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Abstract 

This paper is concerned mainly with the software aspects of achieving reliable operations in an open distributed processing 
environment. A system for supporting fault-tolerant and cross-transport protocol distributed software development is described. 
The fault-tolerant technique used is a variation of the recovery blocks and the distributed computing model used is the remote 
procedure call (RPC) model. The system incorporates fault tolerance features and cross-transport protocol communication features 
into the RPC system and makes them transparent to users. A buddy is set up for a fault-tolerant server to be its alternative. When an 
RPC to a server fails, the system will automatically switch to the buddy to seek for an alternate service. The client, the fault-tolerant 
server and the buddy of the server can all use a different transport protocol. To obtain this fault tolerance and cross-protocol service, 
users only need to specify their requirements in a descriptive interface definition language. All the maintenance of fault tolerance anti 
the cross-protocol communication is managed by the system in a user transparent manner. By using our system, users will have 
confidence in their distributed programs without bothering the fault tolerance and cross-protocol communication details. Our system 
is small, simple, easy to use and also has the advantage of producing server and client driver programs, and finally, executable 
programs directly from the server definition files. 
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1. Introduction 

The advances in computer technology have made it 
cost-effective to build distributed systems in various 
applications. Many experts agree that the future of 
distributed computing, especially the future of open 
distributed processing, is the future of computing. ‘The 
network is the computer’ has become a popular 
phrase [l]. 

Remote Procedure Call (RPC) is perhaps the most 
popular model used in today’s distributed software 
development, and has become a de facto standard for 
distributed computing. To use it in an open distributed 
environment effectively, however, one has to consider 
cross-protocol communications, because user programs 
built on top of different RPC systems cannot be 
interconnected directly. Typical solutions to this 
problem are: 
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(1) Black protocol boxes: protocols used by RPC 
programs are left as black boxes in compiling time, 
and are dynamically determined in binding time [2]. 

(2) Special interfaces [3] or RPC agent synthesis systems 
[4] for cross-RPC communications. 

However, one issue is still outstanding in building RPC 
systems for open distributed systems; fault-tolerance 
features. 

An open distributed system consists of many 
hardware/software components that are likely to fail 
eventually. In many cases, such failures may have 
disastrous results. With the ever increasing dependency 
being placed on open distributed systems, the number of 
users requiring fault tolerance is likely to increase. 

The design and understanding of fault-tolerant open 
distributed systems is a very difficult task. We have to 
deal with not only all the complex problems of open 
distributed systems when all the components are well, 
but also the more complex problems when some of the 
components fail. 
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This paper is concerned mainly with the software 
aspects of achieving reliable operations in an open 
distributed processing environment. A system for 
supporting fault-tolerant and cross-transport protocol 
distributed software development is described. The 
system design is aimed towards application areas that 
may involve a heterogeneous environment, and in 
which requirements for fault-tolerance are less severe 
than in, for example, the aerospace field, but in which 
continuous availability is required in the case of some 
components failures [5]. The application areas could 
be, for example, kernel/service pool-based distributed 
operating systems, supervisory and telecontrol systems, 
switching systems, process control and data processing. 
Such systems usually have redundant hardware 
resources, and one of the main purpose of our system 
is to manage the software redundant resources in order 
to exploit the hardware redundancy. The fault-tolerant 
technique used is a variation of the recovery blocks 
technique, and the distributed computing model used is 
the RPC model. 

Software fault tolerance refers to the set of techniques 
for continuing service despite the presence, and even the 
manifestation, of faults in a program [6]. There are many 
techniques available for software fault-tolerance, such as 
N-version programming [7] and recovery blocks [8]. In 
N-version programming, N(N 2 2) independent and 
functionally equivalent versions of a program are used 
to process a critical computation. The results of these 
independent versions are compared (usually with 
a majority voting if N is odd) at the end of each 
computation, and a decision will be made accordingly. 

Recovery blocks employ temporal redundancy and 
software standby sparing 191. Software is partitioned 
into several self-contained modules called recovery 
blocks. Each recovery block consists of a primary 
routine, which executes critical software function; one 
or more alternate routines, which performs the same 
function as the primary routine, and is invoked upon a 
failure is detected; and an acceptance test, which tests the 
output of the primary (and alternate, if the primary fails) 
routine after each execution. A variation of this model is 
used in this paper. 

The remote procedure call is a powerful and widely 
known primitive for distributed programming [lo]. The 
RPC based model allows a programmer to call a pro- 
cedure located at a remote computer in the same manner 
in which a local procedure is called. This model has a lot 
of advantages. The procedure call is a widely accepted, 
used and understood abstraction. This abstraction is the 
sole mechanism for accessing remote services in this 
model. So the interface of a remote service is easily 
understood by any programmer with a good knowledge 
of ordinary programming languages. 

