دانلود رایگان ترجمه مقاله کنترل هماهنگ مزارع بادی ساحلی و مبدل HVDC برای میرایی نوسان برق (نشریه IEEE 2016) (ترجمه رایگان – برنزی ⭐️)
این مقاله انگلیسی ISI در نشریه IEEE در ۱۳ صفحه در سال ۲۰۱۶ منتشر شده و ترجمه آن ۳۲ صفحه میباشد. کیفیت ترجمه این مقاله رایگان – برنزی ⭐️ بوده و به صورت کامل ترجمه شده است.
دانلود رایگان مقاله انگلیسی + خرید ترجمه فارسی | |
عنوان فارسی مقاله: |
کنترل هماهنگ مزارع بادی ساحلی و مبدل HVDC برای میرایی نوسان برق |
عنوان انگلیسی مقاله: |
Coordinated Control of Offshore Wind Farm and Onshore HVDC Converter for Effective Power Oscillation Damping |
|
مشخصات مقاله انگلیسی (PDF) | |
سال انتشار | ۲۰۱۶ |
تعداد صفحات مقاله انگلیسی | ۱۳ صفحه با فرمت pdf |
رشته های مرتبط با این مقاله | مهندسی برق |
گرایش های مرتبط با این مقاله | تولید، توزیع و انتقال، مهندسی الکترونیک، سیستم های قدرت، الکترونیک قدرت |
چاپ شده در مجله (ژورنال) | نتایج به دست آمده در حوزه سیستمهای قدرت – Transactions on Power Systems |
کلمات کلیدی | نامساوی ماتریس دو خطی، کنترل غیر متمرکز، هوموتوپی، HVDC، نامساوی ماتریس خطی، باد ساحلی، میرایی نوسان توان، باقی مانده، مبدل منبع ولتاژ |
رفرنس | دارد ✓ |
کد محصول | F1425 |
نشریه | آی تریپل ای – IEEE |
مشخصات و وضعیت ترجمه فارسی این مقاله | |
وضعیت ترجمه | انجام شده و آماده دانلود |
تعداد صفحات ترجمه تایپ شده با فرمت ورد با قابلیت ویرایش | ۳۲ صفحه (۱ صفحه رفرنس انگلیسی) با فونت ۱۴ B Nazanin |
ترجمه عناوین تصاویر و جداول | ترجمه شده است ✓ |
ترجمه متون داخل تصاویر | ترجمه نشده است ☓ |
ترجمه متون داخل جداول | ترجمه نشده است ☓ |
درج تصاویر در فایل ترجمه | درج شده است ✓ |
درج جداول در فایل ترجمه | درج شده است ✓ |
کیفیت ترجمه | کیفیت ترجمه این مقاله پایین میباشد |
فهرست مطالب |
چکیده |
بخشی از ترجمه |
چکیده |
بخشی از مقاله انگلیسی |
Abstract Damping contribution from wind farms (WFs) is likely to become a mandatory requirement as a part of the grid codes. For remote offshore WFs, connected through a voltage source converter (VSC)-based direct current link, the most convenient option for the onshore transmission system operator (TSO) is to modulate the reactive power at the onshore VSC within their own jurisdiction. In this paper, we show that supplementary control through the onshore VSC alone, although attractive for TSOs, could result in undesirable voltage variations in the onshore grid. On the other hand, modulation of active power output of the wind turbine generators (WTG) alone turns out to be inadequate due to the limited overload capability of the WTGs. Coordinated control over both onshore VSC and aggregated WF output overcomes the above limitations and is shown to be effective for power oscillation damping. A homotopy approach is used to design the coordinated controller, which can be implemented locally (at offshore WF and onshore converter site) using a decentralized architecture. This is a bilinear matrix inequality problem, which is solved by transforming these constraints into linear matrix inequality constraints. Case studies on two test systems show that the proposed controller yields similar system dynamic response as supplementary control through the WF alone. ۱- Introduction THE ability from offshore wind farms connected via Voltage Source Converter-based High Voltage Direct Current (VSC-HVDC) to provide ancillary services is an important consideration for systems with high wind penetration. With increasing number of offshore wind turbine installations worldwide, transmission system operators (TSO) have established revised grid code requirements for wind farms connection. These grid codes [1] require wind farms to provide ancillary services such as inertial support and frequency regulation which are usually demanded from synchronous generators. The European Network of Transmission System Operators (ENTSO-E) has developed the network code for HVDC connections and DC-connected Power Park Modules (PPMs) that include the provision of power oscillation damping (POD) through HVDC, PPMs and coordination thereof [1]. Need of such grid codes in future is also outlined in [2]. Power oscillation damping through WF-based PSS has been reported in literature [3]–[۱۰], mostly in the context of onshore wind turbines connected directly to the AC grid. Much less attention has been focused on power oscillation damping contribution from offshore WF connected to the onshore grid through a VSC-HVDC link. In [11], factors affecting the damping capability of a VSC-HVDC connected offshore WF were carefully considered from a practical standpoint. Potential interactions with AVRs in the system were investigated in depth. A classical phase compensation approach was used to derive the parameters of the POD, which is insightful for a simple system with one poorly damped mode. However, it is not straightforward to extend this approach for more complex systems with multiple poorly damped inter-area modes. Also, coordination between active and reactive power modulation has not been considered in [11]. In this paper, a systematic way of designing a coordinated POD (henceforth referred to as Coordinated PSS) is demonstrated to improve the damping of multiple inter-area modes (Case study II in Section VI). For remote offshore WFs, connected through a VSC-based DC-link to a transmission system, the preferred option for the onshore TSO is to modulate the reactive power at the onshore VSC station. This avoids the need for supplementary control of offshore WF anfd thus, dependence on the offshore transmission owner (OFTO). However, this could result in unacceptable voltage variations in the onshore power grid, which will be demonstrated in this paper. On the other hand, modulation of active power output of the wind turbine generators (WTG) alone turns out to be inadequate due to the limited short-term (some percent for few seconds) dynamic overload capability of particular WTGs when operating in the partial or full-load range [12]. To get around the aforementioned problems, coordinated control of the real power reference of the offshore WF and the reactive power reference of the onshore VSC-HVDC converter is proposed. One approach to achieve coordinated control is to design the control-loops simultaneously in a multi-variable framework [13], [14]. However, the resulting full-structure controller is difficult to implement in a decentralized architecture as it requires all the feedback signals, some or all of which could be from remote locations, to be transmitted to each actuator location. On the other hand, if the control structure is blockdiagonal, the individual control loops are decoupled from each other, which is easier to implement in a decentralized architecture. Here the concept of homotopy [15] is applied and an extension proposed to obtain a single block-diagonal controller from a full-structure controller designed to ensure specified closedloop performance. |
دانلود رایگان مقاله انگلیسی + خرید ترجمه فارسی | |
عنوان فارسی مقاله: |
کنترل هماهنگ مزارع بادی ساحلی و مبدل HVDC برای میرایی نوسان برق |
عنوان انگلیسی مقاله: |
Coordinated Control of Offshore Wind Farm and Onshore HVDC Converter for Effective Power Oscillation Damping |
|