
UTTERWORTtI 
EINEMANN 

Development and implementation of 
a dispersed decision process: 
an FMS scheduling example 

Shung-Kuang Kung* and James R. Marsden’ 
*Department of Management Information Systems, College of Business, Chung-Yuan Christian 
University, Chung-Li, Taiwan 
‘Department of Operations and Information Management, 368 Fairfield Road, U-41 IM, School of 
Business Administration, University of Connecticut, Storrs, CT 06269-2041, USA 

An automated process was constructed which provides a platform for conducting analyses in 
general distributed multi-participant decision making environments, including the special case 
of FMS scheduling. The detailed example illustrates the use of the tool for analysing distributed 
decision making in a multi-machine, multi-task FMS setting. The example relates a controlled 
laboratory experiment using human ‘operators’ interacting in an electronic auction. The 
generality of our automated process supports this type of experimentation, as well as complex 
simulations using computerized expert systems as ‘participants’, simulations that enable us to 
perform detailed comparisons between the performance of the distributed process and existing 
centralized FMS scheduling heuristics. 

Keywords: flexible manufacturing systems, distributed decision making, laboratory experiment 

Introduction 

Production decision processes and mechanisms may 

conjure up physical relations and tangible products. 
But what is there that is truly unique about these 
settings? Are they truly singular, or are they set apart 
because of restrictive definitions that we choose to 
characterize them? Consider flexible manufacturing 
systems (FMS). One commonly cited definition is that 
of Kusiak’: a set of machine tools linked by a material 

handling system, all controlled by a computer system. 
Suppose, instead, that we adopt a much broader 

approach, defining an FMS as a production system 
where one or more machines are capable of performing 
more than one task (where suitably broad definitions of 
‘machine’ and ‘task’ are intended). We note that this 
definition is sufficiently expansive to include a principal 
(major contractor) dealing with numerous potential 

subcontractors. 
In what follows, we demonstrate how, using such a 

broad definitional approach, we are able to construct 
an automated process which provides a platform 
for conducting analyses in general distributed multi- 
participant decision making environments, including 

the special case of FMS scheduling. Our detailed 
example, provided below, illustrates the use of the tool 
for analysing distributed decision making in a multi- 
machine, multi-task FMS setting. The example relates 
a controlled laboratory experiment using human 
‘operators’ interacting in an electronic auction. The 

generality of our automated process supports this type 
of experimentation as well as complex simulations 

using computerized expert systems as ‘participants’. 
Though much of our motivation for developing the 

tool rested with our desire to be able to investigate 
thoroughly alternatives to centralized scheduling in 
existing and likely future FMS environments, we 
quickly realized that the approach held possibilities for 
investigating the performance of more general distrib- 
uted decision making environments. Whether dealing 
with extremely complex (NP-complete) FMS scheduling 

problems or with less demanding assignment problems, 
a key determination must be the performance com- 
parison of centralized versus decentralized decision 

making processes. As detailed below, our automated 
process provides a convenient tool for analysing the 
performance of distributed processes. 

The next section sets forth the specifics of the general 
environment we model and the automated process we 
have developed to perform analyses within this general 

environment. Two FMS example experiments we 
conducted are then detailed and the experimental 
outcomes summarized. Finally, our concluding remarks 
and suggestions are provided. 

Research tool 

The research tool we implement is a flexible opera- 
tionalization of the approach set out in Shaw and 
Whinston2. These authors ‘followed the distributed 

Computer Integrated Manufacturing Systems Volume 8 Number 2 93 



Development and implementation of a dispersed decision process: S-K Kung and .I R Marsden 

artificial intelligence framework’ of Davis and Smith3 
and Smith4 using the contract net approach to meet 
three specific requirements they detai12: 

1. A model of the problem-solving process that, 
through the communications network, dynamically 
distributes tasks among cells. 

