb

i
);

xb
i
, otherwise.

(5)

g = arg max
xb

i

f (xb
i ) (6)

here f (xn
i
) is the fitness value at the position xn

i
.

. A modified PSO with interactive swarms for multi-target
racking

Our method tracks multiple targets using a set of interactive
warms in the PSO framework. In order to handle the dynamic
ptimisation problem effectively, we introduce three major stages
ere: (1) a scheme for diversifying particles and swarms to maintain
iversity over time, (2) a novel optimisation process that integrates
he concepts of multiple swarms where the PSO updating equa-
ion is modified to incorporate temporal continuity information
nd social interaction among targets, and (3) a swarm initialisa-
ion and termination strategy to accommodate targets entering and
eaving the scene. The detailed information of each major stage is
laborated in the following sections.

Section 4.1 explains the process of particles and swarms diversi-
cation while Section 4.2 explains the optimisation process of our
roposed multiple swarms PSO in details. The swarm initialisation
nd termination strategy, which accommodates targets entering
nd leaving the scene, is described in Section 4.3. The notations
dopted in this paper are listed in Table 1.

.1. Particle and swarm diversification

Particle diversity: In order to allow a swarm to track a dynamic
ptimum (moving target), it is important to maintain particles
iversity within the swarm over time. In our proposed method,

 swarm Xk = {xi,k}N
i=1 is initialised for every new target enter-

ng the scene. Each swarm has N particles where each member
i,k = (xc, yc, w, h) is a potential best state of the pedestrian rep-
esented by its centroid location and the width and height of the
ounding box. These particles are sampled from a Gaussian dis-

ribution at the beginning of the PSO iteration in every frame as
ollows:

xi,k}t∼N(xt
k,pred, �)  (7)
uting 13 (2013) 3106–3117

where � is a diagonal matrix and its entries are given by vt
k,pred

. The

predicted position xt
k,pred

of the target k at time t is given by:

xt
k,pred =

{
0 when the swarm is first created

xg,t−1
k

+ vt
k,pred

otherwise.
(8)

where the predicted velocity for target k is estimated as:

vt
k,pred = vt

k,ind + vt
soc (9)

where vt
k,ind

refers to individual velocity of target k and vt
soc refers to

social velocity of the group. Thus, the motion of a target is predicted
based on its personal information vt

k,ind
and the movement of other

members of its social group vt
soc . Here, the individual velocity for

target k is estimated by:

vt
k,ind = xg,t−1

k
− xg,t−2

k
(10)

where xg,t−1
k

and xg,t−2
k

are states of the target k at time t − 1 and
t − 2 respectively. Then, the social velocity is computed by sharing
information among targets which have been moving generally in
the same direction as follows:

vt
soc = 1

Kn

Kn∑
j=1

(xg,t−1
k

− xg,t−2
j

) (11)

where Kn is the total number of neighbours of the target k. In
this paper, two targets are considered as neighbours if they are
in close proximity and have similar motion direction and speed for
a time-overlap window of ıT frames. More precisely, given a pair of
trajectories for target k1 and k2 with the time-overlap window (in
which both targets appear) of ıT (in this paper, ıT = 10), we compute
the similarity score based on the absolute difference in their posi-
tion, direction and speed. Two targets are defined as neighbours
when their similarity score is larger than a particular threshold.

It should be highlighted that the motion of a target is predicted
based on its personal information as well as the social knowledge.
In this way, the position and motion of an occluded target can be
estimated from its social group and particles are distributed at the
likely position in the next frame. As a result, the proposed method
can recover the target which is being occluded for a period of time.
This situation is illustrated in Fig. 1.

Swarm diversity: When multiple targets are being tracked, there
is a high probability that two targets occlude one another, espe-
cially in a crowded scene. This results in two different swarms
competing for the same target or to cluster at the same location.
To prevent this, we introduce the idea of swarm diversity: diver-
sity among swarms that are close to each other. We  first compute
the distance between the global best states found by two  different
swarms to decide whether they are competing for the same target
or cluster at the same location. When two swarms compete for the
same target, we gradually expands the search space of the swarm
with the lower fitness value. As a result, the target can be recovered
even after the target is being occluded for a period of time.