The remainder of this paper is organised as follows. In 
Section 2, we summarize some notable related work and 

provide the rationale of our work. In Section 3, we 
describe the architecture of the SRPC system. Then 
Section 4 describes the syntax and semantics of the server 
definition files and the stub and driver generator. In 
Section 5 we present an example to show how this system 
can be used in supporting fault-tolerant, open distributed 
software development. Section 6 contains remarks. 

2. Related work and the rationale 

There have been many successful RPC systems since 
Nelson’s work [ll], such as Cedar RPC [12], NCA/RPC 
[13], Sun/RPC [14], HRPC [2], and so on. But few of 
them consider fault tolerance an cross-protocol 
communication in their design, or they rely on users to 
build in these features. 

Notable work on incorporating fault tolerance 
features into RPC systems is Argus [15], ISIS [16,17] 
and an atomic RPC system on ZMOB [18]. The Argus 
allows computations (including remote procedure calls) 
to run as atomic transactions to solve the problems of 
concurrency and failures in a distributed computing 
environment. Atomic transactions are serializable and 
indivisible. A user can also define some atomic objects, 
such as atomic arrays and an atomic record, to provide 
the additional support needed for atomicity. All the user 
fault tolerance requirements must be specified in the 
Argus language. 

The ISIS toolkit is a distributed programming 
environment, including a synchronous RPC system, 
based on virtually synchronous process groups and 
group communication. A special process group called 
a fault tolerant group, is established when a group of 
processes (servers and clients) are cooperating to 
perform a distributed computation. Processes in this 
group can monitor one another, and can then take 
actions based on failures, recoveries or changes in the 
status of group members. A collection of reliable 
multicast protocols is used in ISIS to provide failure 
atom&city and message ordering. 

The atomic RPC system implemented on ZMOB uses 
sequence numbers and calling paths to control the 
concurrency and atomicity, and used checkpointing to 
maintain the ability of recovering from failures. Users 
do not have to provide synchronization and recovery 
themselves; they only need to specify if atomicity is 
desired. This frees them from managing much 
complexity. 

But when a server (or a guardian in the Argus) fails to 
function well, an atomic transaction or an atomic RPC 
has to be aborted in these systems. This is a violation 
of our continuous computation requirement. The fault- 
tolerant process groups of the ISIS can cope with process 
failures and can maintain continuous computation, but 
the ISIS toolkit is big and relatively complex to use. 
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Typical solutions to the cross-protocol communica- 
tion in RPC systems are the black protocol boxes of 
the HRPC [2], the special protocol conversion interface 
[3] and the RPC agent synthesis system [4] for cross-RPC 
communications. 

The HRPC system defines five RPC components: the 
stub, the binding protocol, the data representation, 
the transport protocol and the control protocol. An 
HRPC client or server and its associated stub can view 
each of the remaining components as a ‘black box’. 
These black boxes can be ‘mixed and matched’. The set 
of protocols to be used is determined at bind time-long 
after the client and server has been written, the stub has 
been generated, and the two have been linked. 

The special protocol conversion interface that we pro- 
posed earlier [3] uses an ‘interface server’ to receive a call 
from the source RPC component (client or server) and to 
convert it into the call format understood by the 
destination RPC component (server or client). 

The cross-RI-Y communication agent synthesis system 
[4] associates a ‘client agent’ with the client program and 
a ‘server agent’ with the server program. A ‘link 
protocol’ is then defined between the two agents and 
allows them to communicate. The server and the client 
programs can use different RPC protocols, and the 
associated agents will be responsible of converting 
these dialect protocols into the link protocol. 

But none of the above cross-protocol RPC systems 
consider fault-tolerance issues. If the server fails, the 
client simply fails as well. 

Incorporating both fault tolerance and cross-protocol 
communication into RPC systems is clearly an important 
issue to use RPCs efficiently and reliably in open 
distributed environments. In this paper we describe 
a system, called the SRPC (Simple RPC) system, for 
supporting the development of fault-tolerant, open 
distributed software. The SRPC incorporates fault 
tolerance features and protocol converters into the 
RPC system and makes them transparent to users. 
A buddy is set up for a fault-tolerant server to be its 
alternative. When an RPC to a server fails, the system 
will automatically switch to the buddy to seek for an 
alternate service. The RPC aborts only when both the 
server and its buddy fail. The clients and servers can use 
different communication protocols. To obtain these fault 
tolerance and automatic protocol converting services, 
users only need to specify their requirements in a descrip- 
tive interface definition language. All the maintenance of 
fault tolerance and protocol conversion are managed by 
the system in a user transparent manner. By using our 
system, users will have confidence on their open distrib- 
uted computing without bothering the fault tolerance 
details and protocol conversion. Our system is small, 
simple, easy to use and also has the advantage of produc- 
ing server and client driver programs and finally execut- 
able programs directly from the server definition files. 

