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a b s t r a c t

Usually it is difficult to solve the control problem of a complex nonlinear system. In this paper, we
present an effective control method based on adaptive PID neural network and particle swarm
optimization (PSO) algorithm. PSO algorithm is introduced to initialize the neural network for improving
the convergent speed and preventing weights trapping into local optima. To adapt the initially uncertain
and varying parameters in the control system, we introduce an improved gradient descent method to
adjust the network parameters. The stability of our controller is analyzed according to the Lyapunov
method. The simulation of complex nonlinear multiple-input and multiple-output (MIMO) system is
presented with strong coupling. Empirical results illustrate that the proposed controller can obtain good
precision with shorter time compared with the other considered methods.

& 2014 Elsevier B.V. All rights reserved.

1. Introduction

In the industrial field, the controlled system usually has great
nonlinearity, including spacecraft system, vehicle system, robot sys-
tem, power system, chemical reaction system, and so on. It is hard to
get a precise control performance even by the intelligent control
methods, including adaptive control [1,2], fuzzy control [3–5], neural
network control [6–8] and decoupling control [9–11]. So many mixed
control methods are presented, such as PID neural network. Due to the
characteristics of self-learning, self-organizing and self-adaptation,
PID neural network would automatically identify the parameters of
controlled system and adjust them according to system changes.

In this paper, we present a controller model based on adaptive
PID neural networks. To prevent the weights of neural networks
falling into local optima, PSO algorithm is adopted to select initial
weights. The parameters of PID neural network are self-regulating
without intervention. The improved gradient descent method is
used to optimize the weights of networks.

2. Related works

Since it is difficult to control a complex nonlinear system [12–14],
neural network was introduced to solve the problems. In [15],
Jafarnejadsani et al. proposed an adaptive control based on radial-

basis-function neural network (NN) for different operation modes of
variable-speed variable-pitch wind turbines. In [16], Lin et al. pre-
sented an interactively recurrent self-evolving fuzzy neural network to
predict and identify the dynamic systems. They derived the conse-
quent update parameters by a variable-dimensional Kalman filter
algorithm. In [17], Chemachema introduced a direct adaptive control
algorithm based on neural networks for a class of single input single
output nonlinear systems. These signals involved in the closed loop
were proven to be exponentially bounded and hence the system
stability, without any additional control term to the NN adaptive
controller. However, researches still confront some difficulties. For
example, network parameter training is time-consuming and easily
falls into local minimum. Particle swarm optimization (PSO) algorithm
is a new globe optimization algorithm, which has the advantage of fast
convergence speed [18,19]. In [20], Selvakumaran et al. proposed a
new design of decentralized load-frequency controller for intercon-
nected power systems with ac–dc parallel using PSO algorithm. The
experiment result illustrated that their method have rapid dynamic
response ability. In [21], Hasni et al. used PSO algorithm to parameters
selection, and used genetic algorithm to optimize the choice of
parameters by minimizing a cost function. The study was applied to
a greenhouse environment with Continuous Roof Vents, and obtained
satisfactory effect. Nevertheless, it is difficult to apply directly these
methods to complex nonlinear system with strong coupling.

Adaptive controller has the ability to adjust of control para-
meters without the help of human intelligence. It can tune
complex systems better by combining nonlinear controlling meth-
ods and intelligent control technology [22,23]. The results show
that adaptive control has the advantage to solve effectively the
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problems of nonlinear system with uncertain model and random
disturbance.

3. Adaptive PID neural networks

3.1. Control system structure

The control system adopts close loop control, and it mainly
consists of two parts: the controller and the controlled system, as
shown in Fig. 1. The controller is built based on adaptive PID
neural network. In the whole control system, X is object vector, E is
error vector, Y is output value of control system and U is control
law of the control system. The controlling algorithm is illustrated
in Algorithm 1.

Algorithm 1. Controlling algorithm for complex nonlinear system.

1: Input the object value of controlled system into the
controller.

2: Initialize weights of PID neutral network by PSO algorithm.
3: Use PID neural network to control the controlled system.
4: Feedback the output of the control system.
5: Adjust parameters of PID neural network by improved

gradient descent method.
6: If the control error is small enough, algorithm is terminated.

If not, return to Step 3.