2. Design of an interface language that enables effective 
communication among cell hosts. 

3. Programming and execution of this problem-solving 
process at each cell in a decentralized manner. 

IBM token ring local area network (LAN) comprised of 
IBM PS-2 Model 50s and 80s (Intel 286 and 386 
machines, respectively) connected using multi-station 
access units (MAU). The network has a 4 Mbit 
transmission rate on twisted-pair wiring using a token 
access method within a ring topology. The LAN 
adapter provides 16 Kbyte of on-board shared RAM. 
Even with such a relatively modest platform, we were 
able to develop an easy-to-operate, functional and 
flexible scheduling process with distributed decision 
making. 

In our operationalization, the general or system 
problem is decomposed by a manager (human or 
automated) into sub-problems which are auctioned 
across a network to contractors (human or machine) for 
solution or for further decomposition. If a second 
round of decomposition is used, then individual con- 
tractors act as managers for such subsequent rounds. 
Using the broad definition of an FMS set out in our 
introductory remarks, the following are the roles and 
activities we incorporated: 

Central auctioneerlmanager - tracks job arrivals, 
decomposes jobs into tasks, announces tasks to be 
auctioned, collects bids, assigns tasks, provides 
incentives and/or penalties for behaviour of agents in 
system, monitors and manages processes including 
re-bidding of tasks due to machine breakdown or 
queue constraint violations; 
Contractor/agent - monitors individual node capabil- 
ities and activities, determines own bids for auctioned 
tasks, assigns tasks won to individual machines at 
own node, monitors and completes awarded tasks. 

Programming was in C and made liberal use of 
NetBIOS commands. Agents and the auctioneer com- 
municate with each other through the token ring LAN. 
The shell was installed in the Department of Decision 
Science and Information System’s MIS Research Lab at 
the University of Kentucky. In the lab, workstations 
(IBM model 50s) and file servers (IBM model 80s) 
were connected together using MAUs. One file server 
acted as the auctioneer, while the workstations were 
used to provide the auction interface and local DSS for 
the agents. Auctions were conducted through message 
passing between the auctioneer and agents, using the 
Datagram Transmission mechanism provided by IBM 
NetBIOS to transmit the required messages. 

We use the terms task and decision interchangeably. 
The process we operationalized can be viewed as a 
decentralized decision or task completion process. The 
auctioneer or central manager is charged with 
completing a set of jobs, each possibly composed of 
several individual tasks. New jobs may arrive in pre- 
specified arrays, but are generally expected to arrive 
randomly. The central manager decomposes each job 
into tasks (for which precedence constraints may exist), 
conducts auctions of the tasks, and assigns them to 
agents with the lowest bids for each task (decentralized 
decision maker). The central manager provides 
incentives (payments for tasks) typically set equal to 
the winning bid amount, and imposes penalties on 
agent behaviour that violates process constraints. 

Prototyping took place over a four month period, 
and concentrated on the development of an informative 
and easy to use DSS for each node. Doctoral students 
in the Department of Decision Science and Information 
Systems were used as test subjects in repeated trials for 
modifying the DSS and interface. After each trial, 
subjects were queried concerning information needs 
and relevance. Our goal was to locate the highest 
ranked information in convenient, on-screen areas. 
Lower ranked information (still commonly indicated as 
relevant by subjects) was relegated to ‘on request’ 
status, accessible as pop-up screens. After repeated 
testing over the four month period, screen design and 
pop-up information availability appeared appropriate 
to subjects. Additional test runs were conducted and 
subject views did not change. 

Each individual agent operates a node which 
possesses specific task capabilities. Each agent can bid 
on auctioned tasks, and is responsible for completion of 
awarded tasks. Where multiple task capabilities exist, 
agents must assign awarded tasks to specific machines 
at their nodes. In situations where agents are grouped 
or teamed, intermediate managers for each team act as 
conduits with the central manager, sending messages 
(e.g. bids) and receiving instructions and auction 
results. 