3. System architecture 

The SRPC is a simple, fault-tolerant and cross-protocol 
remote procedure call system [193. The system is small, 
simple, expandable, and it has facilities supporting fault- 
tolerant computing and cross-protocol communication. 
It is easy to understand and easy to use. The SRPC only 
contains the essential features of an RPC system, such as 
a location server and a stub generator, among other 
things. The SRPC system has been used as a distributed 
programming tool in both teaching and research projects 
for three years. 

The SRPC system has another interesting feature. 
That is, the stub compiler (we call it the stub and driver 
generator, or SDG in short) not only produces the server 
and client stubs, but also creates remote procedures’ 
framework, makefile, and driver programs for both 
server and client. After using the make utility, a user 
can test the program’s executability by simply executing 
the two driver programs. This feature will be more 
attractive when a programmer is doing prototyping. 

3.1. Server types 

The client/server model [20] is used in the SRPC 
system. An SRPC program has two parts: a server part 
and a client part. Usually the server provides a special 
service or manages an object. The client requests the 
service or accesses the object by using the remote 
procedures exported by the server. 

There are three types of servers in the SRPC system: 
simply servers, service providing servers and object 
managing servers. Fig. 1 depicts these three types of 
servers. 

A simple server (Fig. l(a)) is an ordinary server 
possessing of no fault-tolerant features. When a simple 
server fails, all RPCs to it have to be aborted. 

A service providing server (Fig. l(b)) has a buddy 
server running somewhere in the network (usually on 
a host different with the server’s), but no communication 
between the server and its buddy. When a service 
providing server fails, an RPC to this server will be 
automatically redirected to its buddy server by the 
system. As object changes in the server will not be 
available in its buddy, a service providing server usually 
is used in applications such as pure computation, 
information retrieval (no update), motor-driven (no 
action memory), and so on. It is not suitable to be used 
to manage any critical object that might be updated and 
then shared by clients. 

An object managing server (Fig. l(c)) also has a buddy 
running in the network. It manages a critical object that 
might be updated and shared among clients. An RPC to 
such a server, if it will change the object state, is actually 
a nested RPC. That is, when the server receives such a call 
from a client, it first checks to see whether the call can be 
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Fig. 1 Server types. 

executed successfully (e.g. if the necessary write-locks 
have been obtained or not). If the answer is no, the call 
is aborted. If the answer is yes, then the server will call its 
buddy server to perform the operation as well. When the 
buddy returns successfully, the call commits (the server 
and its buddy actually perform the call) and the result 
returns to the client. To ensure the consistency of the 
objects managed by the server and its buddy, a two- 
phase commit protocol [21] is used when executing the 
nested RPC. 

Like a service providing server, when an object 
managing server fails, an RPC to this server will be 
automatically redirected to its buddy server by the system. 

All buddy servers are simple servers. That means, 
when a server (service providing or object managing) 
fails, its buddy server provides alternative service in 
a simple server manner. Also, when a buddy server 
fails, a service providing server or an object managing 
server will be reduced into a simple server. 

3.2. Architecture 

The SRPC has the following three components: 
a Location Server (LS) and its buddy (LS buddy), 
a system library, and a Stub and Driver Generator 
(SDG). This section describes the system architecture 
from a user’s point of view. As server buddies are 
generally transparent to users, we will omit their 
descriptions here. 

From a programmer’s viewpoint, after the SDG 
compilation (see Section 5) the server part of an SRPC 
program is consisted of a server driver, a server stub and 
a file which implements all the remote procedures (called 
a procedure file). The server buddies are transparent to 
users. The server part (or a server program as it is 
sometimes called) is a ‘forever’ running program which 
resides on a host and awaits calls from client. The client 
part (or a client program) consists of a client driver and 
a client stub after the SDG compilation. It runs on a host 

(usually a different host from the server’s host), and 
makes calls to the server by using the remote procedures 
exported by the server. 

When the client driver makes a call, it goes to the client 
stub. The client stub then, through the system library, 
makes use of the client protocol for sending the calling 
message to the server host. Because the client and 
the server may use different communication protocols, a 
client-server protocol converter is used to convert the 
client’s protocol into server’s protocol. The calling 
message is then sent to the server. At the server’s host 
side, the server’s protocol entity will pass the calling 
message to the server stub through the system library. 
The server stub then reports the call to the server driver 
and an appropriate procedure defined in the procedures 
file is executed. The result of the call follows the calling 
route reversely, through the server stub, the server 
protocol, the system library of the server host, the client- 
server protocol converter, the system library of the client 
host, the client stub, back to the client driver. This is called 
a direct call, as the pre-condition of such a call is that the 
client knows the address of the server before the call. 

