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This paper proposes a hybrid technique combining a new heuristic algorithm named seeker optimization
algorithm (SOA) and sequential quadratic programming (SQP) method for solving dynamic economic
dispatch problem with valve-point effects. The SOA is based on the concept of simulating the act of
human searching, where the search direction is based on the empirical gradient (EG) by evaluating the
response to the position changes and the step length is based on uncertainty reasoning by using a simple
fuzzy rule. In this paper, SOA is used as a base level search, which can give a good direction to the optimal
global region and SQP as a local search to fine tune the solution obtained from SOA. Thus SQP guides SOA
to find optimal or near optimal solution in the complex search space. Two test systems i.e., 5 unit with
losses and 10 unit without losses, have been taken to validate the efficiency of the proposed hybrid
method. Simulation results clearly show that the proposed method outperforms the existing method in
terms of solution quality.

� 2010 Elsevier Ltd. All rights reserved.
1. Introduction

Dynamic economic dispatch (DED) is one of the important
power system optimization problems which is a non-linear and
complicated dynamic optimization problem. DED is a method to
dispatch the generating units to the predicted load demands over
a certain period of time at minimum operating cost while satisfying
equality, inequality and ramp-rate limit constraints. Normally, DED
is solved by considering the cost function as monotonically
increasing one. However, the cost function is non-convex and non-
smooth due to the effects of valve-point loading. This will make the
problem harder in finding the optimum solution. Many mathe-
matical techniques have been addressed to solve the DED problem
with valve-point effects [1e4]. However, none of these methods
may be able to provide an optimal solution. They usually get struck
at local optimum because of non-linear and non-convex charac-
teristics of the generating units.

Recently, stochastic optimization techniques such as genetic
algorithm (GA) [5], evolutionary programming (EP) [6], simulated
annealing (SA) [7], particle swarm optimization (PSO) [8] and
differential evolution (DE) [9] have been used to solve both static
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and dynamic economic dispatch problem with valve-point effects.
They are found to be effective in solving the problem without any
restriction on the shape of the cost curve due to their ability to find
global optimal solution. Though, these stochastic methods do not
always guarantee the global solution, they generally provide
a reasonable solution which is suboptimal. However, the main
drawback of the above methods is premature convergence. To
overcome the deficiencies in stochastic methods, many strategies
have been used such as adaptive particle swarm optimization
(APSO) [10], improved particle swarm optimization (IPSO) [11],
modified differential evolution (MDE) [12] and hybrid differential
evolution (HDE) [13] to address the DED problem with valve-point
effects. More precisely, hybrid algorithm combining stochastic and
deterministic methods is found to be effective in solving optimi-
zation problems with complex, non-linear and non-convex char-
acteristics. Based on this, hybrid algorithm combining evolutionary
programming (EP) and sequential quadratic programming (SQP)
[14] and PSO with SQP [15] have been reported to address DED
problem with valve-point effects.

Seeker optimization algorithm (SOA) proposed by Dai and
Chen [16], is a new population based heuristic search algorithm
which uses the act of human searching for solving optimization
problem. This algorithm has been applied to power system
optimization problem such as optimal reactive power dispatch
[17,18] which is a mixed integer and highly non-linear problem.
The SOA algorithm has been successfully applied and proved to
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Fig. 1. The act of fuzzy reasoning.

Table 2
Load demand for 24 h for 5 unit system.

Time (h) Load (MW) Time (h) Load (MW)

1 410 13 704
2 435 14 690
3 475 15 654
4 530 16 580
5 558 17 558
6 608 18 608
7 626 19 654
8 654 20 704
9 690 21 680
10 704 22 605
11 720 23 527
12 740 24 463
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be the best among the existing methods. In this paper SOA and
SQP are combined to form a hybrid SOAeSQP for solving dynamic
economic dispatch problem with valve-point effects. While
combining stochastic and deterministic methods to form a hybrid
algorithm, generally stochastic methods are used as a base level
search and deterministic methods as a local level search. In this
way, SOA is used a base level search and SQP as a local search to
fine tune the solution to reach global optimum or near global
optimum. Finally, the proposed hybrid method is applied to two
test systems namely 5 unit and 10 unit test systems. Simulation
results are compared with existing methods reported in litera-
tures and it is shown that proposed hybrid method is giving
higher quality solutions.
Table 3
Best solution for 5 unit system.

