دانلود ترجمه مقاله تشخیص ناهنجاری فراطیفی بوسیله فیلتر عبوری دو بعدی مرتبه بالا (آی تریپل ای 2014) (ترجمه ویژه – طلایی ⭐️⭐️⭐️)

 

 

این مقاله انگلیسی ISI در نشریه آی تریپل ای در 11 صفحه در سال 2014 منتشر شده و ترجمه آن 25 صفحه میباشد. کیفیت ترجمه این مقاله ویژه – طلایی ⭐️⭐️⭐️ بوده و به صورت کامل ترجمه شده است.

 

دانلود رایگان مقاله انگلیسی + خرید ترجمه فارسی
عنوان فارسی مقاله:

تشخیص ناهنجاری فراطیفی بوسیله فیلتر عبوری دو بعدی مرتبه بالا

عنوان انگلیسی مقاله:

Fast Hyperspectral Anomaly Detection via High-Order 2-D Crossing Filter

 

 

مشخصات مقاله انگلیسی 
فرمت مقاله انگلیسی pdf
سال انتشار 2014
تعداد صفحات مقاله انگلیسی 11 صفحه با فرمت pdf
نوع مقاله ISI
نوع ارائه مقاله ژورنال
رشته های مرتبط با این مقاله جغرافیا
گرایش های مرتبط با این مقاله سنجش از دور و سیستم اطلاعات جغرافیایی
چاپ شده در مجله (ژورنال) نتایج بدست آمده در زمینه علوم زمین و سنجش از دور – Transactions on Geoscience and Remote Sensing
کلمات کلیدی تشخیص ناهنجاری، مرتبه بالا، تصویر فراطیفی، سنجش از دور، عبور 2 بعدی
کلمات کلیدی انگلیسی Anomaly detection – high order – hyperspectral image – remote sensing – 2-D crossing
ارائه شده از دانشگاه مرکز تجزیه و تحلیل و یادگیری تصویر نوری، دانشگاه پلی تکنیک شمال غربی، شیان، چین
نمایه (index) scopus – master journals – JCR
نویسندگان Yuan Yuan – Qi Wang – Guokang Zhu
شناسه شاپا یا ISSN 0196-2892
شناسه دیجیتال – doi https://doi.org/10.1109/TGRS.2014.2326654
ایمپکت فاکتور(IF) مجله 6.672 در سال 2019
شاخص H_index مجله 236 در سال 2020
شاخص SJR مجله 2.616 در سال 2019
شاخص Q یا Quartile (چارک) Q1 در سال 2019
بیس نیست 
مدل مفهومی ندارد 
پرسشنامه ندارد 
متغیر ندارد 
رفرنس دارای رفرنس در داخل متن و انتهای مقاله
کد محصول 11243
لینک مقاله در سایت مرجع لینک این مقاله در سایت IEEE
نشریه آی تریپل ای – IEEE

 

مشخصات و وضعیت ترجمه فارسی این مقاله 
فرمت ترجمه مقاله pdf و ورد تایپ شده با قابلیت ویرایش
وضعیت ترجمه انجام شده و آماده دانلود
کیفیت ترجمه ویژه – طلایی ⭐️⭐️⭐️
تعداد صفحات ترجمه تایپ شده با فرمت ورد با قابلیت ویرایش  25 (1 صفحه رفرنس انگلیسی) صفحه با فونت 14 B Nazanin
ترجمه عناوین تصاویر و جداول ترجمه شده است 
ترجمه متون داخل تصاویر ترجمه شده است 
ترجمه متون داخل جداول ترجمه شده است 
ترجمه ضمیمه ندارد 
ترجمه پاورقی ندارد 
درج تصاویر در فایل ترجمه درج شده است  
درج جداول در فایل ترجمه درج شده است  
درج فرمولها و محاسبات در فایل ترجمه  به صورت عکس درج شده است
منابع داخل متن به صورت عدد درج شده است 
منابع انتهای متن به صورت انگلیسی درج شده است

 

فهرست مطالب

چکیده

1 . مقدمه

2 . آثار مرتبط

3 . تشخیص دهنده ناهنجاری مبتنی بر عبور دو بعدی (2DCAD)

A . تجزیه و تحلیل عبور دو بعدی مرتبه بالا

B . عبور دو بعدی مرتبه بالا برای تشخیص ناهنجاری

4 . آزمایشات

A . مجموعه داده ها

B . راه اندازی تجربی

C . مقایسه نتایج

D . مقایسه زمان های اجرا

E . بحث پارامتری

F . استحکام و نویز

5 . نتیجه گیری

 