3.2. PID neural network controller

In the controller, three-layer PID neural network is built
by combining PID and feedforward neural network, as shown in
Fig. 2. Xn ¼ ½XY � is input vector of the controller, X ¼ ½x1; x2;…; xn�T
is object value of the whole control system, and Y ¼ ½yn

1; y
n

2;…; yn
n�T

is a feedback value from current system output.
Input layer has 2n neurons, n of them are used to input object

values, the others are used to input values which returned from
control system0s output. The output of this layer at k is

out1q1ðkÞ ¼ xqðkÞ ð1Þ

out1q2ðkÞ ¼ yn

qðkÞ ð2Þ

Hidden layer has 3n neurons, including n proportion neurons, n
integration neurons and n differentiation neurons. The output of
each neuron in this layer at k is

out2q2ðkÞ ¼ϕp ∑
2

i ¼ 1
ωi1out1qiðkÞ ð3Þ

out2q2ðkÞ ¼ϕi ∑
2

i ¼ 1
ωi2ðkÞxliðkÞþout2q2ðk�1Þ

" #
ð4Þ

out2q3ðkÞ ¼ϕd ∑
2

i ¼ 1
ωi3ðkÞxliðkÞ� ∑

2

i ¼ 1
ωi3ðk�1Þxliðk�1Þ

" #
ð5Þ

where, ϕp, ϕi and ϕd are coefficient, usually larger than 1, which is
used to balance output values from proportion neurons, integra-
tion neurons and differentiation neurons. Output layer has
n neurons. The output of each neuron in this layer at k is

upðkÞ ¼ out3pðkÞ ¼ ∑
n

l ¼ 1
∑
3

j ¼ 1
ωjpðk�1Þout2qjðk�1Þ ð6Þ

where q is the number of subnets, that is, the number of output
values. And j is the number of neurons in hidden layer, ωij is the
weight between input layer and hidden layer, ωjk is the weight
between hidden layer and output layer.

3.3. Parameters initiation

PSO algorithm searches for the optimal solution by collabora-
tion among individuals in the population [24,25]. In the algorithm,
weight initiation is done randomly. However, weights may fall into
local optima during the process of optimization. In this paper, PSO
algorithm is adopted to set initial weights in the controller. The
main steps of PSO algorithm are showed in Algorithm 2.

Algorithm 2. Particle swarm optimization algorithm.

1: Initialize a group of individuals by random algorithm
(population size is m), including random position and
velocity.

2: Calculate the fitness of each individual.
3: For each individual, compare the fitness with the fitness of

its best historical position bhp. If the former is superior to
the latter, bhp will be replaced with the current fitness, and
the position of bhp will also be replaced with the current
position.

4: For each individual, compare the fitness with the fitness of
global best historical position gbhp. When the former is
superior to the latter, gbhp will be replaced with the
subscript and fitness of current individual.

5: Update the position and velocity of particles.
6: Check end condition. If satisfied, algorithm is over,

otherwise, k¼kþ1, return to Step 2. The end condition is
that a good enough fitness or the max desired evolution
population mdep reaches.

In Step 5, the position and velocity of particles are updated
according to the following equations:

vkþ1
id ¼ vkidþaψ1ðpkid�xkidÞþbψ2ðpkgd�xkidÞ ð7Þ

xkþ1
id ¼ xkidþvkþ1

id ð8Þ

Fig. 1. Structure of control system.

Fig. 2. Structure of PID neural network.
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where dA ½1;2;…;n�, iA ½1;2;…;m�, k is current evolution popula-
tion, ψ1 and ψ2 are random number between 0 and 1, a and b are
acceleration constants. In order to prevent velocity of individual
against great change, a max velocity is limited to a maximum of
Vmax.

3.4. Adaptive parameters adjustment

Usually to get better control effect and close quickly to control
object values, weights must be adjusted according to the error. The
gradient descent method can be used to adjust the velocity. For
function f(X), X ¼ ðx1; x2;…; xnÞ, the gradient is shown as follows:

grad f ðXÞ ¼ ∂f ðXÞ
∂x1

;
∂f ðXÞ
∂x2

;…;
∂f ðXÞ
∂xn

� �T
ð9Þ

Here the minus gradient direction is the steepest descent direc-
tion. Gradient information is added into individual velocity with
certain probability, which help particle to search the solutions
more efficiently. The weights are updated by Eqs. (10) and (11):

ωijðkþ1Þ ¼ωijðkÞ�μ
∂eðkÞ
∂ωijðkÞ

þs½ωijðkÞ�ωijðk�1Þ� ð10Þ

ωjpðkþ1Þ ¼ωjpðkÞ�μ
∂eðkÞ
∂ωjpðkÞ

þs½ωjpðkÞ�ωjpðk�1Þ� ð11Þ

where μ and s are the network learning rates, and e(k) is the
control error calculated as follows:

eðkÞ ¼ 1
2

∑
n

q ¼ 1
jyn

qðkÞ�xqðkÞj2 ð12Þ

In our neural network, the parameters are computed in each
sampling period. The weights are automatically adjusted according
to the errors of closed loop system, and the controller helps us to
implement nonlinear and adaptive real-time online control for
controlled system.

