دانلود رایگان ترجمه مقاله رویکردهای پس پردازش برای بهبود تصاویر حالت B اولتراسونوگرافی – IEEE 2016

دانلود رایگان مقاله انگلیسی روش های پس از پردازش برای اصلاح تصاویر حالت B-اولتراسونوگرافی قلب: یک مقاله مروری به همراه ترجمه فارسی

 

عنوان فارسی مقاله روش های پس از پردازش برای اصلاح تصاویر حالت B-اولتراسونوگرافی قلب: یک مقاله مروری
عنوان انگلیسی مقاله Postprocessing Approaches for the Improvement of Cardiac Ultrasound B-Mode Images: A Review
رشته های مرتبط مهندسی پزشکی، پردازش تصاویر پزشکی
کلمات کلیدی اولتراسوند قلب، ترکیب، افزایش کنتراست، اکوکاردیوگرافی، افزایش کیفیت تصویر، فیلترینگ تصویر، حذف سر و صدای اضافی، بررسی
فرمت مقالات رایگان

مقالات انگلیسی و ترجمه های فارسی رایگان با فرمت PDF آماده دانلود رایگان میباشند

همچنین ترجمه مقاله با فرمت ورد نیز قابل خریداری و دانلود میباشد

کیفیت ترجمه کیفیت ترجمه این مقاله متوسط میباشد 
نشریه  آی تریپل ای – IEEE
مجله  یافته ها در حوزه التراسونیک، فیبر نوری و کنترل بسامد
سال انتشار 2016
کد محصول F864

مقاله انگلیسی رایگان (PDF)

دانلود رایگان مقاله انگلیسی

ترجمه فارسی رایگان (PDF)

دانلود رایگان ترجمه مقاله

خرید ترجمه با فرمت ورد

خرید ترجمه مقاله با فرمت ورد
جستجوی ترجمه مقالات جستجوی ترجمه مقالات مهندسی پزشکی

  

فهرست مقاله:

چکیده
مقدمه
تکنیک‌های حذف اسپکل و نویز
فیلترینگ
ترکیب کردن
سایر روش‌های تقویت تصویر اولتراسوند قلبی
افزایش کنتراست
حذف نویز ثابت
خلاصه و نتیجه‌گیری

 

بخشی از ترجمه فارسی مقاله:

