این مقاله انگلیسی ISI در نشریه IEEE در 13 صفحه در سال 1992 منتشر شده و ترجمه آن 15 صفحه میباشد. کیفیت ترجمه این مقاله رایگان – برنزی ⭐️ بوده و به صورت ناقص ترجمه شده است.
دانلود رایگان مقاله انگلیسی + خرید ترجمه فارسی | |
عنوان فارسی مقاله: |
فیلترسازی ناهمسان غیرخطی داده های MRI |
عنوان انگلیسی مقاله: |
Nonlinear Anisotropic Filtering of MRI Data |
|
مشخصات مقاله انگلیسی (PDF) | |
سال انتشار | 1992 |
تعداد صفحات مقاله انگلیسی | 13 صفحه با فرمت pdf |
رشته های مرتبط با این مقاله | مهندسی پزشکی |
گرایش های مرتبط با این مقاله | پردازش تصاویر پزشکی |
چاپ شده در مجله (ژورنال) | نتایج بدست آمده در حوزه تصویربرداری پزشکی – Transactions on Medical Imaging |
دانشگاه | زوریخ، سوییس |
رفرنس | دارد ✓ |
کد محصول | F1540 |
نشریه | آی تریپل ای – IEEE |
مشخصات و وضعیت ترجمه فارسی این مقاله | |
وضعیت ترجمه | انجام شده و آماده دانلود |
تعداد صفحات ترجمه تایپ شده با فرمت ورد با قابلیت ویرایش | 15 صفحه (1 صفحه رفرنس انگلیسی) با فونت 14 B Nazanin |
ترجمه عناوین تصاویر و جداول | ترجمه شده است ✓ |
ترجمه متون داخل تصاویر | ترجمه نشده است ☓ |
ترجمه متون داخل جداول | ترجمه نشده است ☓ |
درج تصاویر در فایل ترجمه | درج شده است ✓ |
درج جداول در فایل ترجمه | درج شده است ✓ |
کیفیت ترجمه | کیفیت ترجمه این مقاله متوسط میباشد |
توضیحات | ترجمه این مقاله به صورت ناقص انجام شده است. |
فهرست مطالب |
چکیده |
بخشی از ترجمه |
چکیده
1- مقدمه |
بخشی از مقاله انگلیسی |
Abstract Despite significant improvements in image quality over the past several years, the full exploitation of magnetic resonance image (MRI) data is often limited by low signal-to-noise ratio (SNR) or contrast-to-noise ratio (CNR). In implementing new MR techniques, the criteria of acquisition speed and image quality are usually paramount. To decrease noise during the acquisition either time averaging over repeated measurements or enlarging voxel volume may be employed. However, these methods either substantially increase the overall acquisition time or scan a spatial volume in only coarse intervals. In contrast to acquisition-based noise reduction methods we propose a postprocess based on anisotropic diffusion. Extensions of this new technique support 3-D and multi-echo MRI, incorporating higher spatial and spectral dimensions. The procedure overcomes the major drawbacks of conventional filter methods, namely the blurring of object boundaries and the suppression of fine structural details. The simplicity of the filter algorithm enables an efficient implementation even on small workstations. We demonstrate the efficient noise reduction and sharpening of object boundaries by applying this image processing technique to 2-D and 3-D spin echo and gradient echo MR data. The potential advantages for MRI, diagnosis and computerized analysis are discussed in detail.
1. Introduction IN medical imaging we often face a relatively low SNR I with good contrast, or a low contrast with good SNR. Fortunately the human visual system is highly effective in recognizing structures even in the presence of a considerable amount of noise. But if the SNR is too small or the contrast too low it becomes very difficult to detect anatomical structures because tissue characterization fails. A definition of overall image quality includes physical and perceptual criteria. Furthermore, it largely depends on specific diagnostic tasks. In some cases a high spatial resolution and a high contrast are required, whereas in other cases more perceptual criteria may be favored. For a visual analysis of medical images, the clarity of details and the object visibility are important, whereas for image processing a high SNR is required because most of the image segmentation algorithms are very sensitive to noise. There are several ways to improve SNR, and they can be divided into subcategories according to time requirements, resolution criteria, hardware- versus software-based techniques. Methods affecting acquisition time or pixel (voxel) dimensions. – Time domain averaging (averaging repeated acquisitions). Problem: inefficiency. – Scanning with larger voxels. Problem: loss of resolution, mostly in the out-of-plane direction. Methods without time and/or resolution penalty. – Signal processing during acquisition (i.e., variable bandwidth: narrower bandwidth for the second echo of double echo spin echo acquisitions). – Improvement of acquisition hardware (increase signal or reduce source of noise). – Postprocessing of raw data or image data (filter techniques). Problem: blurring, loss of resolution, generation of artifacts. Although the acquisition parameters can be optimized regarding SNR and contrast, methods to reduce noise (e.g., increasing the number of excitations) usually result in a signiticant increase in the overall acquisition time. While providing access to important new anatomical and functional information through high-speed acquisition, or high spatial resolution, advanced imaging techniques are often penalized by a decrease in image SNR. Filtering techniques have the advantage of not affecting the acquisition process. In linear spatial filtering, the content of a pixel is given the value of the average brightness of its immediate neighbors. Simple spatial averaging. often called “low-pass filtering,” does reduce the amplitude of noise fluctuations, but also degrades sharp details such as lines or edges. The filtering does not respect region boundaries or small structures, and the resulting images appear blurry and diffused. This undesirable effect can be reduced or avoided by the design of nonlinear filters, the most common technique being median filtering. Edges are retained. but the filtering results in a loss of resolution by suppressing fine details. Another approach is adaptive filtering (see (11 for a detailed survey), which entails a tradenff between smoothing efficiency, preservation of discontinuities, and the generation of artifacts. When developing a filtering method for medical image data, image degradation by blurring or by artifacts resulting from a filtering scheme is not acceptable. The following requirements should ideally be fulfilled: a) minimize information loss by preserving object boundaries and detailed structures, b) efficiently remove noise in regions of homogeneous physical properties, and c) enhance morphological definition by sharpening discon tinuities. Recent developments based on anisotropic diffusion filtering overcome the major drawbacks of conventional spatial filtering [3], and significantly improve image quality while satisfying the main criteria stated above. Special extensions for filtering multichannel and 3-D data make the method especially appropriate to enhance various types of magnetic resonance (MR) image data. In the present paper, the term volume data will be used independently of the acquisition type. With volume data we mean a volume-covering acquisition with isotropic or nearly isotropic voxel dimensions. Such data can be measured as a 3-D FT acquisition or as a 2-D multislice acquisition with thin slices and no gap between the slices.. |
دانلود رایگان مقاله انگلیسی + خرید ترجمه فارسی | |
عنوان فارسی مقاله: |
فیلترسازی ناهمسان غیرخطی داده های MRI |
عنوان انگلیسی مقاله: |
Nonlinear Anisotropic Filtering of MRI Data |
|