4. Stability analysis

Let Lyapunov function be

VðkÞ ¼ 1
2

∑
n

q ¼ 1
e20ðkÞ ð13Þ

where

e0ðkÞ ¼ yn

qðkÞ�xqðkÞ ð14Þ

The change of Lyapunov function is

ΔVðkÞ ¼ Vðkþ1Þ�VðkÞ

¼ 1
2

∑
n

q ¼ 1
ððe20ðkþ1Þ�e20ðkÞÞÞ ð15Þ

That is

ΔVðkÞ ¼ 1
2

∑
n

q ¼ 1
ððe0ðkþ1Þ�e0ðkÞÞÞðe0ðkþ1Þþe0ðkÞÞ

¼ 1
2

∑
n

q ¼ 1
Δe0ðkÞð2e0ðkÞþΔe0ðkÞÞ

¼ ∑
n

q ¼ 1
e0ðkÞΔe0ðkÞþ

1
2

∑
n

q ¼ 1
Δe20ðkÞ ð16Þ

According to the Lyapunov Theorem [26], the closed loop
system is stable if ΔV ðkÞr0 in any sampling period. That is,

∑
n

q ¼ 1
e0ðkÞΔe0ðkÞr

1
2

∑
n

q ¼ 1
Δe20ðkÞ ð17Þ

Based on Eq. (10) to Eq. (12), we can obtain as follows:

ΔωijðkÞ ¼ � μ
1�s

∂eðkÞ
∂ωijðkÞ

� � μ
1�se0ðkÞ ∑

n

q ¼ 1
e0ðkÞ sgn

Δyn
qðkÞ

ΔxqðkÞ

!!
ð18Þ

Then

Δe0ðkÞ ¼ ∑
n

q ¼ 1
∑
3

i ¼ 1

∂e0ðkÞ
∂ωijðkÞ

ΔωijðkÞ
� �!

¼ � μ
1�s ∑

3

i ¼ 1

1
ωijðkÞ

!
∑
n

q ¼ 1
e0ðkÞ sgn

ΔyqðkÞ
ΔxqðkÞ

� �� �
∑
n

q ¼ 1
e20ðkÞ

ð19Þ
Let hðkÞ ¼∑n

q ¼ 1ðe0ðkÞ sgnðΔyqðkÞ=ΔxqðkÞÞÞ∑n
q ¼ 1e

2
0ðkÞ, Eq. (19) is

simplified to

Δe0ðkÞ ¼ ∑
n

q ¼ 1
∑
3

i ¼ 1

∂e0ðkÞ
∂ωijðkÞ

ΔωijðkÞ
� �!

¼ � μ
1�s ∑

3

i ¼ 1

1
ωijðkÞ

!
hðkÞ ð20Þ

Substitute to Eq. (17), then

� μ
1�shðkÞ ∑

n

q ¼ 1
e0ðkÞ ∑

3

i ¼ 1

1
ωijðkÞ

!
r1

2
μ

1�s

� �2
h2ðkÞ ∑

n

q ¼ 1
∑
3

i ¼ 1

1
ωijðkÞ

!2

ð21Þ
To ensure ΔVðkÞr0, consider two cases as follows:

1. When ð∑n
q ¼ 1∑

3
i ¼ 1e0ðkÞ=ωijðkÞÞhðkÞo0, then

0o μ
s�1

r�2
∑n

q ¼ 1∑
3
i ¼ 1

e0ðkÞ
ωijðkÞ

∑n
q ¼ 1 ∑3

i ¼ 1
1

ωijðkÞ

� �2
 !

hðkÞ
ð22Þ

2. When ð∑n
q ¼ 1∑

3
i ¼ 1e0ðkÞ=ωijðkÞÞhðkÞZ0, then

�2
∑n

q ¼ 1∑
3
i ¼ 1

e0ðkÞ
ωijðkÞ

∑n
q ¼ 1 ∑3

i ¼ 1
1

ωijðkÞ

� �2
 !

hðkÞ
r μ
s�1

r0 ð23Þ

5. Simulation

A simulation is carried out to verify the proposed control
strategy in this section. The controlled system is a complex
nonlinear multiple-input and multiple-output (MIMO) system
with strong coupling of variables, which is determined as follows:

y1ðkþ1Þ ¼ 0:4� y1ðkÞþ0:3� y2ðkÞþ
u1ðkÞ

1þu1ðkÞ2
þ0:2� u2ðkÞ3

y2ðkþ1Þ ¼ 0:3� y2ðkÞþ0:2� y3ðkÞþ
u2ðkÞ

1þu2ðkÞ2
þ0:6� u1ðkÞ3

y3ðkþ1Þ ¼ 0:5� y3ðkÞþ0:3� y1ðkÞþ
u3ðkÞ

1þu3ðkÞ2
þ0:1� u2ðkÞ3

8>>>>>>>><
>>>>>>>>:

ð24Þ
where u1, u2, u3 are control laws. The following parameters are set
to the system:

� Initial values of control system are specified as ½0 00�.
� Object values of control system are specified as ½0:7 0:4 0:8�.
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� Learning rates is specified as 0.006.
� Time interval is specified as 0.0001 s.