Hour Unit 1 Unit 2 Unit 3 Unit 4 Unit 5

1 17.0041 98.5398 30.0000 124.9078 139.7597
2 42.0170 98.5398 30.0000 124.9079 139.7597
3 75.0000 99.9744 30.1290 40.0000 230.1417
4 47.3063 98.5398 30.0000 124.9079 229.5195
5 74.9892 98.5375 30.2424 124.9288 229.5899
6 42.6730 98.5398 112.6734 124.9079 229.5195
7 63.7432 96.2006 112.7710 127.1096 226.4985
8 75.0000 102.7170 122.1910 124.9099 229.5195
2. Problem formulation

The objective of the DED problem is to dispatch the generating
units to the predicated load demands over a certain period of time
at minimum operating cost while satisfying the various constraints.
The problem is formulated as follows

Min FT ¼
XT
t¼1

XN
i¼1

Fi;t
�
Pi;t
�

(1)

where F is the total operating cost over the whole dispatch period,
N is the number of committed generating units, T is the number of
the scheduled intervals in the time horizon and Fi,t(Pi,t) is the fuel
cost in terms of real power output Pi at time t . The fuel cost function
of ith unit with valve-point effects is represented as follows;

FiðPiÞ ¼ aiP
2
i þ biPi þ ci þ

��ei�sin
�
fi
�
Pi;min � Pi

���� (2)

where ai, bi, ci, di, ei and fi are the fuel cost coefficients of ith unit
with valve-point effects and Pi is the power output of ith unit in
megawatts.

Subject to the following equality and inequality constraints for
tth interval in the time horizon.
Table 1
Data for 5 unit system.

Quantities Unit 1 Unit 2 Unit 3 Unit 4 Unit 5

a ($/(MW)2 h) 0.0080 0.0030 0.0012 0.0010 0.0015
b ($/(MW) h) 2.0 1.8 2.1 2.0 1.8
c ($/h) 25 60 100 120 40
e ($/h) 100 140 160 180 200
f (rad/MW) 0.042 0.040 0.038 0.037 0.035
Pmin (MW) 10 20 30 40 50
Pmax (MW) 75 125 175 250 300
UR (MW/h) 30 30 40 50 50
DR (MW/h) 30 30 40 50 50
1. Real power balance constraint

XN
i¼1

�
Pi;t
�� PD;t � PL;t ¼ 0 (3)

where PD,t is the total load demand and PL,t is the loss at tth
interval in megawatts.

2. Real power operating limits

Pimin � Pi � Pimax; i ¼ 1;2;/;N (4)

where Pimin and Pimax are minimum and maximum real power
output of ith unit, respectively.

3. Generating unit ramp-rate limits

Pi;t � Pi;ðt�1Þ � URi; i ¼ 1;2;/;N (5)

Pi;ðt�1Þ � Pi;t � DRi; i ¼ 1;2;/;N (6)

whereURi and DRi are ramp-up and ramp-down rate limits of ith
unit, respectively and are expressed in MW/h.

The general form of the loss formula using B coefficients is

PL;t ¼
XN
i¼1

XN
j¼1

PitBijPjt (7)
9 39.8075 98.5398 112.6734 209.8158 229.5195
10 53.8147 98.5398 112.6734 209.8158 229.5195
11 69.8230 98.5398 112.6734 209.8158 229.5195
12 75.0000 113.3730 112.6734 209.8158 229.5195
13 53.8147 98.5398 112.6734 209.8158 229.5195
14 39.8075 98.5398 112.6734 209.8158 229.5195
15 10.0000 92.3287 112.6734 209.8158 229.5195
16 14.6586 98.5398 112.6734 124.9079 229.5195
17 68.9514 20.0000 30.0001 209.8168 229.5195
18 40.4386 98.5398 30.0000 209.8158 229.5195
19 10.0000 92.3291 112.6734 209.8156 229.5192
20 53.8147 98.5398 112.6734 209.8158 229.5195
21 29.8023 98.5398 112.6734 209.8158 229.5195
22 44.5234 98.5398 112.6734 209.8158 139.7597
23 51.3910 98.5398 112.6734 124.9079 139.7597
24 70.0315 98.5398 30.0000 124.9079 139.7597