With the help of the Location Server, the run-time 
address of a server can be easily accessed. One typical 
scenario of SRPC programs using LS can be described 
below: 

Registering: when the server is started, it first registers 
its location to the LS. The route is: server 
driver -+ server stub --+ server protocol, server-LS 
protocol converter and the system library of the server 
host + .LS protocol and system library of the LS 
host + LS stub + LS driver. 
Waiting: the server waits for client calls. 
Locating: when a client is invoked, it consults the LS 
for the server’s location. The route is: client 
driver -t client stub + client protocol, client-LS 
protocol converter and system library of the client 
host + LS protocol and system library of the LS 
host + LS stub + LS driver. 
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Fig. 2. System architecture and a typical RPC. +-x Actual calling; + - - +: virtual calling. 

4. RPC: after the location is found, the client then can 
make any number of RPCs to that server by using the 
obtained location (as in a direct call). We name this a 
typical calling, since most of the time a client does not 
know server addresses. 

5. Shutdown: if a ‘shutdown’ call is issued by a client 
program, it causes the server to un-register itself 
from the LS and exits from the system. 

Fig. 2 depicts the system architecture using a typical 
RPC. The dashed line represents the RPCs from the 
user’s viewpoint. 

3.3. Location server 

One way of hiding out the implementation details is 
the use of the Location Server (LS). The LS is used to 
hide the server locations from users. It maintains a data- 
base of server locations and is executed before any other 
SRPC program is started. After that, it resides on the 
host and awaits calls from servers and clients. 

The Location Server is an object managing server and 
has a buddy of its own. It has a well-known location, and 
this location can be easily changed when necessary. The 
LS itself is implemented by the SRPC system, using the 
direct calling method. 

Usually there should be one LS (called local LS) 
running on each host for managing locations of that 

host, and these local LSs report to the ‘global LS’ (like 
the NCA/RPC’s local and global location brokers) 
[13,22]. In that case, the locations of all LSs can also 
be hidden from users. We have planned to implement 
this facility. 

The following call is used by a server to register itself 
to the LS: 

intregisterServer(sn,buddy,imp) 
char *sn; /* server name */ 
char *buddy; /*buddy’sname*/ 
structiinfo /* implementation 
*imp; info. */ 

where imp is a type strut t iinf o structure and 
contains many implementation details, such as the 
server’s host name, protocol, and so on. Because 
the call updates the LS database, it is also directed to 
the LS buddy. If the call returns OK, the location has 
been registered and a client can use the following call 
to find out the location of a server from the LS: 

intlocateServer(sn,buddy, imp) 
char *sn; /* server name */ 
char *buddy; /* server’sbuddy 

name */ 
structiinfo /*implementation 
*imp* ; info. */ 
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If the call returns OK, the location of the server sn is 
stored in imp and the name of the server’s buddy 
is stored in buddy for later use. This call does not affect 
the LS database state, so there is no hidden LS server and 
LS buddy communication here. Before a server is shut 
down, the following call must be used to un-register the 
server from the LS: 

intunregisterServer(sn) 
char *sn; /* server name */ 

If the call returns OK, the server and its buddy (if any) are 
deleted from the LS database. The system also provides 
other LS calls for maintaining the LS database. 

All the usages of these functions in a server or a client 
program are automatically generated by the stub and 
server generator. A user does not need to look into the 
details of these calls if he or she is satisfied with 
the generated program sections. 

3.4. System library 

The system library is another way of achieving 
transparency. The library contains all the low-level and 
system- and protocol-oriented calls. Its main function is 
to make the low-level facilities transparent to the upper- 
level programs. So the stub and driver programs of both 
server and client will not deal with their communication 
entities directly. 

The server and client programs must be linked with the 
system library separately. Ref. [19] contains detailed 
descriptions of the library calls. All the library calls can 
be divided into the following call levels, and Fig. 3 
depicts their relationships: 

1. SRPC Level: this is the highest level. It contains calls 
that deal with RPC-related operations. 

2. Remote Operation Level: contains calls that deal with 
remote operations. These remote operations follow 
the definitions of the OS1 Application level primitives 

1231. 
3. Protocol Level: contains calls that deal with protocol- 

specific operations. 
4. Utility calls: contains all the utility calls used in 

different levels. 

Fig. 3 Relationships of system library levels. 

The inner most level is the protocol-specific level, It 
interfaces with the specific protocol entity and the under- 
lying operating system kernel. It is also responsible for 
providing protocol converting procedures. The remote 
operation level provides a uniform interface (similar to 
the OS1 Application level primitives) to the upper RPC 
system. The uniform interface provides two obvious 
advantages: 

l It provides a clear interface for different communi- 
cation protocols. 

l It makes the SRPC system as portable as possible: only 
the lower levels need to be re-programmed when port 
the SRPC system to other platforms. 