Figure 2 provides a typical node-DSS screen for 
agents. The area marked on the first line of the screen 
provides updated information on current status, and 
includes the following: balance (i.e. initial funds plus 
profits made minus losses incurred; current balance in 
the example screen is $606.56), queue size permissible 
at any machine (set at 3 for this example), penalty fee 
for violating queue constraint or for machine breakdown 
leading to forced re-bidding of task (set at $10 per 
occurrence), time remaining to submit bid (91 seconds 
here). There are four functions that can be activated 
using function keys: 

l Key F5 - displays task (production) capabilities 
(what tasks each machine can do) at the node - 
Figure 2 provides the screen format when this feature 
is activated; 

We developed our operationalization to be functional 
on a low-cost, commonly available system. We used an 

l Key F6 - enables agent to assign a task to alternative 
machines - for a specified task, displays possible 

94 Computer Integrated Manufacturing Systems Volume 8 Number 2 



Development and implementation of a dispersed decision process: S-K Kung and J R Marsden 

alternative machines and associated costs and run 
times for completing the task at each alternative 
(information is displayed on right side of screen as in 

Figures I and 3 - activation of F6 permits toggling in 

this area of the screen and the highlighting of a 
machine selected for a task - Figure 3 indicates 
assignment to machine 2 while Figure I indicates 
assignment to machine 4); 
Key F7 - displays the current status of all machines at 
the node (workstation) - see Figure 4; 

Key F8 - initially displays pop-up (Figure 5) offering 
choice of pop-up providing the workstation’s history 

for each task (Figure 6), the history of each machine 
at the workstation (Figure 7), and the history of 
winning bids for each task capable of being performed 
at the workstation (Figure 8). 

The function key FlO simply signifies a ‘finished with 
analysis, submit bids’ function that triggers the sending 

of bids to the auctioneer. 

Time allocation is provided in the middle of the 

agent interface screen (Figure I). This indicates, for 

each machine at the node, how much of the total 
available production time (commonly an eight hour 

shift) is already used or committed because of queued 
tasks. 

The bidding block is presented toward the bottom of 

the agent’s interface screen. When an auction is 
announced, messages sent out across the network fill 
the top two lines of this block -TASK NUMBER(s) and 

WINNING BIDS PRE(VIOUSLY). Each agent then 
enters the amount he/she wishes to bid on each task. In 
the example presented in Figure I, the agent has chosen 
to bid 50.50 on task 1, a task for which the previous 
winning bid was 50.60. As the agent toggles through the 
tasks being auctioned which the machines at his node 
are capable of performing (tasks 1 and 7 in Figure I), 
the right side of the screen automatically changes to 
provide the information on machine capabilities, run 

time, and costs for each task. For example. in Figure I 

Balance: 606.56 Queue Size: 3 Penalty Fee: 10.00 TIME REMAINE-?G: 91 
Arrow Select Function TAB Activate Function 

* Expired - Occupied . Free 
M 
A 

C! l t+t**t**ttt+***********************~_~~~~_~~~~~ 

Failure Machine: 
Rebid Task : 

TASK NUMBER 1 6 7 
WINNING BID-PRE 50.60 68.20 69.00 

YOUR BIDS 50.50 Unable 69.00 
RESULTS 

Machine 4 I Queue Spaces - 3, Available Run Time - 136.211 

Figure 1 Typical node DSS pop-up screen 

Machine 4 ( Queue Spaces - 3, Available Run Time - 136.211 

Figure 2 Productivity pop-up screen 

Computer Integrated Manufacturing Systems Volume 8 Number 2 95 



Development and implementation of a dispersed decision process: S-K Kung and J R Marsden 

Balance: 606.56 Queue Size: 3 Penalty Fee: 10.00 TINEREMAINING: 91 
iuxow Select Function TAB Activate E’unction 

Goal Task: 7 

* Expired - Occupied , Free Machine Number: 4 
M RunTime: 
A 

23.79 

C4 
cost: 47.21 

ttt*****t****t*t**tt****************~ 
N3 

. . . . . . . . . . . 
*******tt*t*tt***tt*****************_~~__ 

12 
. . . . . . . 

l ttt*tt*t*t*ttttt*t*****************~~ 
N1 

. . . . . . . . . . 
t*t*,~*tt~t*tt*tttt.~*~*~~.**~*~~*~*._~ . . . . . . . . . 