Table 4
Convergence results (50 runs) of 5 unit system.

Method Min.cost ($) Mean cost ($) Max. cost ($)

SOA 42,588.4156 43,273.4473 43,808.0937
SOAeSQP 40,701.4194 412,809.1608 42,133.7055
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where Pit, Pjt are real power of ith and jth unit respectively at time t
and Bij are the loss coefficients.
3. Seeker optimization algorithm

Seeker optimization algorithm is a new heuristic optimization
algorithm proposed by Dai and Chen [16]. SOA operates on a set of
potential solutions called swarm. The individual in the swarm is
called as seeker. A neighborhood is defined for each seeker in order
to have social component for social sharing of information. In this
simulation, the entire swarm is divided into K ¼ 3 subpopulations,
each has same size. The seekers in the same subpopulation
constitute a neighborhood.
3.1. Implementation of seeker optimization algorithm

In SOA, a search direction dij(t) and a step length aij(t) are
calculated separately for each seeker i on each dimension j for each
time step t, where aij(t)� 1 and dijðtÞ˛f1;0;�1g. dij(t)¼ 1means ith
seeker goes towards positive direction on dimension j , dij(t) ¼ �1
means ith seeker goes towards negative direction on dimension j
and dij(t) ¼ 0 means ith seeker stays at the current position. For
each seeker i (i ¼ 1, 2,., S, S is the population size), the position
update on dimension j (j¼ 1, 2,., D, D is the control variable size) is
given by

xijðt þ 1Þ ¼ xijðtÞ þ aijðtÞdijðtÞ (8)

Since the subpopulations are searching by using their own
information, they are easy to converge to a local optimum. In order
to avoid this situation, the positions of worst K � 1 seekers of each
subpopulation are combined with best one in each of the other
K � 1 subpopulations using the following binomial crossover
operator.
Fig. 2. Distribution of best costs for 5 unit system.
xknj;worst ¼
(
xlj;best; if Rj � 0:5

xknj;worst; else
(9)

where Rj is a uniform random real number between [0,1]. xknj;worst is
denoted as nth worst position in j th dimension of kth subpopu-
lation. xli,best is the best one in lth subpopulation on dimension j
with n, k, l ¼ 1, 2,., k � 1 and k s l. In this way, good information
obtained by each subpopulation is exchanged among the subpop-
ulations and then the diversity of population is increased.

3.2. Search direction

The search space may be viewed as a gradient field and a so
called empirical gradient (EG) can be determined by evaluating the
response to the position change especially when the objective
function is not in differential form, and the seeker can follow EG to
guide his search. Since SOA does not depend on the magnitude of
the EG, search direction can be determined only by the signum
function of a better position minus a worse position [16].

In SOA, each seeker i finds his search direction using the EGs in
egotistic behavior, altruistic behavior and pro-activeness behavior.
The search direction for seeker i in egotistic behavior is calculated
from the pbesti as

d
!

i;egoðtÞ ¼ signð p!best iðtÞ � x!iðtÞÞ (10)

On the other hand, the search direction in altruistic behavior for
seeker i is calculated by using neighborhood’s historical best gbest(t)
and neighborhood’s current best lbest(t). Hence, each seeker i is
associated with two optional altruistic direction, i.e., di;alt1 ðtÞ and
di;alt2 ðtÞ:

d
!

i;alt1ðtÞ ¼ signð g!bestðtÞ � x!iðtÞÞ (11)

d
!