The SRPC level implements all the RPC related calls and 
provides a user-friendly remote procedure calling 
interface to application programs. The utility calls pro- 
vide service calls for different levels. 

3.5. Performance evaluation 

Obviously, our service providing server and object 
managing server can tolerant single-point failures. This 
is clearly an advantage compared with the normal single 
server model. However, every fault-tolerant method 
employs redundancy, and redundancy may imply 
increasing costs and/or decreasing performance. Simi- 
larly, protocol conversion also involves system overhead. 
This section tries to evaluate the performance of our 
server types in various circumstances. 

The performance of an RPC in the SRPC system 
varies, according to which server type is used. Table 1 
lists the null RPC performance on a network of HP and 
Sun workstations, where the server program runs on an 
HP715/33 workstation and the server buddy and the 
client run on two separate Sun4/75 ELC (33 MHz) 
workstations. The network is virtually isolated and 
very lightly loaded (no other user programs were run 
except the testing programs during data collection). 
The server (and the buddy, of course) uses the 
Internet_datagram (UDP) protocol and the client uses 
the Internet -stream (TCP) protocol. 

The table also includes null RPC times in the SRPC 
system for simple servers without protocol conversion. 
That is, when both the client and server use the same 
protocol (UDP or TCP), and therefore, no protocol 
conversion is required. 

We can draw the following observations and 
explanations from Table 1: 

. The overhead of protocol conversion is light. From the 
table we know the average simple RPC time using 
UDP and TCP protocol only is about 2.59ms. The 
simple RPC protocol conversion uses about 3.22ms, 
which is only 0.63ms more than the time used by 
simple RPCs without protocol conversion. When 
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Table 1 
Null RPC performance 

Server type 

Simple (UDP) 
Simple (TCP) 
Simple 
Service-providing 
Object-managing 

Time (ms) 

2.11 f 0.02 
3.07 f 0.02 
3.22 f 0.02 
3.37 i 0.02 
5.12io.04 

a network is normally loaded, a null RPC time 
typically needs 5-10ms. In that case, the extra 
time for protocol conversion could be less than 10% 
of the RPC time. 

The overhead of using service providing server is 
minimum. From the table we can see that the time 
difference between a simple RPC and a service 
providing RPC is only 0.15 ms. Most of the extra 
time is spent on the preparation of using the buddy 
server in case of server failure. 

The overhead of using object managing server is quite 
high. This is because of the nested RPC used in keeping 
the consistency between the two objects managed by 
the server and the buddy. However, the time used is 
less than the time of two simple RPCs. This is because 
that there is no protocol conversions between the 
server and its buddy, and some of the operations are 
carried out in parallel. 

We are still investigating the system performance 
under other circumstances, such as RPCs with various 
sizes of parameters and with various network load 
conditions. 

4. Stub and driver generator 

4.1. Syntax 

The purpose of the stub and driver program generator 
is to generate stubs and driver programs for server and 
client programs according to the Server Definition Files 
(SDF). The syntax of a server definition file is shown in 
Listing 1. 

We use a modified BNF to denote the syntax of 
definition files. The ‘variable’, ‘integer’, ‘string’, 
‘constant’, and ‘declarator’ have the same meanings as 
in the C programming language. Comments are allowed 
in the definition file. They are defined the same as in the 
C programming language using /* and */). 

4.2. Semantics 

Most of the descriptions of Listing 1 are self- 
explanatory. We only highlight the following points: 

1. The server’s name is defined as a variable in the 
C language. This name will be used in many places. 

<SDF>::= BEGIN 
<HEADER> 
[<CONST> 1 
<FUNCS> 
END 

<HEADER>::= ServerName: 
variable ; 
Comment:string; 
ServerProtocol: 
variable ; 
ClientProtocol: 
variable ; 
[<BUDDY>] 

<BUDDY>::= Buddy<BDYTYPE>: 
variable ; 
Using: <LANGUAGE> ; 

<BDYTYPE> em--Auto)Forced . .- 
<LANGUAGE> ::=CIPascal 
<CONST> ::=constant 
<FUNCS> ::=RPCFunctions: 

<RPCS> 
<RPCS> ::=<RPC> { <RPC> } 
<RPC> ::=Name: string 

[Update] ;<PARAMS> 
<PARAMS> ::= { <PARAM> } 
<PARAM> ::=Param: <CLASS>: 

declarator; 
<CLASS> -.-inlout . .- 

Listing 1. Server definition file syntax. 