E TIME TABLE 
Failure Machine: 
Rebid Task : 

TASKNUMBER 1 6 7 
WINNING BID-PRB 50.60 68.20 69.00 

YOUR BIDS 50.50 Unable 69.00 
RESULTS 

Machine 2 f Queue Spaces - 3, Available Run Time - 156.33) 

Figure 3 Machine assignment screen 

INIXG: 91 

E -TIMETABLE 
Failure Machine: 
Rebid Task : 

TASKNUMBER 1 6 7 

WINNING BID-PRB 50.60 68.20 69.00 

I YOUR BIDS 
RESULTS I 

50.50 Unable 69.00 

I 

I 

I 

Machine 4 ( Queue Spaces - 3, Available Run Time - 136.211 

Figure 4 System status pop-up screen 

Balance: 606.56 Queue Size: 3 Penalty Fee: 10.00 TIMEREMAINING: 91 
Arrow Select Function TAB Activate Function 

Failure Nachine: 
Rebid Task : 

TASKNUMBER 1 6 7 
WINNING BID-PRB 50.60 68.20 69.00 

YOUR BIDS 50.50 Unable 69.00 
RESULTS 

I 8 

. . ._ 
Machine 4 (. Queue Spaces - 3, Available Run Time - 136.211 

L 

Figure 5 History menu pop-up screen 

% Computer Integrated Manufacturing Systems Volume 8 Number 2 



Development and implementation oj’ a dispersed decision process: S-K Kung and .I R Marsden 

Balance: 606.56 Queue Size: 3 Penalty Fee: 10.00 TIME REMAINING: 91 

Figure 6 Machine history pop-up screen 

Figure 7 Task history pop-up screen 

9 1 

Goal Task: 7 

I YOUR BIDS 
I 
50.50 Unable 69.00 

RESULTS I 
Machine 4 i Queue Spaces - 3, Available Run Time - 136.21) 

Figure 8 History summary pop-up screen 

Computer Integrated Manufacturing Systems Volume 8 Number 2 97 



Development and implementation of a dispersed decision process: S-K Kung and J R Marsden 

the agent has just entered a bid of 69.00 for task 7, and 
the information relating to task 7 is given on the right- 
hand side of the screen. Two machines (2 and 4) at the 
workstation can perform task 7. In this case, both 
machines 2 and 4 happen to have an identical cost 
(47.21) and run time (23.79), though this is typically not 
the case in our experiments. At the bottom of the 
screen, additional information is provided on the 
highlighted machine (4), that is, there are currently 
three spaces available in the queue and available run 
time is 136.21. 

A limited amount of time (chosen by experimenter 
or auctioneer) is provided for bid formation and 
submission. The remaining time is presented at the top 
of the screen (see Figure I), and repeatedly updated. If 
an agent’s bids are not submitted prior to the indicated 
time (i.e. prior to remaining time reaching ‘O’), partial 
bids are automatically captured and submitted. If the 
agent has entered numerical values for a task bid, these 
are automatically submitted. If no numerical entries or 
only a partial entry has been made, a ‘no-bid’ message 
is submitted. This feature can be easily modified to ‘no- 
bid’ if an agent is not finished completely with bid 
formulation. Our choice of process reflects preferences 
expressed by subjects during numerous trial runs. 

Figures 9 and 10 show the auctioneer interface 
screens used in initializing and running the necessary 
auctions. Figure 9 is the initialization screen where the 
auctioneer sets the auction process parameters. Figure 
10 is the record keeping screen for an ongoing auction. 
When all bids are collected (all submitted, or the 
bidding time has run to zero), the auctioneer assigns 
tasks to the winning bidders and maintains assignment 
and completion records. In our formulation, the 
auctioneer is fully automated. 

In this system, the central manager’s role is straight- 
forward, and the operative screens reflect this. The 
auctioneer records arriving tasks (either tasks de- 
composed from newly arrived jobs or tasks ready to 
auction because of the completion of precedent- 
constrained tasks), broadcasts the tasks over the 
network, collects bids, and assigns tasks to low bidders. 
If a task fails to receive an acceptable bid (under a 
specified ceiling bid or ‘outsourcing’ level), the system 
may be set to re-trigger the bidding process for that 
task. 