4.2. Swarm optimisation

In the standard PSO, each particle is a candidate solution and
finds the optimum by updating its position based on three com-
ponents: inertial velocity, cognitive effect and social effect. In this
paper, we propose a novel PSO updating rule where each parti-
cle adjusts its speed and position in the search space based on its
personal knowledge, a shared information among its own  swarm

members, and the social activity among swarms. In addition, we
incorporate detection responses xd

k
in the PSO framework to drive

particles to find the new state in the direction given by the pedes-
trian detector and hence boost the convergence rate.
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Fig. 1. Effects of different components of the predicted velocity on initialising particles. (a) Shows how the motion of a target is predicted. Dotted lines indicate group
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Our proposed velocity and position updating equations for a
article at time t are defined as follows:

n+1
i,k

= �[vn
i,k + c1r1(xb

i,k − xn
i,k) + c2r2(xg

k
− xn

i ) + c3r3(xd
k − xn

i )]

(12)

n+1
i,k

= xn
i,k + vn+1

i,k
(13)

here vn
i,k

and xn
i,k

are the velocity and the state of particle i of
warm (target) k at iteration n at time t. Here, we omit the subscript t
or simplification. The first component vi,k is the motion prior-based
nertial velocity that integrates both individual and social veloc-
ty among targets. In contrast to the traditional PSO [6] where the
nertial velocity is initialised to zero in the first iteration n = 0, our

ethod incorporates the motion prediction based on the individual
nd the social behaviour of targets as follows:

0,t
i,k

=
{

0 when the swarm is first created (n = 0)

vk,pred otherwise.
(14)

here the predicted velocity for the target k is given by Eq. (9). The
econd component (xb

i,k
− xn

i,k
) corresponds to the cognitive effect

here each particle moves to its best known position xb
i,k

. The third

omponent (xg
k

− xn
i
) then gives the social effect where the parti-

le moves towards the global best position xg
k

defined by its own
warm.

Compared to the standard PSO [6], we introduce a new com-
onent based on the detection response xd

k
. This component

onstrains particles to find the new state in the direction given by
 state-of-the-art detector. The details procedures of selecting the
etection response will be explained in Section 4.2.2. The param-
ters r1, r2 and r3 are random numbers uniformly distributed in
0, 1), generated at every iteration. The parameter � < 1 confines
he velocity of particles within a reasonable range and is defined

s: � = 2/‖2 − c −
√

c2 − 4c‖ where c = c1 + (c2 + c3). The parame-
ers c1, c2 and c3 are positive constants and balance the influence
f cognitive, social and detection information respectively. In this
aper, we set c1 = (c2 + c3) = 2.05 [22]. This allows each particle of the
warm to use the social knowledge and the detection information

ollectively but still retain its personal knowledge as independent
nowledge. In addition, we set the parameter c3 ∈ (0, 2.05) using the
ormalised matching score between the detection xd

k
and the best

tate of target k at previous frame t − 1 such that the influence of
s of its social group. (b) Shows the distribution of particles based on its predicted
revious states of targets are shown in black squares. Particles are marked by black

the detection information is high only when the selected detection
is a good match to the target k.

In the following we describe how the individual best state
(xb

i,k
), the global best state (xg

k
) and the detection response (xd

k
) are

selected for the target k.