For example, it is the key in the LS database to store 
and access server entities. When the client asks the LS 
to locate a server, it provides the server’s name defined 
here. The name is also used as a prefix in naming all 
the files generated by the SDG. So two different 
servers cannot be assigned to the same server name. 
Otherwise, the server who registers to the LS first will 
be accepted while the server who registers to the LS 
later will be rejected by the LS. 

Different protocols can be defined for the server and 
the client, respectively. The buddy, if it is defined, uses 
the same protocol as the server does. Currently, only 
three protocols are allowed: Internet_datagram (The 
UDP protocol), Internet-stream (the TCP protocol), 
and XNS_datagram (the XNS packet exchange 
protocol). 

The <BUDDY> part is optional. If it is not specified, 
the generated server will be a simple server, otherwise 
it will be a service providing server or an object 
managing server, according to some definitions in the 
<RPCS> part (described below). The <BUDDY> part 
has a buddy definition and alanguage definition. The 
buddy definition defines that whether the buddy’s 
name and execution is to be determined by the system 
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(Auto) or to be determined by the programmer 
(Forced). If Auto is defined, the system will 
generate the buddy server’s name (Server - 
NameBdy, used for registering and locating it), the 
buddy’s driver and stub files as well as the makefile, 
and will treat the following var iab le as the name 
of the buddy’s procedure file. Then, the buddy 
program will be compiled and executed together 
with the server program. The host of the buddy 
program will be determined by the system at run time. 

If For c ed is defined, the generator will not 
generate any buddy’s program file and will treat the 
following variable as the name of the buddy ser- 
ver used for registering and locating. The program- 
ming and execution of the buddy server will also be 
the programmer’s responsibility. 

The language definition Using defines which 
language does the buddy program use. The key issue 
of software fault-tolerant is the design diversify or ver- 
sion independent, and one way of achieving design 
diversity is through the use of multiple programming 
languages [24]. If a different language is chosen for 
each version implementation, then the versions are 
likely to be more independent, not only due to the 
diversity of languages, but also because individual lan- 
guage features force programmers toward different 
implementation decisions. Currently only the C pro- 
gramming language is supported in the SRPC system. 
We have planned to support the Pascal language 
implementation soon. 

4. The <FUNCS> part defines the remote procedures of 
the server. At least one remote procedure must be 
defined. Each remote procedure is defined as a name 
part and a parameter (<PARAMS >) part. The name of 
a remote procedure is simply a variable, with an 
optional Update definition. The latter definition dis- 
tinguishes an object managing server with a service 
providing server. That is, if the <BUDDY> part is 
defined and the Updat e is defined in any one RPC 
definition, the server is an object managing server. If 
only the <BUDDY> part is defined but no Update 
part is defined in any RPC definition, the server is a 
service providing server. The meaning of the Update 
definition is: if an Update is defined following 
an RPC procedure name, that procedure must be 
maintained as a nested RPC affecting both the server 
and the buddy by the server program (see Section 3.1). 

There can be zero or several parameters in a proce- 
dure, each consisting of a class and a declaration. The 
class can be in or out, which tells the SRPC system 
that the parameter is used for input or output, 
respectively. The declaration part is the same as in 
the C language. In this version, only simple character 
string is allowed in parameter definitions. Further 
extensions are under way. 

Fig. 4 Processing structure of the stub and driver generator. 

4.3. Implementation issues 

After a programmer sends a server definition file to the 
generator, the generator first does syntax checking. If no 
errors are found, several program source files and a 
makef ile are generated. The subsequent processing 
is specified by the makefile. That is, when using the 
make utility, the executable files of both the server and 
client will be generated. Fig. 4 indicates the structure of 
the processing. The dashed lines represent optional 
actions. 

At least one server definition file must be input to the 
SDG. If there are more than one server, their SDFs can 
be input to the SDG simultaneously. If there is only one 
SDF file, then the generated client driver can execute the 
server’s procedures one by one. If the buddy part is also 
specified, the generated client can also call the buddy 
procedures directly (this is useful in testing the client- 
buddy communication). 

If there are more than one SDF file, then for each 
server, the SDG will generate one set of server files, 
one set of client files, and one set of buddy files (if the 
buddy is defined), respectively. These files are the same as 
the servers being processed in single file input described 
above. One additional set of client files, the multi-server 
client program, will also be generated in this case. The 
client driver is called a multi-server client driver. It can 
call all the procedures of all the servers one by one. 
A further improvement is under way to let the client 
call these procedures in parallel. 

5. Application example 

We use a simple example to show the application of 
the SRPC system. Suppose we have a server definition 
file called sf . def It defines a ‘send-and-forward’ 
system in that the server acts as a message storage and 
the client acts as both message sender and receiver. The 
server definition file is shown in Listing 2. 