i;alt2ðtÞ ¼ signð l!bestðtÞ � x!iðtÞÞ (12)

Finally, the search direction for seeker i in pro-activeness
behavior is calculated from his past behavior as

d
!

i;proðtÞ ¼ signð x!iðt1Þ � x!iðt2ÞÞ (13)

where t1; t2˛ft; t � 1; t � 2g, and x!iðt1Þ is better than x!iðt2Þ.
According to, human rational judgment, the actual search direction

of the ith seeker d
!

iðtÞ, is based on a compromise among the afore-

mentioned four empirical directions namely d
!

i;egoðtÞ; d
!

i;alt1 ðtÞ;
d
!

i;alt2 ðtÞ and d
!

i;proðtÞ. In this study, every dimension j of d
!

iðtÞ is
selected by applying the following proportional selection rule:

dij ¼

8>><
>>:

0 if rj � pð0Þj

þ1 if pð0Þj � rj � pð0Þj þ pð1Þj

�1 if pð0Þj þ pð1Þj � rj � 1

(14)

where rj is a uniform random number in [0,1], pðmÞ
j ðm˛f0;þ1;�1 Þg

is the percentage of the number of m from the set
fdij;ego; dij;alt1 ; dij;alt2 ; dij;prog on each dimension j of all the four
empirical directions, i.e., pðmÞ

j ¼ the number of m=4.

3.3. Step length

In the continuous search space, there often exists a neighbor-
hood region close to an extremum point. In this region, the fitness
values of the input variables are proportional to their distances



Table 5
Data for 10 unit system.

Quantities Unit 1 Unit 2 Unit 3 Unit 4 Unit 5 Unit 6 Unit 7 Unit 8 Unit 9 Unit 10

a ($/(MW)2 h) 0.00043 0.00063 0.00039 0.00070 0.00079 0.00056 0.00211 0.00480 0.10908 0.00951
b ($/(MW) h) 21.60 21.05 20.81 23.90 21.62 17.87 16.51 23.23 19.58 22.54
c ($/h) 958.20 1313.6 604.97 471.60 480.29 601.75 502.70 639.40 455.60 692.40
e ($/h) 450 600 320 260 280 310 300 340 270 380
f (rad/MW) 0.041 0.036 0.028 0.052 0.063 0.048 0.086 0.082 0.098 0.094
Pmin (MW) 150 135 73 60 73 57 20 47 20 55
Pmax (MW) 470 460 340 300 243 160 130 120 80 55
UR (MW/h) 80 80 80 50 50 50 30 30 30 30
DR (MW/h) 80 80 80 50 50 50 30 30 30 30
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from the extremum point. It may be assumed that better points are
likely to be found in neighborhood of families of good points and
search should be intensified in regions containing good solutions
through focusing search. Hence, from the standpoint on human
searching, one may find the near optimal solutions in the narrow
neighborhood of the point with lower fitness value and, contrari-
wise, wider neighborhood with higher fitness value.

Fuzzy system has been used in this study to determine the step
length as in [17,18]. The simple control rule used here to calculate
the step length is if {fitness value is small}(conditional part) then
{step length is short} (action part). To design a fuzzy system to be
applicable to a wide range of optimization problems, the fitness
values of all the seekers are sorted in the descending order and
turned into sequence numbers from 1 to S as the inputs of fuzzy
reasoning. The linear membership function is used in the condition
part and the expression is given as

mi ¼ mmax �
S� Ii
S� 1

ðmmax � mminÞ (15)

where Ii is the sequence number of xi(t) after sorting the fitness
values, mmax is the maximum membership degree value which is
equal to or a little less than 1.0.

In this study, bell membership function is used and shown in
Fig. 1. For convenience, one dimension is considered. Since the
membership degree values of input variables beyond [�3d, 3d] are
less than 0.011, therefore they are neglected. Hence minimumvalue
mmin ¼ 0.011 is set. The parameter d

!
of the bell membership

function is determined as

d
! ¼ u�absð x!best � x!randÞ (16)

Where abs(.) returns an output vector such that each element of the
vector is the absolute value of the corresponding element of the
input vector. The parameter u is linearly decreased from umax to
umin during run to reduce the step length with time increasing and
hence improving the search precision. The x!best and x!rand are the
Table 6
Load demand for 24 h for 10 unit system.

