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Abstract 

PID neural network (PIDNN) is a new kind of networks. It consists of three layers and its hidden layer's units are proportional 
(P), integral (I) and derivative (D) neurons. PIDNN's weights are adjusted by the back-propagation algorithms and it perform a 
perfect function in process control. In this paper, we introduce PIDNN structure and algorithm and give examples in which 
PIDNN is used to control time-delay systems. © 2000 Elsevier Science Ltd. All rights reserved. 
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1. Introduction 

There are a lot of time-delay systems in industry 
processes but it is difficult to design the controllers for 
them because the time-delay property. These systems 
generally have larger overhead, longer adjusting time 
and are not stable. In classical control theory the Smith 
method can be used to construct controllers if the 
transfer function of the system has been known. But, 
the transfer function of a practical system is not easy to 
measure or to complete. 

As is well known conventional PID controllers have 
many advantages so that they are most widely used in 
various fields of the industry, especially in the processes 
of chemical industry. Although PID controllers have 
strong abilities they are not suitable for the control of 
long time-delay systems, in which the P, I, and D 
parameters are difficult to chose. 

Artificial neural networks can perform adaptive con- 
trol through learning processes. But there are some 
problems, which should be solved in practice. The main 
problems are the slow learning speed, the long weight 
convergence time and uncertain property. 

PID neural network (PIDNN) is a new kind of 
networks. It utilizes the advantages of both PID control 
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and neural structure. It consists of proportional (P), 
integral (I) and derivative (D) neurons and its weights 
are adjusted by the back-propagation algorithms. It can 
control different systems through quick learning pro- 
cess and has perfect performances (Shu, 1997, 
1998a,b,c; Shu & Li, 1998; Shu, 1999a,b. 

The rest of the paper is organized as follows. Section 
2 presents the structure of PIDNN. Section 3 specifies 
the algorithm of PIDNN. System simulation examples 
are introduced in Section 4, including the performance 
behavior comparing between PIDNN and conventional 
PID controllers. Finally, the conclusion is given in 
Section 5. 

2. Structure of  P I D N N  

PIDNN consists of a 2-3-1 structure. It has three 
layers, which are input-layer, hidden-layer and output- 
layer. The input-layer has two neurons, the hidden- 
layer has three and the output-layer has only one. The 
neurons in the net are proportional (P) neuron, integral 
(I) neuron and derivative (D) neuron, respectively. 

The input-layer has two P neurons, one receives 
system setting input and another connects system out- 
put. The hidden-layer has three different neurons, the 
first is P neuron, the second is I neuron and the third is 
D neuron. The output- layer only has one neuron 
which completes the control output duty. The network 
structure and the control system are shown in Fig. 1. 
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3. Algorit lun o f  P I D N N  

3. I. Input layer 

In input layer two neurons are P-neurons and their 
input-output  functions are as follows: 

f u!k)  ui(k) > 1 x,(k) = - 1 <_ u~(k) < 1 (1) 

ui(k) < - 1 

where i = 1, 2. k is computer sample time. 

3.2. Hidden layer 

In hidden layer the neurons inputs are 

2 

u~(k) = Y~ w,:.x,(k) (2) 
i ~ l  

where j = 1, 2, 3 and w o. are the net weight from input 
layer to hidden layer. 

The input-output  functions of the neurons in the 
hidden layer are different from each other. They are 
proportional (P) function, integral (I) function and 
derivative (D) function so that they are named as 
P-neuron, I-neuron and D-neuron respectively. The 
function of P-neuron is the same as that of the input 
layer, as follows: 

f 1 u'l(k) > 1 
X'l(k ) = u'l(k) - 1 < ui(k) < 1 (3) 

- 1 u ' ~ ( k )  < - 1 

The function of I-neuron is 

f 1 x'2(k) > 1 
x'2(k) = x '2(k-  1) + u'2(k) - 1 < x'z(k) < 1 (4) 

- 1 x ; ( k )  < - 1 

The function of D-neuron is 

! 1 

x'3(k) = u (k) - u'3(k - 1) 
- 1  

x;(k) > 1 
- 1 _<x; (k)_< 1 

x'3(k) < -- 1 
(5) 

3.3. Output layer 

The output layer only has one neuron. The input of 
the neuron is 

3 

u"(k) = ~ Wjo'X~o(k) (6) 
:=1 

where W:o are net weight from hidden layer to output 
layer and its input-output function is proportional (P) 
function as follows: 

1 uo(k ) > 1 
xo(k)= uo(k) - l  < u o ( k ) < l  (7) 

- 1 u o ( k )  < - 1 

3.4. Back-propagation algorithm 

The aim of the PIDNN controller is to minimize 

J =  ~ Eh = %  ~ [r (k ) -y (k ) ]  2 (8) 
h = l  mh=l 

where y(k)  is system output and r(k) is the system 
input. 