1. مقدمه
اکوکاردیوگرافی ابزار تشخیصی همه جانبه‌ای در زمان واقعی و بدون هیچ گونه عوارض جانبی ثانویه است و می‌تواند با هزینه نسبتا پایین تصاویری با وضوح فضایی و زمانی بالا ایجاد کند. طیف وسیعی از تکنیک‌های تصویربرداری موجود، اولتراسوند قلب را به یک ابزار متداول برای ارزیابی کمی و کیفی مورفولوژی و عملکرد قلب در دو و سه بعد تبدیل کرده‌اند. تصاویر اولتراسوند قلب را می‌توان (1) از طریق قفسه سینه بیمار که به نام اکوکاردیوگرافی از راه قفسه سینه (TTE) شناخته می‌شود یا (2) از داخل مری بیمار (با استفاده از کاوشگرهای هدف‌یاب تخصصی که همچنین به ناماکوکاردیوگرافی از راه مری (TEE) شناخته شده است؛ بدست آورد. TEE می‌تواند تصاویری با کیفیت بالا تولید کند. با این حال، زمان طولانی تصویربرداری و نیازهای فردی همراه با ناراحتی خاطر بیمار استفاده بالینی آن را محدود می‌کند و باعث می‌شود TTE روش متداولی در معاینات بالینی باشد. با این حال، تصاویر اولتراسوند قلب از راه قفسه سینه اغلب ناقص (پوشش نسبی قلب) هستند و از طیف وسیعی از آرتیفکت‌هایی که به دلیل تعامل سیگنال‌های اولتراسوند منتقله با ساختارهای آناتومیکی بدن مورد بررسی ایجاد می‌شوند؛ رنج می‌برند. ساختارهایی مانند استخوان، ریه‌ها (هوا) و چربی اثر مستقیم محدودی بر روی کیفیت و ارزش تشخیصی تصاویر بدست آمده از قلب دارند. علاوه بر این، تصاویر اولتراسوند قلب از راه قفسه سینه یک ساختار دائمی و به سرعت در حال حرکت در میان قفسه سینه بیمار هستند. ماهیت این تصویربرداری چالش‌برانگیز تظاهرات آرتیفکت‌های رایج اولتراسوند پزشکی را افزایش می‌دهد (شکل 1).
تصاویر اولتراسوند قلب از سر و صدای اضافی ناشی از طیف وسیعی از پدیده‌های صوتی (آرتیفکت‌ها) مانند طنین‌ها، لوب‌های کناری و لوب‌ سایه (پرتو اصلی) رنج می‌برند. تاثیر هر یک از آرتیفکت‌ها بر روی ساختار قلبی تصویر برداری شده به تکنولوژی تصویربرداری مورد استفاده و همچنین اکوژنیسیتی بیمار بستگی دارد. به عنوان مثال، مبدل‌های‌ آرایه فازی مدرن، اثر لوب‌های سایه را با استفاده از یک تن صدا به اندازه کافی کوچک (کمتر از نصف طول موج سیگنال منتقل‌شده) بین عناصر آرایه به حداقل می‌رساند. از سوی دیگر، اثر لوب‌های کناری به خصوص زمانی که در خارج از جهت‌های صفحه اسکن منتقل می‌شوند؛ اغلب به نزدیکی ساختارهای خارج قلبی مانند ریه و استخوان‌های قفسه سینه وابسته است. علاوه بر این، بسیاری از ابزارها به خصوص مبدل‌های آرایه فازی از پارازیت میدان نزدیک یا اثر زنگ خطر رنج می‌برند. پارازیت میدان نزدیک در بخش بالای اسکن به صورت ناحیه‌ای با سطح بالای اختلال ثابت ظاهر می‌شود که به تدریج برای افزایش عمق اسکنر به صفر کاهش می‌یابد. در نهایت، زاویه تابش پرتو اولتراسوند منتقل‌شده با توجه به ساختار تصویر ممکن است منجر به کنتراست کم بین بافت و محفظه قلبی ‌شود. تنظیمات با توان بالا احتمالا در تلاش برای جبران سیگنال پایین منتقله از بافت ممکن است صدایی که اغلب در محفظه‌های قلبی وجود دارد را تقویت کند. در حالی که لیست جامعی وجود ندارد؛ آرتیفکت‌هایی که در بالا نام آنها ذکر شد ساختارهای قلبی را تخریب می‌کنند و از چشم‌انداز تصویربرداری می‌توانند به عنوان یک نویز در نظر گرفته شوند.