Time(h) Load(MW) Time(h) Load(MW)

1 1036 13 2072
2 1110 14 1924
3 1258 15 1776
4 1406 16 1554
5 1480 17 1480
6 1628 18 1628
7 1702 19 1776
8 1776 20 2072
9 1924 21 1924
10 2072 22 1628
11 2146 23 1332
12 2220 24 1184
best seeker and a randomly selected seeker from the same
subpopulation respectively where ith seeker belongs. It is impor-
tant that x!rand is different from x!best and d

!
is shared by all the

seekers in the same subpopulation.
To introduce the randomicity on each dimension and improve

the local search capability, Eq. (17) is used to change mi to vector m!i.
Then the action part of the fuzzy reasoning gives every dimension j
of step length by Eq. (18)

mij ¼ randðmi;1Þ (17)

aij ¼ dj

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�ln

�
mij

�r
(18)

4. Sequential quadratic programming

The SQP method seems to be the best non-linear programming
method for constrained optimization problems. It outperforms every
other non-linear programming method in terms of efficiency, accu-
racyandpercentageof successful solutionsovera largenumberof test
problems. The method closely resembles Newton’s method for con-
strained optimization, just as is done for unconstrained optimization.
At each iteration, an approximation is made of the Hessian of the
Lagrangian function using BroydeneFletchereGoldfarbeShanno
(BFGS) quasi-Newton updating method. The result of the approxi-
mation is then used to generate a quadratic programming (QP) sub-
problem whose solution is used to form a search direction for a line
search procedure. Since the objective function to be minimized is
non-convex, SQP ensures a local minimum for an initial solution.

The SQP used in this paper consists of three main stages, as
follows: 1) calculation of an approximation of the Hessian matrix of
the Lagrangian function using quasi-Newton method; 2) formula-
tion of the QP problem; 3) line search and merit function calcula-
tion. Hence in this paper, first SOA is applied to optimization
problem as a global search and finally the best solution obtained
from SOA is given as initial condition for SQP method as a local
search to fine tune the solution. SQP simulations are done using the
Matlab optimization toolbox.

5. Implementation of hybrid SOAeSQP algorithm to DED
problem

The dynamic economic dispatch problem based on hybrid
algorithm is described as follows:

1. Input the system parameters consisting of fuel cost coefficients,
transmission loss coefficients, lower and upper bound of
control variables and predicted load demands for T intervals in
the scheduled time horizon. In DED problem, real power
generation values of all generating units for T periods are
control variables.



Table 7
Best solution for 10 unit system.

