دانلود رایگان ترجمه مقاله مدل های آمار حامل و ظرفیت کوانتومی نانواسکرول گرافن – هینداوی ۲۰۱۴
دانلود رایگان مقاله انگلیسی مدل های ظرفیت کوانتوم و آماری مواد معلق در نانو اسکرول گرافن به همراه ترجمه فارسی
عنوان فارسی مقاله | مدل های ظرفیت کوانتوم و آماری مواد معلق در نانو اسکرول گرافن |
عنوان انگلیسی مقاله | Carrier Statistics and Quantum Capacitance Models of Graphene Nanoscroll |
رشته های مرتبط | مهندسی برق و فیزیک، نانو فیزیک، مهندسی الکترونیک و افزاره های میکرو و نانو الکترونیک |
فرمت مقالات رایگان |
مقالات انگلیسی و ترجمه های فارسی رایگان با فرمت PDF آماده دانلود رایگان میباشند همچنین ترجمه مقاله با فرمت ورد نیز قابل خریداری و دانلود میباشد |
کیفیت ترجمه | کیفیت ترجمه این مقاله متوسط میباشد |
توضیحات | ترجمه این مقاله به صورت خلاصه انجام شده است. |
نشریه | هینداوی – Hindawi |
مجله | مجله نانومواد – Journal of Nanomaterials |
سال انتشار | ۲۰۱۴ |
کد محصول | F835 |
مقاله انگلیسی رایگان (PDF) |
دانلود رایگان مقاله انگلیسی |
ترجمه فارسی رایگان (PDF) |
دانلود رایگان ترجمه مقاله |
خرید ترجمه با فرمت ورد |
خرید ترجمه مقاله با فرمت ورد |
جستجوی ترجمه مقالات | جستجوی ترجمه مقالات |
فهرست مقاله: ۱- مقدمه |
بخشی از ترجمه فارسی مقاله: ۱- مقدمه نتیجه گیری |
بخشی از مقاله انگلیسی: ۱٫ Introduction It is well agreed that the graphene based materials do reveal better electrical transmission. Fabricating the electronic devices in tremendously small dimensions (fewer than 100 nanometers) has become possible owing to the modern advances in the construction of atomic-sized conductors. Up till now, the majority of surveys conducted formerly have focused on CNT and GNR [1, 2]. It is known that the graphene nanoscrolls are indeed small graphene nanoribbons which have been rolled up into the spiral [3, 4]. The GNS formation mechanisms greatly resemble the mechanisms associated with the characteristic large graphene and boron nitride nanoscrolls. The overlapping surface of the rolled layers in GNSs is potent of enhancing the structural stability [5]. Graphene nanoscrolls are reported to be auspicious materials for the subsequent generation of the nanoelectronic devices, like the channel and interconnection in FETs and MOSFETs [6, 7]. While outlining the structure of the nanoscrolls, the electron microscopy and diffraction can be measured as very efficient approaches [8, 9]. GNSs have the potential being used as electron-transport carrier [10, 11]. Currently, the quasi-one-dimensional nanocarbons, namely, the nanowall, nanowire, nanobelt, and nanoscroll, are being synthesized using the hydrothermal method or the plasma enhanced chemical vapor deposition (CVD) [12– ۱۴]. Utilizing the isotropy alcohol solution for rolling up the monolayer graphene predefined on SiO2/Si substrates has been considered as a simple and efficient method for constructing the high-quality carbon nanoscrolls (CNSs). Additionally, it is confirmed that the GNS attained throughout this method would be capable of sustaining a high current density up to 5 × ۱۰۷ A/cm2 . This in turn proves that it can be taken as a proper candidate for microcircuit interconnect [15, 16]. Another important class of nanostructures is boron nitride nanotubes (BNNTs) and boron nitride nanoscrolls (BNSs). Although a large number of theoretical and experimental works have been reported to BNNTs, BNSs have not been explored so far. In principle, the recently reported experimental techniques used to produce CNSs can be used to produce BNSs using cubic boron nitride crystals as starting materials. Similar to CNSs, BNS formation is dominated by two major energetic contributions, the elastic energy increase caused by bending the BN layer (decreasing stability) and the free energy decrease generated by the van der Waals interaction energy of overlapping regions of the layer (increasing stability). This suggests that the van der Waals interactions are more relevant for the BNS than for the CNS case. [17, 18]. ۳٫ Conclusion It is acknowledged that the graphene nanoscrolls with outstanding field emission properties and strip morphology are claimed to be capable of being employed in the future nanoelectronics as the electron transport carriers. Numerous analytical models have been recommended in the current paper for the GNSs electronic properties, such as the state density and the carrier concentration as well as the quantum capacitance. Furthermore, the current research approved that the chirality number (?) and structural parameters of nanoscroll, such as length of nanoscroll (?), affect the state density of states and carrier concentration. It is confirmed here that the results are consistent with the ones related to the carbon nanotube and graphene nanoribbon. Besides, the temperature effects on the quantum capacitance were examined, indicating that once there is a rise in the temperature,the quantum capacitance will reach its limit more quickly at low n. |