تصویربرداری از ساختارهای نسبتا کوچک و به سرعت در حال حرکت مانند دریچه‌های قلب، چالش‌های بیشتری را ایجاد می‌کند. علاوه بر تصویر محدودی که به دلیل نویز ایجاد می‌شود؛ ساختار ممکن است به دلیل حرکت قلبی و تنفسی به داخل و خارج صفحه اسکن حرکت کند. علاوه بر این، به دلیل تعامل اولتراسوند منتقله با ساختارهای بازتابنده و تضعیف‌کننده مانند قفسه سینه و ریه‌های بیمار که در مسیر پرتو اولتراسوند قرار دارند؛ طنین‌ها و سایه‌هایی ظاهر می‌شوند. این آرتیفکت‌ها ممکن است به طور آنی ظاهر شوند یا موقعیت و جهت آنها در سراسر اسکن به دلیل حرکات کوچک مبدل همراه با حرکت تنفس بیمار تغییر کند و در نتیجه تصویربرداری از بخش‌هایی از ساختار قلبی مورد بررسی مبهم می‌شود.
اسپکل نوعی پدیده صوتی است که مسئول ظاهر دانه‌دار تصاویر اولتراسوند می‌باشد. اسپکل نتیجه‌ای از تداخل سازنده و مخرب صداهای تولید شده توسط تفرق پرتو اولتراسوند در نواحی تصادفی، کوچک مقیاس و عدم تجانس بافت است. اسپکل نتیجه مستقیمی از 1) ماهیت اتفاقی بازتاب‌پذیری محیط تفرق و 2) ماهیت منسجم مبدل پیزوالکتریک است.
مطالعات متعدد اطلاعات دقیق‌تری را در مورد ناحیه اسپکل و ویژگی‌های آماری آن فراهم می‌کنند. الگوی دانه‌دار اسپکل گاهی اوقات می‌تواند به عنوان یک ویژگی نامطلوب در نظر گرفته شود زیرا ممکن است جزئیات آناتومیکی ظریف را مبهم کند. در تصاویر اولتراسوند قلب، اسپکل بافت همراه با سطوح بالایی از نویز محفظه می‌تواند تصویر ساختارهای قلبی را محدود کند. علاوه بر این، ظاهر دانه‌دار تصاویر استفاده از تکنیک‌های پردازش مانند ثبت و قطعه‌بندی تصویر را محدود می‌کند. بنابراین حذف نویز و اسپکل احتمالا کیفیت تصویر و ارزش تشخیصی مجموعه داده اولتراسوند قلب را بهبود می‌بخشد. به عبارت دیگر، حرکت اسپکل ممکن است در سرعت بافتی و روش‌های تخمین کشش عضله مانند اکوکاردیوگرافی اسپکل (STE) و تصویربرداری با استفاده از فرکانس رادیویی (RF) مورد استفاده قرار گیرد. هر دو تکنیک با ردیابی حرکت الگوهای اسپکل در طول زمان، عملکرد کلی و ناحیه‌ای قلب را ارزیابی می‌کنند. آنها جایگزین نویدبخشی برای 1) MRI قلب برای ارزیابی تغییر شکل و انقباض بطن چپ و 2) داپلر رنگی برای تصویربرداری از کشش عضله هستند که به مشکلات مربوط به وابستگی زاویه اشاره می‌کنند. شرح مفصلی از اصول STE و همچنین کاربردهای بالینی این روش در حال حاضر و آینده در منابع 6، 12-9 ارائه شده است. به همین ترتیب، اطلاعات