Hour Unit 1 Unit 2 Unit 3 Unit 4 Unit 5 Unit 6 Unit 7 Unit 8 Unit 9 Unit 10

1 226.6239 135.0000 73.0000 60.0000 167.3568 122.4285 129.5906 47.0000 20.0000 55
2 226.6242 135.0000 91.7358 60.0000 222.5996 122.4498 129.5904 47.0000 20.0000 55
3 150.0000 135.0000 316.2641 60.0000 222.6108 122.5034 129.6216 47.0000 20.0000 55
4 226.6242 222.2665 202.5037 120.4152 222.5996 159.9999 129.5904 47.0000 20.0000 55
5 303.2513 222.2978 198.7553 120.4412 222.5959 122.7536 129.5880 85.3165 20.0000 55
6 303.2685 396.9875 194.1240 60.0000 222.6767 126.3892 129.5539 120.0000 20.0000 55
7 150.0000 460.0000 299.0324 120.4549 222.6020 160.0000 129.5956 85.3149 20.0000 55
8 379.8282 396.7764 295.2306 112.1503 222.5824 122.4319 93.0475 47.0000 51.9523 55
9 379.8726 309.5422 298.7844 230.8514 222.6155 159.9993 129.9633 85.3138 52.0571 55
10 456.4968 396.7993 310.4488 241.2457 222.5996 122.4498 129.5904 85.3121 52.0570 55
11 456.4968 396.7993 326.4566 300.0000 222.5996 160.0000 129.5904 47.0000 52.0570 55
12 456.6067 460.0000 298.8276 300.0000 222.6011 160.0000 129.5950 85.3123 52.0571 55
13 379.8726 396.7993 322.8257 300.0000 222.5996 160.0000 129.5904 85.3121 20.0000 55
14 378.5956 396.0497 279.6300 300.0000 122.5917 122.6721 129.4607 120.0000 20.0000 55
15 150.0000 395.9671 295.6221 249.9998 220.9067 138.4098 129.5392 87.0737 53.4813 55
16 150.0000 309.5296 328.5209 180.8352 172.7232 122.4731 129.6094 85.3082 20.0000 55
17 150.0000 222.2664 307.1271 180.8315 172.7331 122.4509 129.5907 120.0000 20.0000 55
18 226.6171 309.4914 279.2813 179.5827 222.5513 122.4298 93.0461 120.0000 20.0000 55
19 303.2496 309.5337 312.7390 180.8329 222.5991 122.4528 129.5927 120.0000 20.0000 55
20 456.4968 396.7994 304.9558 241.2457 222.5996 160.0000 129.5904 85.3121 20.0000 55
21 379.4145 397.4845 296.0587 181.2572 222.5308 122.4351 129.8188 120.0000 20.0000 55
22 226.6241 309.5329 326.6888 180.8305 172.7330 160.0000 129.5904 47.0000 20.0000 55
23 150.0000 135.0000 306.5035 60.0000 222.5274 133.3785 129.5904 120.0000 20.0000 55
24 150.0000 135.0000 185.5949 125.9676 173.1554 124.3571 129.6015 85.3191 20.0042 55

Table 9
Comparison of best costs for two test systems.

Optimization
technique

5 unit system
with losses

10 unit system
without losses

SA [7] 47,356 e

EP [14] e 1,048,638
Hybrid EPeSQP [14] e 1,035,748
PSO [11] e 1,036,506
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2. Create an initial population for N generating units and T intervals
and initialize the position of each seeker in the search space
uniformly and randomly. While generating an initial population,
all the control variables should satisfy the inequality constraint (4).

P ¼

2
664
P11 P12 / P1T
P21 P22 / P2T
« « 1 «

PN1 PN2 / PNT

3
775 (19)

It is noted that the real power balance equality constraints (3)
should be satisfied when loss is neglected. To satisfy the equality
constraints, the following procedure is used. Step 1) Set t ¼ 1

Step 2) Set l ¼ 1
Step 3) The dependant power generation Plt is calculated as

Plt ¼ PDt
XN
i¼1
isl

ðPitÞ; t ¼ 1;2;/; T (20)

Step 4) If the dependent power generation Plt satisfies the
inequality constraint (4), go to Step 5; otherwise set
l ¼ l þ 1, go to Step 3.

Step 5) t ¼ tþ1, if t < T, go to Step 2; otherwise, stop the procedure.
3. Start the iteration counter.
4. Determine PL using B loss coefficients and evaluate the fitness

value of each seeker using the following Eq. (21)

F* ¼
XT
t¼1

XN
i¼1

FitðPitÞ þ l

 XT
t¼1

 XN
i¼1

Pit

!
� PLt � PDt

!2

(21)

where F* is the augmented total production cost for whole
dispatch period and l is the penalty value. The initial historical
Table 8
Convergence results (50 runs) of 10 unit system.

Method Min. cost ($) Mean cost ($) Max. cost ($)

SOA 1,023,945.6329 1,026,288.5263 1,029,212.9082
SOAeSQP 1,021,460.0101 1,023,840.6543 1,026,852.4248
best position among the population is achieved. The current
best position is set to the personal historic best position.