Operating environment and communication procedures 

The auctioneer plays an active role while agents 
initially play passive roles. The auctioneer controls the 
flow of the process, and agents in the market respond 
to the auctioneer’s announcements. The control se- 
quences are programmed and stored in the auctioneer’s 
station. The auctioneer conducts the system according 
to this pre-programmed sequence by announcing the 
predefined signals to all agents in the system. On the 
other hand, each agent station in the system listens to 
the auctioneer’s signals and takes action in response to 
the signals received. For each signal, the corresponding 
response actions for each agent are programmed in 

Figure 9 Server initialization screen 

I Auction List I Participants List I 
Job Task Bidder 1 u*e1 1 

7 I. USeI 1 2 user 4 

II- 

Figure 10 Server record-keeping screen 

separate routines such that the integration of additional 
response and/or modifications of current actions can be 
maintained easily. 

There are nine different signals used by the 
auctioneer: 

1. 
2. 
3. 
4. 
5. 
6. 
7. 
8. 
9. 

Agent enrollment. 
Current time. 
Ready to collect tasks for rebidding. 
Ready to collect completed tasks. 
List of current auction tasks. 
Start auction. 
List of winning bidders for current auction. 
Repeat last message. 
End auction. 

Each auction period is handled independently using the 
first eight of the signals listed. The ninth signal is used 
only at the end of the final auction period to release all 
agent stations and return to a DOS environment. 

When ‘enrollment’ is signalled, agents in the system 
register to the auctioneer for preparing the list of 
bidders. The ‘current time’ messages sent from the 
auctioneer to the agents indicates to each agent that an 
auction is about to begin, and that all completed tasks 
and tasks for re-bidding will be collected later. When 
the ‘ready to collect completed tasks’ signal is sent, 
each agent reports completed tasks to the auctioneer. 
An equivalent process holds for tasks that must be re- 
bid because of a queue constraint violation or a 

98 Computer Integrated Manufacturing Systems Volume 8 Number 2 



Development and implementation of a dispersed decision process: S-K Kung and J R Marsden 

machine breakdown occurrence. When the current list 

of all tasks (new and re-bid) to be auctioned is 

compiled, the auctioneer announces the list to all 

agents. At this point, the announced auction list is not 
displayed on any agent’s screen, but rather is kept in 
local station memory. When the auction list has been 

correctly delivered to all agents, the auctioneer sends 
the ‘start auction’ signal to all agents. The stored 
auction list is then displayed on each agency’s screen, 
and the decision making (bidding) process begins. 
During this decision making stage, the auctioneer 

continuously monitors the entire system to collect bid 
decisions submitted by agents. When all agents have 
submitted their bids or the auction time has expired, 

the winner (if any) for each task is selected, and agents 
are sent messages about which of their bids were losing 
and which were winning bids. At any step, when a 

signal is mishandled by either the auctioneer or 
agent(s), the eighth signal listed above is initiated by 
the receiving site(s) to request the sending site to repeat 

the message. 
Some transmitted messages require that receiving 

sites take simultaneous actions while other messages 

require an accuracy check at receiving sites. The 
broadcast datagram transmission was used when the 
auctioneer required that all receiving sites act in 

unison. Acknowledgements from receiving sites were 

used to guarantee proper delivery of key messages, 
such as descriptions of completed tasks, tasks for re- 
bidding and tasks being auctioned. When a guarantee is 

required by the system, receiving sites feed received 
messages back to sending sites for direct comparisons. 
When the acknowledged message is compared and is 
correct, a flag indicating correct message delivery is 
then set if the auctioneer is the sending site. If agents 
are the sending sites, a ‘return to listen mode’ is 

triggered. If an acknowledgement appears to be in- 
correct, the original message is resent and the acknow- 

ledgement process repeats. 