For the aim we have a back-propagation algorithm 
of PIDNN. We use gradient method to change the 
weights of PIDNN. After no training and studying 
steps, the weights from hidden layer to output layer are 

8J 
' ' , (9) W:o(no + 1) = Wjo(no) - Vl: OW:o 

where r/: is step, and 

OJ OJ d E  h Oy Ov Ox" ~u'~ 
(10) 

OWj. o OE h ~y 6o Ox o Ou" OW~o 

From Eq. (8), 

- '~  wz w~ m v 
y 

Fig. 1. Structure of PIDNN. 
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Fig. 2. One-step time-delay system responses. 
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Fig. 3. Constringency curve of aim J of one-step time-delay system. 

d___J__J dEk_  2 ~ [r(k) - y ( k ) l  (11) 
dEk ~Y m k = l  

and 

dv dxo 1 (12) 
d ¢! tt 

Xo Uo 

From Eq. (6) 

duk'° - xk(k) (13) 
dG-o 

In Eq. (10), dy/dv cannot be directly decided because 
we do not know the transfer function of  the system, 
For the solution, we use the following equation 

dy,  A y = y ( k +  1 ) - y ( k )  
(14) 

Ov Av v ( k ) - v ( k - 1 )  

Thus from Eqs. (11-14), we can write 

dJ  _ 2 ~ [ r ( k ) - y ( k ) ]  
dWko m k= 1 

y(k)  - y(k  - 1) xk(k ) 
v(k) ---v-(-ff -Z- 1) 

= -  ~ 6j(k)xk(k) (15) 
k = l  

From input-layer to hidden-layer the connect weights 
are 

dJ  
w~j(no + 1) = wo.(no) - rli dw U (16) 

where ~/; is step and 

OJ dJ dEk dy dv dx~ du" dx k du k (17) 
dw o. dEk dy dv dxo du" dx k du k dw o. 

where 

dJ dEkdy dv dXo a,(k) (18) 
dG dy dv dx" du; kz~= 1 

which come from Eq. (15), and 

dug t 
dx k W)o (19) 

from Eq. (6) and 

dx k ~ Ax k _ xk(k ) - xk(k - 1) 
- ( 2 0 )  

du k Au k u k ( k ) - u k ( k - 1 )  

and 

duj = xi(k) (21) 
dw o. 

from Eq. (2). Thus the following equation can be 
written from Eqs. (18-21). 

dJ ~ xk(k ) - xk(k - 1) 
= - ,, 6j(k) xi(k) 

dWij k = l  u;(k)--uk(k ~) 

= -  ~ 5g(k)xi(k) (22) 
k = l  

4. Examples 

4.1. One-step system 

A one-step time-delay system is described by the 
following function. 

y(k  + 1) = 0.368y(k) + 0.632v(k - 10) (23) 

and system input is 

r(k) = l(k) (24) 

P I D N N  is the controller and let wlj(0)= + 1, 
w2j(O) = -  1, where j =  1, 2, 3, and let Wko(0 ) = 0.1. 
After 50 learning steps, the system responses are shown 
in Fig. 2. 

From Fig. 2 we know that the system has perfect 
performance. The dynamic response is quick and there 
is little over-adjust. The static error is zero. The system 
is stable. The P I D N N  can complete the one-step time- 
delay system control duty. 

The constringency curve of  aim J, Eq. (8), of this 
one-step time-delay system is shown in Fig. 3. 

From Fig. 3, it is obvious that the P I D N N  has 
monotonous constringency property and the constrin- 
gency time is very short. 
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4•2. Two-step system 

A two-step system is described as the following 
function. 

y(k  + 1) = 1.368y(k) - 0.368y(k - 1) + 0.0092v(k - 10) 

+ 0.066v(k - 11) (25) 

The system input is Eq. (24) and PIDNN is used as 
controller• After 50 learning steps, the system responses 
is shown in Fig. 4. 

Fig. 4 proved that PIDNN can adapt different sys- 
tems through learning process. The control system, also 
has better performance for the long time-delay two-step 
object. 
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Fig. 4. Two-step time-delay system. 
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Fig. 5. Constringency curve of aim J of two-step time-delay system. 
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Fig. 6. Conventional PID control two-step time-delay system re- 
sponses. 

The constringency curve of aim J, Eq. (8), of this 
system is shown in Fig. 5. This monotonous reducing 
curve proved that PIDNN can finish the learning pro- 
cess quickly. 
4.3. Performance of  conventional PID controller 

As a comparison, we use a conventional PID con- 
troller to control the two-step time-delay system as Eq. 
(25). The PID controller function is Eq. (26) and the 
system step responses are shown in Fig. 6. 

k 

u(k) = Kpe(k ) + KI ~ e(i ) + KD[e(k) - e(k - 1)] 
i = l  

k 
= 0.0115e(k) + 0.00575 ~ e(i ) 

i = 1  

+ 0.05175[e(k) - e(k - 1)] (26) 

The result above tells us that conventional PID con- 
troller cannot suit to control the long time-delay sys- 
tem. The system is unstable. The result proved that 
PIDNN has much better properties than conventional 
PID controller. 

5. Conclusions 

PIDNN is a multilayered neural network and its 
structure is simple. PIDNN has abilities to control 
different time-delay system and has perfect perfor- 
mance. Using PIDNN we needn't measure or calculate 
the system parameters. The whole adjusting process is 
completed through self-learning and adaptive process. 
PIDNN has short convergence time and quick learning 
speed and it can be used in practical process. 
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