5. Divide the entire population into K subpopulation and select
the neighbors of each seeker.

6. Determine the search direction and step length for each seeker
and update his current position.

7. Using subpopulation learn, the worst K � 1 seeker positions of
each subpopulation are replaced with best one in other K � 1
subpopulation.

8. Determine PL and fitness value of new position, and update the
historical best position among the population and the historical
best position of each seeker.

9. Repeat the above procedure till the stopping condition is ach-
ieved or the maximum number of iteration is reached.

10. Input the best solution obtained from the above SOA steps as an
initial condition to SQP to fine tune the solution.

11. Output the solution.
6. Test systems and simulation results

In order to validate the effectiveness of the proposed hybrid
method, two test systems (5 unit with losses and 10 unit without
losses) of DED problems have been considered in which the
objective functions are non-smooth because the valve-point effects
APSO [10] 44678 e

PSOeSQP [15] e 1,031,371
DE [13] e 1,033,958
Hybrid DE [13] e 1,031,077
IPSO [11] e 1,023,807
SOA 42,588.41 1,023,945.63
Proposed method 40,701.4194 1,021,460.01



Fig. 3. Distribution of best costs for 10 unit system.
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were taken into account. The optimization method SQP is done
using Matlab Optimization Toolbox. The parameters used in the
proposed SOA algorithm are: the population size S ¼ 60, the
number of generation Gen ¼ 500, the number of subpopulations
K ¼ 3, the limits of membership degree value for Fuzzy reasoning,
i.e., mmax¼ 0.95 and mmin¼ 0.0111 and the limits ofu, i.e.,umax¼ 0.9
and umin ¼ 0.1.

6.1. Test system 1

This system consists of five thermal units [7]. The system data
and load demands for 24 h are given in Tables 1 and 2. The B loss
coefficientmatrix is given in Appendix. This systemhas been solved
by the proposed hybrid method and the best solution is given in
Table 3. 50 independent runs were made to identify the best, mean
and worst cost and are given in Table 4 for both SOA and hybrid
SOAeSQP method. The best value achieved by SOA method is
42588.41$ and by the proposed hybrid method 40701.41$. The
comparison of best costs of the proposedmethodwith themethods
reported in literature is given in Table 9. From the simulation
results, the proposed hybrid method is giving better quality solu-
tion. The spread of best costs for 50 runs against its mean value is
shown in Fig. 2

6.2. Test system 2

This system consists of ten thermal generators. The system data
and load pattern for 24 h are given in Tables 5 and 6 and also
available in [14]. In this test system, transmission losses are
neglected. This test system is solved by the proposed hybrid
method and the optimal results are given in Table 7. The best, mean
and worst costs achieved by both SOA and the proposed hybrid
method after 50 trials are listed in Table 8. The comparison of best
costs of different methods with proposed method is given in Table
9. It is clear from the results, the proposed hybrid method is
producing higher quality solution. The distribution of best costs for
50 runs against its mean value is shown in Fig. 3.

7. Conclusion

This paper presents a hybrid method combining SOA and SQP
for solving DED problem with valve-point effects including
generator ramp-rate limits. In this algorithm, SOA is used as a base
level search and SQP as local level search. Hence SOA is first applied
to DED problem to find the best solution. This best solution is given
to SQP as an initial condition to fine tune the solution. To verify the
effectiveness, two test cases one with losses and another one
without losses were considered. From the simulation results of
both the test cases, the proposed hybrid SOAeSQP method is giving
higher quality solutions than the reported methods for DED
problem with valve-point effects. Thus it provides a new effective
method to solve DED problem with valve-point effects. In future,
this algorithm will be applied to other power system optimization
problem having non-linear and non-convex characteristics. This
hybrid method can also be successfully applied to other engi-
neering optimization problem.

Appendix

The transmission loss coefficients per MW for 5 unit system are
given as follows:

B ¼

2
66664
0:000049 0:000014 0:000015 0:000015 0:000020
0:000014 0:000045 0:000016 0:000020 0:000018
0:000015 0:000016 0:000039 0:000010 0:000012
0:000015 0:000020 0:000010 0:000040 0:000014
0:000020 0:000018 0:000012 0:000014 0:000035

3
77775

References

[1] Song Y, Yu I. Dynamic load dispatch with voltage security and environmental
constraints. Electr Power Syst Res 1997;43(1):53e60.