بیشتر در مورد تصویربرداری با استفاده از فرکانس رادیویی در منابع 7، 17-13 ارائه شده است. روش‌های پردازش تصویر که موجب افزایش طیف شدت پویایی (کنتراست) درون اسپکل می‌شوند؛ ممکن است دقت و استحکام تکنیک‌های موجود که حرکت اسپکل را اندازه‌گیری می‌کنند؛ بهبود بخشند. در طول سه دهه گذشته، پیشرفت‌های صورت‌گرفته در جمع‌آوری داده‌ها به طور قابل توجهی کیفیت تصویر اولتراسوند قلب را بهبود بخشیده‌اند. با این وجود، بخش قابل توجهی از تصاویر اولتراسوند قلب در حال حاضر کیفیت تصویر پایین و ارزش تشخیصی محدودی را ارائه داده‌اند. در سال 2008، یک مطالعه سیستماتیک بر روی بیماران روتین توسط بخش اکوکاردیوگرافی بیمارستان عمومی غربی (ادینبورگ) انجام شد. نتایج حاصل از مطالعه به منظور اهداف آموزشی در بخش اکوکاردیوگرافی مورد استفاده قرار گرفته‌ و هنوز منتشر نشده‌اند. این مطالعه که با استفاده از سیستم‌های اولتراسوند قلبی قدیمی‌تر و پیشرفته‌‌تر انجام شده بود؛ نشان می‌دهد که حدود 33% از مجموعه داده‌ها دارای کیفیت تصویر و ارزش تشخیصی بالا (ساختار قلبی روشن که امکان سنجش‌های بالینی قابل اعتمادی را فراهم می‌کند)، 33% متوسط (ساختار قلبی نسبتا تخریب‌شده که دقت و صحت سنجش‌های بالینی را محدود می‌کند) و 33% پایین (ساختارهای قلبی بسیار آسیب‌دیده که بارها و بارها سنجش‌های بالینی را محدود می‌کنند) هستند. در حالی که سیستم اولتراسوند پیشرفته کیفیت داده‌های جمع‌آوری شده را بهبود بخشید؛ یافته‌ها به شدت به اکوژنیسیتی بیماران وابسته بودند. علاوه بر این، تعدادی از تکنیک‌های پردازش تصویر مانند ثبت تصویر، قطعه‌بندی تصویر، طبقه‌بندی داده‌ها و آنالیز بافت برای داده‌های به دست آمده از اولتراسوند قلب با استفاده از روش‌هایی مانند CT و MRI، معرفی شده‌اند. این تکنیک‌ها قادر به توسعه ابزارها و پروتکل‌هایی هستند که دقت، توانمندی و تکرارپذیری فرآیندهای تشخیصی را افزایش می‌دهند. در طی چند سال گذشته، تکنیک‌های پس از پردازش مشابهی برای تصاویر اولتراسوند قلبی بکار گرفته شده‌اند. پیشرفت‌های اخیر در اکوکاردیوگرافی سه بعدی در زمان واقعی (RT3DE) استفاده بالقوه از این تکنیک‌ها را گسترش داده‌اند. با این حال، از آنجایی که تکنیک‌های پردازش تصویر ممکن است بر روی تصاویر با کیفیت بالا عمل کنند؛ سطوح بالای نویز، کنتراست پایین، اسپکل و سایه اثربخشی این تکنیک‌ها را در بخش قابل‌توجهی از مجموعه داده‌های اولتراسوند قلب محدود می‌کند. بنابراین توسعه اثربخشی روش‌های پس پردازش که کیفیت و ارزش تشخیصی تصاویر اولتراسوند قلب را افزایش می‌دهند؛ مدنظر است. تکنیک‌های پس پردازش به تغییرات سخت‌افزاری نیاز ندارند و می‌توانند برای داده‌های موجود و جدید به کار گرفته شوند. این مطالعه تلاش می‌کند تا یک بررسی جامع از تکنیک‌های پس پردازش برای تصاویر اولتراسوند قلب ارائه دهد.