4.2.1. Identifying individual and global best
The individual best (xb

i,k
) and the global best (xg

k
) states of parti-

cles are updated every iteration during the optimisation process by
evaluating a fitness (cost) function. In our method, we  define a fit-
ness function based on a localised HSV (hue, saturation and value)
colour histogram. Given the state of a particle i for target k at time t,
we model the appearance of target k defined by the bounding rect-
angle (xc − (w/2),  yc − (h/2),  xc + (w/2),  xc + (h/2)) as follow: (1)
we first divide the target region into M equal parts (in this paper,
M = 9); (2) each part is then represented by a 8 × 8 ×4 histogram
in HSV colour space. Mathematically, the target model for a given
state xi is given as h(xi) = {hm}M

m=1 where h is 8 × 8 ×4 histogram.
Then, the fitness function is defined by:

f (xi) = 1
M

M∑
m=1

d(hm(xi), hm(xk)) (15)

where hm(xi) and hm(xk) are the model and candidate histograms
computed at the local part m, M is total number of parts and d is
the Bhattacharyya distance between two histograms. Hence, f(xi)
will be low if two  histograms are similar. The next step is to find
the individual best and global best state by evaluating the fitness
function at different states. A particle updates its current state as
the best position (individual best) if the histogram at current state is
more similar to the model (i.e., the fitness value at the current state
xn

i
is lower than the value evaluated at the previous state xn−1

i
).

Otherwise, the previous best state will be kept. Mathematically,

xb
i =

{
xn

i
, if f (xn

i
) < f (xb

i
);

xb
i
, otherwise.

(16)

Once all particles update their best individual states, the global best
among swarm members is identified as:

xg
k

= arg min
xb

f (xb
i,k) (17)
i,k

where i = (1, 2, · · · , N) is a member of the swarm for target k. Fig.
2 illustrates a simulation of how to identify individual and global
best states in a 2D search space. At first iteration n = 0 (Fig. 2(a)),
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ig. 2. Simulation of identifying individual and global best states in 2D search spa
alues  against the states of particles is plotted (right image) while the global best i
ubsequent iterations.

ach particle takes its current state as the individual best state and
he state which is the most similar to the target (nearest to the tar-
et in this simulation) is selected as the global best. In subsequent
terations, particles move to new positions based on the individual
est and the global best of the swarm. Then, positions of the global
est and individual best states are updated by evaluating the fitness
unction. The movements of particles in subsequent iterations are
hown in Fig. 2(b) and (c) respectively.

.2.2. Identifying detection response
As explained above, we introduce a new component “c3(xd

k
−

n
i
)” in Eq. (12) to incorporate a detection response (xd

k
) in the
warm optimisation process. This term computes the distance
etween the particle xn

i
and the associated detection xd

k
and guides

he particles to search the optimum in the region given by an object
etector. Unlike the individual best (xb

i,k
) and the global best (xg

k
)

a) – left) Shows the distribution of particles at the first iteration n = 0. The fitness
ed with a small black ‘×’. (b) and (c) Show the iteration process of particles in the

which are updated at every iteration, the state of the detection
response (xd

k
) is fixed during the iteration process. The parameter c3

tunes the influence of the detection response on the movement of
particles. In our method, we  first obtain the detections in each frame
using the histograms of oriented gradients (HOG) based human
detector [27]. Fig. 3 shows the results of HOG detector in a scene.
Please note that all detection results are not reliable; yielding false
positives and missed detections.

Given {xm}Kd
m=1 detection results at time t by the HOG detector,

the next step is to identify a detection response to guide the tracker
to a particular target. In order to decide which detection should
guide the current tracker, we compute the matching score between

detections and the current state of the tracked target k based on the
spatial proximity, size and the appearance similarity as follows:

A(xk, xm) = As(xk, xm) × Af (xk, xm) × Ad(xk, xm) (18)
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Fig. 3. Sample detection results given by the HOG detector [28] (please note tha

here xm ∈ {xm}Kd
m=1 is a detection result given by the HOG-based

etector [27]. Here, the respective matching score As is given by the
verlapping area between targets k and the detection m while the
core Af = exp { − d(h(xk), h(xm))} is computed based on the Bhat-
acharyya distance between two histograms. Finally, the score Ad
s computed using the Euclidean distance between centroid loca-
ions of the tracked target k and the detection response m.  Next, the
etection response, which is the best match to the current state of
he tracked target, is identified by finding the maximum matching
core:
d,t
k

= arg max
xm

A(xk, xm), m = {1, 2, · · ·,  Kd} (19)

here Kd is the number of detections given at time t. The match-
ng score A(xk, xm) between the selected detection and the tracked
arget k is normalised and used as c3, a weighting parameter of
etection component in Eq. (12). It can be seen that the matching
core or the parameter c3 will be large only if the selected detection
nd the current state of the tracked target have high correlations in
heir position, feature and size. In this way, we ensure that the out-
ut from a detector is integrated in the swarm optimisation only if
he selected detection is a good match to the tracked target.