بخشی از ترجمه

چکیده

تشخیص ناهنجاری در تحلیل فراطیفی تصاویر موضوعی مهم می باشد. این روش برخی مواقع به روش های تشخیص هدف های دارای اولویت ترجیح داده می شود، چون نیازمند هیچ اطلاعات اولیه ای برای موضوعات مطلوب ما نمی باشد. در این زمینه تلاش های بسیاری صورت گرفته است. با این حال، آنها معمولا از هزینه زمانی بیش از حد و نرخ مثبت کاذب بالا رنج می برند. دو مشکل اصلی که منجر به چنین وضع نامساعدی می شود وجود دارد. اولا، ساختار مدل پس زمینه و برآورد وابستگی اغلب بیش از حد پیچیده هستند. دوما، بیشتر این روش ها باید فرضی دقیق در توزیع طیف پس زمینه ایجاد کنند؛ با این حال، این فرضیات نمی توانند برای همه ی شرایط عملی به کار روند. براساس این نظریات، این مقاله روشی جدید برای تشخیص سریع و در عین حال دقیق ناهنجاری فرا طیفی در سطح پیکسل ارائه داده است. کارهای انجام شده در این مقاله: 1) ساختار روش عبوری دو بعدی مرتبه بالا نواحی تغییر سریع را در طیف پیدا می کند، که بدون هیچ فرض اولیه ای اجرا می شود؛ و 2) طراحی چارچوبی برای تفکیک پذیری پیچیدگی کم به منظور تشخیص سریع ناهنجاری فرا طیفی، که می تواند توسط مجموعه ای از اپراتورهای فیلتر گذاری با تابع هزینه زمانی خطی اجرا شود. آزمایشات بر روی سه تصویر فرا طیفی مختلف که شامل چندین ناهنجاری در سطح پیکسل انجام شده که برتری تشخیص دهنده ارائه شده را در مقایسه با روش های سنجشی نشان می دهد.

 

1 . مقدمه

سیستم های تصویربرداری فرا طیفی توانایی جمع آوری تصاویر دیجیتال با نمونه گیری متراکم یا طیف درخشندگی تاحدی پیوسته برای هر پیکسل در صفحه نمایش دارند. اطلاعات بدست آمده در رابطه با اثرات طیفی می تواند به تشخیص تفاوت های جزئی بین مواد مختلف کمک کند. این مشخصه، تصاویر فرا طیفی را قادر می سازد تا برای طیف گسترده ای از کاربردها مفید باشند. برای مثال، این مشخصه ها قبلا با موفقیت در نظارت بر محیط زیست [1]، بررسی کیفیت تولید[2]، تصویربرداری پزشکی[3]، تحلیل بیولوژیکی [4] و غیره بکار رفته اند.

 

5 . نتیجه گیری

ناهنجاری های موجود در تصویر فراطیفی اغلب نشان دهنده وقایع حیاتی هستند که باید در بررسی شوند. بنابراین قابلیت اطمینان در تشخیص این ناهنجاری ها در صنعت و دانشگاه بسیار مهم می باشد. در این راستا، تشخیص دهنده های فرا طیفی مرسوم عملکردی رضایت بخش ندارند به دلیل اینکه هزینه های زمانی FPRها بیش از حد بالا است. در این مقاله، یک تشخیص دهنده ناهنجاری فراطیفی جدید بر اساس فرمول تحلیل عبور دو بعدی مرتبه بالا پیشنهاد شده است. تشخیص دهنده پیشنهادی 2DCAD نامیده می شود، که می تواند برای بررسی سریع آزمایش پیکسل ها با توجه به همسایگانشان، بدون از دست دادن دقت اجرا شود.

 

بخشی از مقاله انگلیسی

Abstract

Anomaly detection has been an important topic in hyperspectral image analysis. This technique is sometimes more preferable than the supervised target detection because it requires no a priori information for the interested materials. Many efforts have been made in this topic; however, they usually suffer from excessive time cost and a high false-positive rate. There are two major problems that lead to such a predicament. First, the construction of the background model and affinity estimation are often overcomplicated. Second, most of these methods have to impose a stringent assumption on the spectrum distribution of background; however, these assumptions cannot hold for all practical situations. Based on this consideration, this paper proposes a novel method allowing for fast yet accurate pixel-level hyperspectral anomaly detection. We claim the following main contributions: construct a high-order 2-D crossing approach to find the regions of rapid change in the spectrum, which runs without any a priori assumption; and design a low-complexity discrimination framework for fast hyperspectral anomaly detection, which can be implemented by a series of filtering operators with linear time cost. Experiments on three different hyperspectral images containing several pixel-level anomalies demonstrate the superiority of the proposed detector compared with the benchmark methods.

 

I. INTRODUCTION

HYPERSPECTRAL imaging systems have the ability to collect digital images with very densely sampled or nearly continuous radiance spectra for each pixel in the scene. The captured rich information about the spectral signatures can help identify minor differences between various materials. This characteristic enables hyperspectral images to be beneficial to a wide range of applications. For example, they have already been successfully applied to environmental monitoring [1], production quality inspection [2], medical imaging [3], biological analysis [4], etc.

 

V. CONCLUSION

Anomalies in the hyperspectral image often represent crucial occurrences worthy of further investigation. Therefore, reliably detecting these anomalies is important in both academia and industry. In this regard, traditional hyperspectral anomaly detectors are far from satisfying due to their excessive time costs and high FPRs. In this paper, a novel hyperspectral anomaly detector has been proposed based on the formulation of the high-order 2-D crossing analysis. The proposed detector is termed 2DCAD, which can allow for fast examination of the testing pixels with respect to their neighborhoods, without losing accuracy.

 

تصویری از مقاله ترجمه و تایپ شده در نرم افزار ورد

 

دانلود رایگان مقاله انگلیسی + خرید ترجمه فارسی
عنوان فارسی مقاله:

تشخیص ناهنجاری فراطیفی بوسیله فیلتر عبوری دو بعدی مرتبه بالا

عنوان انگلیسی مقاله:

Fast Hyperspectral Anomaly Detection via High-Order 2-D Crossing Filter

 

دیدگاهتان را بنویسید

نشانی ایمیل شما منتشر نخواهد شد. بخش‌های موردنیاز علامت‌گذاری شده‌اند *

دکمه بازگشت به بالا