As the number of nodes increases, this accuracy 
check process can involve significant communications 
among sending and receiving sites, and can occupy a 
large portion of the limited memory available on the 

IBM LAN adapters. In the token ring configuration, 
messages are transmitted from sending sites to receiving 
sites through all nodes in-between. If we used the 
broadcast datagram transmission process, messages 
would be accepted and handled by each and every node 

in this route to lessen the network load. When 
messages require guaranteed delivery, we use the plain 
datagram transmission mode where messages are 
handled only by specified recipients and ignored by 

non-specified recipients. This process trades off the 
case of the broadcast process for a reduction in network 
congestion. To facilitate this process, each station 
(including the auctioneer and all agents) registers a 
common group name for all broadcast datagram com- 
munications and a unique local name for plain datagram 
communication. 

As outlined earlier, the agent at each local node is 

provided with a DSS to deal with the local scheduling 

problem. Following the description provided by 

Bonczek et al.“, a DSS consists of four elements: 

1. Language system. 
2. Presentation system. 

3. Knowledge system. 
4. Problem processing system. 

Decision makers issue problem processing requests 
through the language system, which in turn feeds 
problems to the problem processing system for sugges- 
tions. The problem processing system, with the aid of 
the information available in the knowledge system, 

presents suggestions or alternatives via the presentation 
system. Thus, our system provides a set of distributed 

DSSs, where the auctioneer (central scheduler, if you 
will) makes requests to schedule a set of jobs in a 

specified format through the auctioneer station. These 
requests are distributed over the network and processed 
by agents at individual nodes. The auctioneer de- 
composes the jobs into tasks and distributes these tasks 

to all agents in the system. Knowledge relating to 
scheduling the requests (jobs) is maintained and stored 
locally at each agent node. The auctioneer maintains 

knowledge about available agents in the system and 
about payments to agents. Scheduling problems are 
processed in the form of auctions, with agents able to 
access local DSSs for bidding and scheduling decisions, 
and the auctioneer maintaining information on agent 

performance and jobs completed, in process, or ready 
to be offered for auction. Fig~re.~ I to 8 detail the local 
DSS language and interfaces, while Figure 9 illustrates 
the auctioneer’s language system and Figure IO the 

corresponding interface. 

Knowledge system 

The system we developed creates a three-dimensional 

link list. The machines provided at each station occupy 
one dimension, the production capabilities of each 

machine are maintained in another dimension, and the 
tasks assigned to each machine are in the third 

dimension. Since the production-related data main- 
tained in our system requires quick and easy access, 
and as the memory size required for this data is fixed, 
we maintain the information internally. Historical 
information is maintained externally. 

Problem processing system 

Operation follows a pre-specified sequence of actions, 
outlined in the flow control charts presented in Figures 
JJ and 12. Following the necessary registration con- 
firmation and dissemination of parameter values, the 
auctioneer initiates the auction using broadcast data- 

gram transmission. and the local DSSs are triggered to 
present the auction information to each local agent. 
During the collection of bids stage, the auctioneer 
opens a communication channel for each agent and 
continuously checks each channel to collect agents’ bids 
in a submitting list ordered in sequences of arrival. 
When all bids are collected (submitted or collected 

Computer Integrated Manufacturing Systems Volumr 8 Number 2 99 





Development and implementation of a dispersed decision process: S-K Kung and .I R Marsden 

rewards based on their performance. As Smith explains 

in detail, it is important that potential monetary 
rewards are sufficient to influence subjects to seek to 

perform at their best. In the experiment discussed here, 

subjects received a $5 ‘show-up’ fee and a participation 
fee based on performance that had an expected value 
that averaged $12.50 per subject for approximately a 50 
minute session. 

Our system was set up for these experiments to 

provide two FMS environments. One environment 
provides each node operator with four machines, with 
each machine capable of performing two different tasks 
(referred to as the 4M2T environment). The second 

experimental environment provides each node operator 
with two machines, with each machine capable of 

performing four different tasks (referred to as the 

2M4T environment). Some of the tasks in each environ- 
ment were competitive (i.e. they could be completed at 
more than one node), and some were idiosyncratic (i.e. 

they could only be done at one single node). For 
example, as shown in Figure 13, in the 2M4T environ- 
ment, task 1 could be done at every node, while task 7 

could only be performed at node I. In the 4M2T 
environment, task 4 could be performed at every node, 
while task 9 could only be performed at node IV (with 

two machine options, A and C, at that node). 