.2.3. Convergence criteria
In general, it is assumed that the convergence of a PSO algo-

ithm is achieved when all particles ultimately stop at the global
est position. This ensures that the optimisation process grantees
he best accuracy at a high computational cost. However, for track-
ng applications, it is essential to compromise between the tracking
ccuracy and the computational cost as the ultimate goal of a track-
ng algorithm is to achieve a reasonable tracking accuracy in real
ime. By considering both the tracking accuracy and the computa-
ion time, the proposed algorithm considers that the optimisation
eaches a convergent state when one of the following criteria is
chieved:

. xb,n
i

≈ xb,n+1
i

and xb
i

→ xg for all particles i ∈ (1 : N)
. xg,n ≈ xg,n+1 and f(xg) < TH
. the pre-defined maximum number of iterations is reached.

The parameter TH can be defined and updated online by study-
ng the trend of the feature discrepancy of the target k over time. In

ost experiments presented in this chapter, a good tracking result
an be achieved within 10 iterations.

.3. Swarm initialisation and termination
Our method automatically initialises a new swarm for each per-
on subsequently detected for T frames. In order to reduce false
ositive detections, we compute a matching score for each detected
etection results are not reliable; yielding false positives and missed detections).

target over T frames (18). Then, only the associated detections with
a matching score higher than the threshold are used to initialise a
new swarm. The length of the observation window T can be deter-
mined based on the frame rate of the video and the prior knowledge
of the monitoring scene, for instance, T should be set to a low value
(1,10) for a crowded scene where targets enter and leave the scene
frequently. Here, we set T = 5 for video sequences tested in this
paper.

It is important to update the target model h(xk) as the appear-
ance of the target model is expected to have slight variations over
time. In this method, the online updating model is proposed to
address the appearance variations of targets. Given the previous
T appearances (histograms) of the target k, {h(xk)t1 , h(xk)t2 , · · · ,
h(xk)T}, the minimum appearance change of the target k at time t
can be computed as follows:

ı(xt
k) = min

t′ d(h(xt
k), h(xt′

k )) (20)

where t′ = {t1, t2, · · · , T} is a time index for the previous frames.
This value gives the smallest appearance change of target k at time
t from the previous observations. Then, the next step is to check
if the appearance change of the target ı(xt

k
) is significantly differ-

ent from the previous appearance changes ı(xt′
k

). The target model
should not be updated if there is a significant appearance change
in the current frame as this can indicate that the tracker is stuck
at the wrong person or the scene condition has changed suddenly.
However, if the change is small, the target model must be updated
to accommodate the slight appearance changes.

In this method, the probability density function PDF  of the
appearance changes of the target over T previous frames is
estimated using the kernel-based density function. Then, the prob-
ability score for the appearance change of the target k at time t is
computed as:

p(ı(xt
k)) = 1

k

T∑
t′=t1

exp

[
− (ı(xt

k
) − ı(xt′

k
))2

2�2

]
(21)

where � is the standard variation of the of appearance changes
in the pervious frames. The high probability score indicates the
slight changes in the appearance target model and hence, the target
model h(xk) is updated using an adaptive filter as:

h(xk) = ˛h(xk) + (1 − ˛)h(xt
k) (22)

where  ̨ ∈ (0, 1) is the learning rate.
In a scenario where multiple targets are entering and leaving a
scene, it is important to terminate the tracking process when the
swarm (tracker) loses its target for a number of subsequent frames.
The probability score computed in Eq. (21) indicates the degree of
the appearance change of the target at time t from the previous
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rames. The small probability score states that the target has a sig-
ificant changes from the previous frames or the tracker has lost

ts target. Based on this observation, a swarm is terminated when
he probability score is lower than a particular threshold value for

 subsequent frames.