During the process of weights initiation by PSO, numbers of
populations is specified as 50, and iteration number is specified as
40. To illustrate the advantages of our controller, three different
methods are used to control the same system separately.

5.1. Control by traditional PID neutral network

The first simulation is controlling the system by traditional PID
neutral network. Fig. 3 illustrates the control laws changed with time.
Fig. 4 shows the contrast between the actual output values and the
object output values. Fig. 5 shows control error with time variation.

Simulation results show that the actual output is close to
expected output, control law is gradually stabilized, and control
error is close to 0. That is to say, this method has some effect on
control the system.

5.2. Control by PID neutral network though standard PSO
optimization

The second simulation is controlling the same system by PID
neutral network which is optimized by standard PSO. Fig. 6 shows
the control laws changed with time. Fig. 7 depicts the contrast
between the actual output values and the object output values.
Fig. 8 illustrates the control error with time variation.

Simulation results show that the actual output is close to the
expected output, and the speed of convergence is faster than the
previous method and the control law is gradually stabilized.

5.3. Control by the adaptive PID neutral network

The last simulation is controlling the same system by adaptive
PID neutral network, which is proposed in this paper. The
empirical results are shown from Figs. 9 to 11. Fig. 9 shows the
control laws changed with time. Fig. 10 shows the contrast
between the actual output values and the object output values.
Fig. 11 shows control error with time variation.

In order to compare the performance of three different control
methods mentioned above, the control errors varied with time are
shown in Table 1. I, II and III denote the control error by 4.1, 4.2,
4.3 respectively. Its time interval of data is 0.001 s, and 15 data groups
are selected from 0.02 s. As the results illustrated, the actual output

Fig. 3. Control laws vary with time.

Fig. 4. Actual output values vary with time.

Fig. 5. Control error varies with time. Fig. 6. Control laws vary with time.

J. Kang et al. / Neurocomputing 135 (2014) 79–8582



Fig. 7. Actual output values vary with time.

Fig. 8. Control error varies with time.

Fig. 9. Control laws vary with time. Fig. 11. Control error varies with time.

Fig. 10. Actual output values vary with time.
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values can quickly approximate the object output values by our
proposed method. The control error is falling faster before 0.02 s, then
tends to 0 gradually. The control laws are also quickly changed to
constant within a short time. Therefore, the adaptive PID neutral
network controller has fast convergence speed, high accuracy and
reliable stability for the complex nonlinear systems.

6. Conclusion

In this paper, an adaptive PID neural network controller was
presented, which model is constructed based on a PID neural
network. PSO algorithm was adopted to select initial weights
in its training for improving the convergent speed and prevent-
ing the weights getting trapped into local optima. In each sampling
period, an improved gradient descent method was used to update
the weights in this network. Its adaptive parameter adjustment
features self-correcting, on-line and real-time. The stability of our
controller is analyzed according to the Lyapunov method.

Empirical results illustrate that the adaptive PID neural network
controller is significantly better than the other considered methods.
Our controller can achieve better control results within less sampling
periods and the error tends to 0 in a stable manner. During the weight
initialization, PSO algorithm takes a long time, which requires more
research works on how to decide the number of iterations for a better
balance between its efficiency and precision.
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Table 1
Control error varies with time using above three control methods.

Groups Times I II III

1 0.020 0.626280 0.050725 0.000322
2 0.021 0.620422 0.039564 0.000204
3 0.022 0.614219 0.030990 0.000174
4 0.023 0.607665 0.024495 0.000165
5 0.024 0.600709 0.019648 0.000168
6 0.025 0.593351 0.016086 0.000221
7 0.026 0.585584 0.013522 0.000194
8 0.027 0.577358 0.011724 0.000158
9 0.028 0.568675 0.010503 0.000185

10 0.029 0.559526 0.009712 0.000234
11 0.030 0.549869 0.009237 0.000214
12 0.031 0.539705 0.008988 0.000165
13 0.032 0.529032 0.008897 0.000103
14 0.033 0.517811 0.008912 0.000103
15 0.034 0.506049 0.008997 0.000138

Mean – 0.573084 0.018133 0.000183
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