[2] Li F, Morgan R, Williams D. Hybrid genetic approaches to ramping rate con-
strained dynamic economic dispatch. Electr Power Syst Res 1997;43
(2):97e103.

[3] Han X, Gooi H, Kirschen D. Dynamic economic dispatch: feasible and optimal
solutions. IEEE Trans Power Syst 2001;16(1):22e8.

[4] Jabr R, Coonick A, Cory B. A study of the homogeneous algorithm for dynamic
economic dispatch with network constraints and transmission losses. IEEE
Trans Power Syst 2000;15(2):605e11.

[5] Walters D, Sheble G, Co E, Kingsport T. Genetic algorithm solution of economic
dispatch with valve point loading. IEEE Trans Power Syst 1993;8(3):1325e32.

[6] Yang H, Yang P, Huang C. Evolutionary programming based economic dispatch
for units with non-smooth fuel cost functions. IEEE Trans Power Syst 1996;11
(1):112e8.

[7] Panigrahi C, Chattopadhyay P, Chakrabarti R, Basu M. Simulated annealing
technique for dynamic economic dispatch. Electr Power Compon Syst 2006;34
(5):577e86.

[8] Park J, Lee K, Shin J, Lee K. A particle swarm optimization for economic
dispatch with nonsmooth cost functions. IEEE Trans Power Syst 2005;20
(1):34e42.

[9] Noman N, Iba H. Differential evolution for economic load dispatch problems.
Electr Power Syst Res 2008;78(8):1322e31.

[10] Panigrahi B, Ravikumar Pandi V, Das S. Adaptive particle swarm optimization
approach for static and dynamic economic load dispatch. Energy Convers
Manage 2008;49(6):1407e15.

[11] Yuan X, Su A, Yuan Y, Nie H, Wang L. An improved PSO for dynamic load
dispatch of generators with valve-point effects. Energy 2009;34(1):67e74.

[12] Yuan X, Wang L, Yuan Y, Zhang Y, Cao B, Yang B. A modified differential
evolution approach for dynamic economic dispatch with valve-point effects.
Energy Convers Manage 2008;49(12):3447e53.

[13] Yuan X, Wang L, Zhang Y, Yuan Y. A hybrid differential evolution method for
dynamic economic dispatch with valve-point effects. Expert Syst Appl
2009;36(2P2):4042e8.

[14] Attaviriyanupap P, Kita H, Tanaka E, Hasegawa J. A hybrid EP and SQP for
dynamic economic dispatch with nonsmooth fuel cost function. IEEE Trans
Power Syst 2002;17(2):411e6.

[15] Victoire T, Jeyakumar A. Reserve constrained dynamic dispatch of units with
valve-point effects. IEEE Trans Power Syst 2005;20(3):1273e82.

[16] Dai C, Zhu Y, Chen W. Seeker optimization algorithm. Lect Notes Comput Sci
2007;4456:167e76.

[17] Dai C, Chen W, Zhu Y, Zhang X. Seeker optimization algorithm for optimal
reactive power dispatch. IEEE Trans Power Syst 2009;24(3):1218e31.

[18] Dai C, Chen W, Zhu Y, Zhang X. Reactive power dispatch considering voltage
stability with seeker optimization algorithm. Electr Power Syst Res 2009;79
(10):1462e71.


	Hybrid SOA–SQP algorithm for dynamic economic dispatch with valve-point effects
	Introduction
	Problem formulation
	Seeker optimization algorithm
	Implementation of seeker optimization algorithm
	Search direction
	Step length

	Sequential quadratic programming
	Implementation of hybrid SOA–SQP algorithm to DED problem
	Test systems and simulation results
	Test system 1
	Test system 2

	Conclusion
	Appendix
	References