.4. Algorithm summary

The proposed method can be summarised as follows:

lgorithm 1. Pseudo-code of the proposed algorithm

Input: time  tatFrameImageNew trackers: Existingand {xk}K
k=1

detection:{xHOGPerform m}Kd
m=1

existinofstatesandresultHOGbetweenscoressimilarityCompute
(equation 18 ).

for targets doall
if targ etnew  then

//Initialize trackernew a
:{x }swarm:newagenerateRandomly i

N
i=1

K=trackers:ofnumbertotalIncrease  K + 1;
end
else

result:detectionassociatedFind xd,t
k (equationusing 19).

timeatvelocitytargetPredict t (equationusing 9).
swarm:newaInitialise {xi,k}t ∼ N(x t

k,pred ,Σ) equationusing
end
//Initi alisation pro cess
foreach Particle i∈1 → N do

xb
i,k = xn

i,k
valuefitnessthecompute f(x b

i,k)
end
xg = argmax xb

i,k
f(x b

i,k)
//Iteratio n pro cess
for n = iterationsdoofnumbermaximumto1

foreach Particlei ∈1 → N do
(equationusingvelocityupdate 12 )
(?? )equationusingpositionupdate

if f(x n
i,k) < f(x b

i,k) then
xb

i,k = xn
i,k

end
valuefitnessthecompute f(x b

i,k)
end
xg = argmax xb

i,k
f(x b

i,k)
if metareconverg encecriteria then

process;IterationfromExit
end

end
Output: pos ition:bestglobalthe xt

k = xg
k

if p(d(x t
k)) > th1 then

(equationusingmodeltargetupdate 22 )
ifelse (p(d(xt ′

k )) < th2, t ′ = {t− 1,  t − 2,···,  t − T }) the n
trackertheterminate k;

end
end

end
Output: timeatstatestarget t: {x t

k}K
k=1

. Experiments
In this section, we present experimental results in two  differ-
nt contexts. First, we assess the performance of our proposed PSO
gainst the other state-of-the-art PSO-based algorithms. Next, we
uting 13 (2013) 3106–3117

usingkers

evaluate our method in multi-target tracking context. We  compare
the performance of our method with other state-of-the-art meth-
ods in tracking domain. Here, we  evaluate our method on public
data-sets of crowded scenes with different crowd densities. All our
experiments are carried out using visual C++on a platform with a
dual-Core 3 GHz processor and 4 GB RAM.

5.1. Proposed method vs. species-based PSO

The first experiment compares the performance of our proposed
multi-swarm PSO algorithm with the species-based PSO algorithm

[21]. To the best of our knowledge, [21] is the only PSO-based

method which tested on tracking multiple targets. To make a fair
comparison, we  employ the same video sequence (EnterExitCross-
ingPaths2cor.mpg from CAVIAR [29]) used in [21] and assume that
there is no detection output for the proposed method. Assuming
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ground truth for the sequence is manually annotated by [4]. The
Fig. 4. Qualitative comparisons of the pr

hat the number of targets are fixed and known a prior, the tar-
ets are initialised manually in the first frame. Fig. 4 shows the
ualitative results achieved by species-based PSO and the pro-
osed method. Please note that there is no quantitative results
eported in [21] and we have limited information to re-implement
he species-based PSO. As a result, we focus our comparison only on
ualitative results for this particular experiment. We  can observe
hat species-based PSO failed to recover the targets after occlusions
see Fig. 4(a)). The authors tackled the problem by incorporating the
elective part-based appearance updating model which updates
nly the non-occluded parts of the targets. On the other hand,
ur proposed method, by accounting for social interaction among
edestrians, tracks and recovers targets after occlusion without a
eed to detect occluded regions (see Fig. 4(b)).