Compile Auction List 

1 
Receive and Set-Up 

Auction List 
Send Correct Message 1 I 

u 
Repeat Received Message 

Yes 

Display Auction List and 
Collect Bids Decision 
from Decision Makers 

/Select Winners1 
1 

II 
I 

u 
Announce Auction 

Results 
Receive and Prepare 

t 
Auction Results 

No 
I 

Send Correct Message 

II 
Is Acknowledge 

Correct? 

n 

'I 
Repeat Received Message 

Display Auction Results & 
- Assign Awarded Tasks 

II 
Signal Ready for Next Round] 

Figure 12 Process control flow ~ chart 2 

Computer Integrated Manufacturing Systems Volume 8 Number 2 101 



Development and implementation of a dispersed decision process: S-K Kung and J R Marsden 

System Setting for 2M4T Cycle 

User 2 2 4, 7 2 User 4 4, 10 . 

3 5, 8 3 8, 9 

4 4, 7 4 1, 10 

Figure 13 Experimental environment 

Table 1 Even interval net profit percentage gains 

Interval 1 Interval 2 Interval 3 

Idiosyncratic tasks (2M4T) x = 81.1494 x = 91.3277 X = 91.1607 
S2 = 31.5487 s2 = 0.7480 s = 0.7607 
N= 18 N = 30 N = 28 

Idiosyncratic tasks (4M2T) X = 70.0455 x = 85.4204 x = 86.8243 
S2 = 7.1436 S’ = 0.71196 S2 = 0.2354 
N = 20 N = 26 N = 30 

Competitive tasks (2M4T) X = 1.5171 x = 0.4860 X = 1.9053 
sz = 0.004194 S2 = 0.001132 S2 = 0.1625 
N=7 N=5 N= 15 

Competitive tasks (4M2T) P? = 8.8286 % = 0.7850 J? = 1.8394 
S2 = 0.5683 S2 = 0.019016 S’ = 0.02427 
N=7 N=4 N= 17 

_% = average net profit percentage gains 
S* = variance of net profit percentage gains 
N = number of competitive tasks announced 

Subjects for this example experiment were four 
doctoral students in the DSIS doctoral program at the 
University of Kentucky. None were involved in this 
project. Two experimental cycles were conducted, one 
using the 2M4T environment and one using the 2M4T 

environment. We use average net percentage of possible 
profits as our measure of performance. For each 
auctioned task, possible profit percentage ranges from 
0 (for a winning bid identical to the cost of performing 

the task) to 100 (for a winning bid identical to the 
outsourcing price or upper bound). For winning bids 
between these levels, the percentage of possible profit 
equals the following: 

Winning bid - Production Cost for Winning Bidder 

Outsourcing Price - Production Cost for Winning 

Bidder 

Table 1 provides the average net profit percentages 
obtained in the auction in each of our two experiments. 

Tasks are grouped into idiosyncratic and competitive 
tasks. Results are reported for three intervals cor- 
responding to the first eight, ninth through sixteenth, 
and seventeenth through 24th observations. All 
participants appeared to quickly identify both their 

idiosyncratic and competitive tasks, though they begin 
the auction with only local node knowledge not 
knowing whether any of the others can do any or all of 
the tasks that their local node can perform. For 

idiosyncratic tasks, average net profit percentages in 
even the first period set were 81% for the 2M4T case 
and 70% for the 4M2T set. For competitive tasks, net 
profit percentages appeared to be quickly driven 
downward, averaging 1.5% in the first eight periods for 
the 2M4T FMS environment and 8.9% for the 4M2T 
environment. For idiosyncratic tasks, average net profit 
percentages for subsequent periods were 91.3% and 
91.2% for 2M4T and 85.4% and 86.8% for 4M2T, 
respectively. For competitive tasks, average net profit 