From the header part of this SDF file we know the 
following: the server is named as sf and the server 
protocol used is the Internet_datagram. The server can 
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/*Storeandforward:server two RPC function definitions have no Update marks, 
definitionfile*/ and then they will be treated as ordinary RPCs. 

BEGIN 
ServerName:sf; 
Comment:Storeandforward 
system; 

When the file is input to the generator, the following 
files will be generated: 

sf.hHeaderfile,mustbeincludedbyserver, 

ServerProtocol: 
Internet_datagram; 
ClientProtocol: 
Internet-stream; 
BuddyAuto: sfBdy0ps.c; 
Using:C; 

itsbuddyandclientdriversandstubs. 
sfSer.c Server driver file. 
sf StubSer . c Serverstubfile. 
sf0ps.c Frameworksof 

serverprocedures. 

#defineMXNAML64 
#defineMXMSGL500 
#defineMXSTRL80 

sfC1i.c 
sfStubC1i.c 
sfBdy.c 

Clientdriverfile. 
Clientstubfile. 
Server buddy driver 
file. 

sfStubBdy.c Serverbuddystub 
file. 

RPCFunctions: 
Name:storeMsgUpdate; 
Param: inreceiver: char 
receiver[MXNAMLl; 
Param: inmsg: char 
msg[MXMSGLl; 
Param: out stat: char 
stat[MXSTRLl; 

Name: forwardMsgUpdate; 
Param:inreceiver:char 
receiver[MXNAMLl; 

makef ile Make file. 

After using the make utility (simply use ‘make’ 
command), three executable files are created: 

sfSer 
sfCli 
sfBdy 

Server program. 
Client program. 
Server buddy 
program. 

Param:outmsg: char 
msg[MXMSGL]; 

Name: r eadMsg; 
Param: inreceiver:char 
receiver[MXNAML]; 
Param: outmsg: char 
msg[MXMSGLl; 

Name: 1istMsg; 

Note that the sf Ops . c file only defines the 
frameworks of the remote procedures (dummy 
procedures). Their details are to be programmed by the 
programmer. The s f B dyOp s . c file should be the same 
as the sf Ops . c file (the only possible difference hap- 
pens when the server buddy uses another programming 
language such as the Pascal; then the affix of the file 
would be .pas). 

END 

Listing 2. Server definition file example. 

bethenexecuted onany host usinganyportassigned by 
the system. The client protocol is Internet-stream and can 
also be executed on any host. Obviously, a protocol con- 
verter is needed. A server buddy is defined and is expected 
to be established automatically by the system, using the 
Internet_datagram protocol (the same as the server). The 
procedure file for the buddy is s f B dyOp s . c and the 
programming language used for the buddy is the C 
language. There are also three constants defined. 

The server driver is simple. It does the initialization 
first, then it registers with the LS and invokes the 
buddy program on a neighbouring host because 
the buddy is defined as Auto in the SDF file. After 
that it loops ‘forever’ to process incoming calls until 
the client issues a ‘shutdown’ call. In that case, the server 
un-registers from the LS and exits. The ‘un-register’ call 
will automatically un-register the buddy from the LS as 
well. The incoming calls are handled by the server stub 
and underlying library functions. A listing of the server 
driver is shown in Listing 3. 

The server buddy driver works in the same way as the 
server program, except that it does not invoke a buddy 
program. Also, the buddy is a simple server and all calls 
to the buddy will not be nested. 

From the RPC functions part we know that four 
remote procedures are defined in this SDF file. The 
first two RPC functions are marked as Updat e. So 
the server is an object managing server. When the client 
calls these two procedures, these two procedures will be 
treated as nested calls for maintaining the object 
consistency in both the server and its buddy. The next 

The generated client driver can execute the server’s 
remote procedures one by one. If the server driver is 
running and the client driver is invoked, the client 
driver first lists all the remote procedures provided 
by the server, and asks the user to choose from the 
list. The following is the menu displayed for this 
example: 
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Init ialisation (including invoke the 

buddy) ; 
/*ReqistertheservertotheLS*/ 
reqisterServer("sf", ~~smaf, imp); 
while (1) { 

waitforclientcalls; 
/*comeshereonlyifaclient 
called*/ 
forkachildprocesstohandle 
theRPC; 
if the callis"shutdown" 

break; 

1 
unregisterServer("sf"); 

Listing 3. Server driver pseudocode. 