.2. Multi-target tracking

In this set of experiments, we evaluate the proposed method
n the context of tracking multiple targets. The first experiment
racks fixed number of targets assuming that we have priori knowl-
dge about number of targets to be tracked. In this experiment,
e assume that there is no detections results available. The second

xperiment evaluates our proposed in more challenging situations,
everal video sequences with different crowd densities are used to
valuate the robustness of the proposed method against the den-
ity of the crowd. Before we present experimental results, we  first
ntroduce the evaluation matrices adopted in this paper.

.2.1. Tracking evaluation
In this paper, we use the evaluation metrics from CLEAR [30]

nd [31]. The adopted metrics are:

. MOTA: multiple object tracking accuracy [0,1] is calculated using
number of false positives, missed targets and identity switches.

. MOTP: multiple object tracking precision [0,1] is calculated

based on average distance between the centroid positions of
tracked targets and the ground truth.

. MT:  Mostly tracked: percentage of ground-truth trajectories
which are covered by tracker output for more than 80% in length.
d method with species-based PSO [21].

4. ML:  Mostly lost: percentage of ground-truth trajectories which
are covered by tracker output for less than 20% in length. The
smaller the better.

5. PT: Partially tracked: 1.0-(MT+ML). The smaller the better.

5.2.2. Tracking fixed and known number of targets
In this section, we  evaluate the performance of our method on

tracking multiple targets where the number of targets are assumed
to be fixed and known a priori. We  first tested our proposed method
on a single-target tracking using a helicopter video sequence cap-
tured by a mobile camera [32]. This video sequence contains 780
images with a size of 240 × 320. The remotely controlled toy heli-
copter is partially occluded for few frames by the person who is
controlling the helicopters. Fig. 5 shows qualitative results of our
proposed method on tracking a single target. As can be seen in Fig. 5,
our proposed method tracks the helicopter against the illumination
changes and occlusion. The target is successfully tracked regardless
of heavy occlusions for few frames.

Next, we track three walking persons with strong interactions
on a video sequence from CAVIAR data-set [29] where each video
frame is a size of 384 × 288. Fig. 6 shows some qualitative examples
of our tracked results. Three persons are successfully tracked even
though inter-occlusion happens frequently. We  can see that our
proposed method, using the proposed swarm diversity scheme and
social interaction-based velocity, handles inter-occlusion very well.

5.2.3. Tracking unknown and varying number of targets
In this experiment, we  evaluate our method for tracking mul-

tiple number of targets in a crowd on two  video sequences with
different levels of crowd density (S2L1-view1) from PETS 2009
data-set [34] and Oxford data-set [28]. The PETS video sequence
is recorded from an elevated viewpoint at 7 frame per second and
contain 795 frames with an image size of 768 × 576 pixels. The
second video sequence contains 7500 images with an image size of
1920 × 1080 and the ground truth for the first 4501 image frames
are manually annotated by [28]. The quantitative results for each
data-set are given in Table 2. We  use the detection outputs given
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Fig. 5. Qualitative results of our proposed method on the helicopter sequence [32]. More results can be found at http://www.youtube.com/watch?v=-VUNw8CXqIg.

Fig. 6. Qualitative results of our proposed method on CAVIAR data-set [29]. More

Table 2
Quantitative results of our method.

Oxford data-set PETS 2009 S2L1

MOTA 84.8% 83.0%
MOTP 80.5% 86.4%
MT  79.6% 94.7%

b
e
t
q

[
r

ML  18.7% 5.3%
PT  1.7% 0.0%

y a state-of-the-art detector1 for initialisation of new targets. The

xperimental results indicate that our proposed method tracks the
argets with high precision (above 80%) for both sequences. Some
ualitative results are given in Fig. 7. We  can observe that targets

1 We would like to thank D. Simonnet from Kingston University and Benfold et al.
28] for providing detection outputs for PETS 2009 sequence and Oxford data-set
espectively.
 results can be found at http://www.youtube.com/watch?v=9HLow Mz9Rg.

are successfully tracked over time and new targets are initialised
automatically.