102 Computer Integrated Manufacturing Systems Volume 8 Number 2 



Development and implementation of u dispersed decision process: S-K Kttng und .I R Marsden 

remained at under 2% for all three experimental 

intervals for both sets of experiments. 
These initial results suggest that the mechanism was 

performing as expected in the FMS environments 
studied. Based upon these results, we are now beginning 
an in-depth analysis of the performance of the system 

as we alter the complexity of the local node scheduling 
problems, permissible queue size, penalty amounts, 
performance incentive mechanisms, subject character- 
istics, and overall size and complexity of the FMS 

environment. 
Post-experiment interviews were conducted with 

subjects as a means of identifying process problems that 
could be addressed prior to subsequent experimenta- 
tion. For example, in the experiments reported here, 

subjects suggested that, for competitive tasks, competi- 
tion was initially the driving market force. In sub- 
sequent periods, however, some participants indicated 

that resource constraints due to queue size limitations 
began to play an important role in the bidding decision 
processes of some of the participants, suggesting the 

need to analyse alterations in this parameter value in 
subsequent experimentation. 

Summary and conclusions 

We outlined the development and potential use of a 

flexible operationalization based on the approach of 
Shaw and Whinston2. Operational details and possible 
uses for this system were illustrated through two 

example experiments with human subjects as decision 
makers in FMS environments. The results reported 
were consistent with’ expectations for both competitive 
and idiosyncratic tasks. 

The development of the system is significant because 
of its many possible uses, including comparison, for 

various FMS environments, of dispersed decision 
making performance (e.g. system cost, production cost 

and throughput time) with the performance of existing 

centralized scheduling heuristic in those environments. 
We can study how alterations in the complexity of 

local node environments, and/or changes in incentive, 

impact the performance of decentralized scheduling. 
We can investigate whether expert systems can be 
developed and, if so, how well the system operates with 

automated bidding systems rather than human bidders. 

Acknowledgements 

The authors are indebted to Dr Ram Pakath, Dr David 
Pingry and Kimlynn Marsden for many helpful 
comments and suggestions. This research has been 
supported in part by NSF Grant No. IRI-8921603: Dr 

A B Whinston and Dr C W Holsapple (Co-Principal 
Investigators) and in parts by the MIS Research Lab 

Endowment Fund, Department of Decision Science 
and Information Systems, University of Kentucky. 

References 

1 Kusiak, A ‘Application of operational research models and 
techniques in flexible manufacturing systems’, Euro. J. Operat. 
Res., Vol 24 No 3 (March 1986) pp 336345 

2 Shaw, M J and Whinston, A B ‘A distributed knowledge-based 
approach to flexible automation: the Contract Net framework’, 
ht. J. Flexible Manuf. Syst., Vol I No 1 (1988) pp G-104 

3 Davis, R and Smith, R G ‘Negotiations as a metaphor for 
distributed problem solving’, Artif: InteN., Vol 20 No 1 (1983) pp 
63-109 

4 Smith, R G ‘The Contract Net protocol: high-level communication 
and control in a distributed problem solver’. IEEE Trans. 
Cornput.. Vol 29 No 12 (1980) pp 1104-1113 

5 Bonczek, R H, Holsapple, C W and Whinston, A B Foundations of 
Decision Support Systems, Academic Press, New York (1981) 

6 Smith, V L ‘Experimental economics: induced value theory’, Am. 
Economic Rev., Vol 66 No 2 (1976) pp 274-279 

7 Smith, V L ‘Bidding and auctioning institutions: experimental 
results’, in Riddingand Auctioningfor Procurement and Allocation, 
Y Amihud (ed), New York University Press (1976) pp 4364 

8 Gardner, C L, Marsden, J R and Pingry, D E ‘The design and USC 
of laboratory experiments for DSS evaluation’, Decision Support 
Syst.. Vol 9 (1993) pp 369-379 

Computer Integrated Manufacturing Systems Volume 8 Number 2 103 