Available calls: 

0 sf$Shutdown 
1 sf$storeMsg(receiver,msg,stat) 
2 sf$forwardMsg(receiver,msg) 
3 sf$readMsg(receiver,msg) 
4 sf$listMsqO 

Your choice: 

After the selection, the input parameters of the named 
remote procedure are then input from the keyboard. 
After that, the driver program does some initialization 
and the remote procedure is executed and returned 
results displayed. The actual calling and displaying are 
handled by the client stub and underlying library 
functions. The format of all the four RPCs in the client 
program are the same as the format listed in the above 
menu. That is, if the client wants to send a message to a 
receiver, it does the following call after the receiver’s 
name and the message are input into r e c e ive r and 
ms g variables, respectively: 

sf$storeMsg(receiver,msg,stat); 

Note that the remote procedure’s name is named as a 
composition of the server’s name s f, a $ sign, and the 
remote procedure’s name st oreMsg in the SDF file. 
Similarly, if the client wants to receive messages, it does 
the following call after the receiver’s name r e c e ive r 
is obtained: 

sf$forwardMsg(receiver, msg) ; 

Before each RPC, a locateserver ( “sn”, 
buddy, imp) call is issued to the LS to return the 
location of the server and the name of its buddy. The 
server location is stored in imp and the buddy name is 
stored in buddy. 

The fault-tolerant feature of the system is completely 
hidden from the user. For this example, all the remote 
procedure calls from the client program will be first 
handled by the server. A nested RPC is issued if the 
incomingcalliseither sf$storeMsg(receiver, 

mm stat) or sf$forwardMsg(receiver, 
msg 1. This is because the two RPC functions are 
marked as Update in the SDF file. The nested RPC 
will ensure that actions of the incoming call will be 
made permanent on both the server and its buddy if 
the call is successful, and no actions of the incoming 
call will be performed if the call fails. Two other incom- 
ing calls, sf$readMsg(receiver, msg) and 
s f $1 is t M s g ( ) , will be handled by the server only. 

If the server fails (that is, the RPC to the server returns 
an error), the client program will send the RPC to the 
server’s buddy. The location of the buddy will be 
determined by another call to the LS: 

locateserver (buddy, "", imp) 

where buddy is the server buddy’s name obtained 
during the first call to the LS, and imp stores the 
location of the buddy. 

The cross-protocol communication is also hidden 
from the user. All the interfaces to the protocol 
converters (client-L& client-server, and server-LS) are 
generated by the SDG (in the stub files) and used 
automatically by the stubs. If a user only deals with the 
RPC level, he or she will never notice the underlying 
protocols used by the server and the client programs. 

The termination of the server program also needs to be 
mentioned. After the server program is started, it will run 
forever unless the programmer kills its process, or there 
exists a facility to terminate the server. Here we provide 
a facility to do that job. We add a ‘remote shutdown’ 
procedure into the server, and allow the remote 
shutdown of the server in the server program. Hence, 
when the client driver calls the remote shutdown 
procedure of the server, the server will shut down itself 
and will exit from the system. 

6. Remarks 

A system for supporting fault-tolerant, open 
distributed software development is described in this 
paper. The system is simple, easy to understand and 
use, and has the ability of accommodating multiple 
communication protocols and tolerating server failures. 
It also has the advantage of producing server and client 
driver programs, and finally executable programs 
directly from the server definition files. The system has 
been used as a tool of distributed computing in both 
third year and graduate level teaching, and has been 
used by some students in their projects. 

In tolerating server failures, similar efforts can be 
found in the RPC systems that provide replicated server 
facilities, such as NCA/RPC [13]. But in these systems, 
the user, instead of the system, takes the responsibility of 
maintaining and programming the functions for object 
consistency. This is a difficult job for many programmers. 
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The Argus system and other systems that maintain trans- 
action atomicity also provide some sort of fault tolerance 
for servers (guardians in the Argus), but their purpose is 
to maintain the transaction atomicity, that is, if a server 
fails the transaction may abort and it has no effect on the 
accessed objects, and other transactions will not be 
affected. Our approach in achieving fault tolerance is 
similar to the approach used in the ISIS toolkit (of 
course, ours is more simplified and less powerful). But 
our system is simple, easy to understand and easy to use. 
In our system, we provide a server buddy to tolerant the 
server’s failure. When the server fails, the client, instead 
of aborting, can access the server buddy to obtain the 
alternative service. Also in our system, it is the system, 
instead of the user, that is responsible of maintaining the 
consistency of the managed objects. 

Providing server and driver programs directly from the 
server definition file (similar to the interface definition 
files of other RPC systems) is also an interesting 
characteristic of our system. It is related to the rapid 
prototyping of RPC programs [25]. The driver programs 
are simple, but have the advantages of testing the 
executability of the RPC program immediately after 
the designing of the SDF file. It is especially useful if 
the user makes some changes in the SDF file or the 
procedure file. In that case, these changes will be 
automatically incorporated into other related program 
files if the program is re-generated by the stub and driver 
generator. This will avoid a lot of trouble in the 
maintenance of consistency of program files. 
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