5.2.4. Comparisons with state of the art methods
In this section, we conduct a comparative study on the per-

formance of our method with the state-of-the-art methods on
PETS-S2L1, one of the most widely used sequences from PETS
2009 data-set. As can be seen in Table 3, our method outperforms
the state-of-the-art methods for most of the measurements. We
achieve the tracking precision of 86% which is nearly 10% higher
than the best reported results. The mostly tracked trajectories are
increased by about 8% and the partially tracked trajectories are
reduced to zero percent. The slightly lower MOTA value can be

explained by the frequent interactions of targets and the reliability
of the resulting detections; i.e., some targets are detected due to
persistent false positives occurred by background structures such
as signboards and public phone boxes.

http://www.youtube.com/watch?v=-VUNw8CXqIg
http://www.youtube.com/watch?v=9HLow_Mz9Rg
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Fig. 7. Qualitative results of our proposed method on PETS data-set (S2L1) and Oxford data-set. More results can be found at http://www.youtube.
com/watch?v=wCgtMeKT50U.

Table 3
Quantitative comparisons of our method with state-of-the-art methods on PETS 2009 data-set: S2L1 View 1. OM refers to the occlusion modelling scheme. Reported results
for  other methods are extracted from their papers. Please note that MT, ML and PT were not reported in [34] and in the last 2 rows, the smaller number indicates better
performance.

[34] [4] [35] With OM Our  method

MOTA 79.0% 81.4% 88.3% 83.0%
MOTP 59.0% 76.1% 75.7% 86.4%
MT  – 82.6% 87.0% 94.7%

ML  – 0.0% 4.4% 5.3%
PT  – 17.4% 8.7% 0.0%

http://www.youtube.com/watch?v=wCgtMeKT50U
http://www.youtube.com/watch?v=wCgtMeKT50U
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Fig. 8. Root mean square error against the number of particles for the proposed
a
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performs the state-of-the-art methods to track multiple targets in
a crowded scene with high precisions. In future work, we  plan to
lgorithm and PF-based colour tracker [32].

.3. Robustness test

In this experiment, we evaluate the performance of the pro-
osed method with respect to the number of particles (swarm size
). To compare the dependency on number of particles by the pro-
osed algorithm and the particle filter-based colour tracker, we run
oth algorithms for 10 times with different number of particles. Fig.

 shows the root mean square error for both algorithms against
he number of particles. In contrast to the particle filter where the

racking accuracy is highly depends on the number of particles, the
warm size (number of particles) does not have a significant impact

Fig. 9. Computational cost and number of iterations req
uting 13 (2013) 3106–3117

on our method. The proposed method can achieve the comparable
tracking accuracy with much lower number of particles.

5.4. Computation cost

This experiment evaluates the computational cost of the pro-
posed method where the number of particles for each swarm is
fixed at 15. Fig. 9(a) shows the computation time required for track-
ing results of helicopter sequence shown in Fig. 5. It can be observed
that our method takes about 0.0301 s for each frame while achiev-
ing a high tracking accuracy with root mean square error of 0.3470.
The number of iterations required for each frame is also shown in
Fig. 9(b). On average, the proposed method achieves a good tracking
accuracy within 5 iterations.

6. Conclusion and future work

In this paper, we have presented a novel particle swarm optimi-
sation algorithm to track pedestrians in a crowded scene. Through
particles and swarms diversification, motion prediction is intro-
duced into multi-swarm PSO, constraining swarm members to
the most likely region in the search space. The social interac-
tion among swarm and the output from pedestrians detector are
also incorporated into the velocity-updating equation. This allows
our proposed method to track multiple targets in a crowded
scene with severe occlusion and heavy interactions among targets.
Experimental results demonstrate that our proposed method out-
incorporate a more sophisticated model for grouping targets in a
crowded scene.

uired for tracking results of helicopter sequence.
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