بخشی از مقاله انگلیسی:

I. INTRODUCTION

ECHOCARDIOGRAPHY provides a versatile, real-time diagnostic tool with no adverse secondary effects, capable of acquiring images of high spatial and temporal resolution at relatively low operational cost [1]. The wide range of available imaging techniques makes cardiac ultrasound a prevalent tool for the qualitative and quantitative assessment of cardiac morphology and function in both 2-D and 3-D. Cardiac ultrasound images can be acquired 1) through the thorax of the patient, also known as transthoracic echocardiography (TTE), or 2) from inside the esophagus of the patient (by utilizing specialized acquisition probes), also known as transesophageal echocardiography (TEE) [2]. TEE can generate high-quality images. However, the extended acquisition time and personnel requirements along with patient discomfort currently limit its clinical use, making TTE the common approach in clinical examinations. However, transthoracic cardiac ultrasound images are often incomplete (partial heart coverage) and suffer from a range of artifacts as a consequence of the interaction of the transmitted ultrasound signals with anatomic structures of the examined body. Structures such as bone, lungs (air), and fat have a direct limiting effect on the quality and diagnostic value of the acquired cardiac images. Furthermore, transthoracic cardiac ultrasound images a constantly and rapidly moving structure through the patient’s rib cage. The nature of such a challenging acquisition enhances the manifestation of common medical ultrasound artifacts (Fig. 1). Cardiac ultrasound images suffer from acoustic noise due to a range of acoustical phenomena (artifacts) such as reverberations, side-lobes, and grating-lobes [1], [2]. The extent of each artifact on the imaged cardiac structures depends on both the acquisition technology utilized as well as the echogenicity of the patient. For example, modern phased-array transducers minimize the effect of grating-lobes by using an adequately small pitch (less than half the wavelength of the transmitted signal) between the elements of the array. On the other hand, the effect of side-lobes, especially when transmitted in out-of-scan-plane directions, is mostly related to the proximity of extra-cardiac structures such as the lung and rib-cage bones. Furthermore, many instruments, especially phased array transducers, suffer from near-field clutter or ring-down effect [2]. Near-field clutter manifests itself at the top part of the scan as a zone with a high level of stationary noise that gradually declines to zero for increasing scanning depth [2]. Finally, oblique incidence angles of the transmitted ultrasound beam with respect to an imaged structure may result in low contrast between the cardiac tissue and chamber. A high-gain setting, possibly in an attempt to compensate for the low tissue signal, may result in additional amplifier noise mostly present in cardiac chambers. While not an exhaustive list, the aforementioned artifacts corrupt the imaged cardiac structures and from an imaging perspective can be considered as noise. Imaging of relatively small and rapidly moving structures such as the cardiac valves introduces additional challenges. Besides the limited delineation as a result of noise, the structure may move into and out of the scan plane due to the cardiac and respiratory motion. Furthermore, reverberations and shadowing appear due to the interaction of the transmitted ultrasound with high reflective and attenuating structures, such as the patient’s rib cage and lungs that lie in the path of the ultrasound beam. Such artifacts may appear momentarily or alter their position and orientation throughout a scan due to small movements of the transducer combined with the patient’s respiration motion, obscuring the imaging of portions of the examined cardiac structure [1], [2]. Speckle is a type of acoustic phenomenon responsible for the granular appearance of ultrasound images. Speckle is a result of constructive and destructive interference of echoes produced by scattering of ultrasound at random, small-scale, tissue inhomogeneities. Speckle is a direct consequence of 1) the stochastic nature of the reflectivity of scattering media, and 2) the coherent nature of the piezoelectric transducer. Several studies provide detailed information on the origin of speckle and its statistical properties [3]–[5]. The granular pattern of speckle can sometimes be considered as an undesirable property since it may obscure fine anatomic detail. In cardiac ultrasound images, tissue speckle combined with high levels of chamber noise can limit the delineation of cardiac structures. Furthermore, the granular appearance of the images limits the application of postformation processing techniques such as image registration and segmentation. Therefore, means for suppressing noise and speckle can possibly improve the image quality and diagnostic value of a cardiac ultrasound dataset. On the other hand, speckle motion may be utilized in tissue velocity and strain estimation methods such as speckle tracking echocardiography (STE) [6] and radio frequency (RF)-based strain imaging [7]. Both techniques assess global and regional cardiac function by tracking the movement of speckle patterns over time. They provide a promising alternative to 1) tagged cardiac MRI for assessing left ventricular deformation and torsion [8], and 2) color Doppler for strain imaging, addressing problems associated with angle dependence [7]. Detailed descriptions on the principles of STE as well as current and future clinical applications are provided in [6], [9]–[12]. Similarly, more information on RF-based strain imaging is provided in [7], [13]–[17]. Image processing methods that enhance the intensity dynamic range (contrast) within speckle may improve the accuracy and robustness of such existing techniques that tackle speckle motion. Over the last three decades, a number of advances in data acquisition have substantially improved cardiac ultrasound image quality. Nevertheless, a considerable portion of current cardiac ultrasound images demonstrate low image quality and limited diagnostic value. In 2008, a systematic study was performed on routine patients going through the echocardiography department of the Western General Hospital (Edinburgh). The results of the study have been used for educational purposes in the department and have not been published yet. The study, performed using both older and the state-of-theart cardiac ultrasound systems, demonstrated that about 33% of the datasets are of high (clear cardiac structures, enabling reliable clinical measurements), 33% are of average (partially corrupted cardiac structures, limiting the accuracy and precision of clinical measurements), and 33% are of low (highly corrupted cardiac structures, limiting and many times prohibiting clinical measurements) image quality and diagnostic value. While the state-of-the art ultrasound system improved the quality of the acquired data, the findings were heavily dependent on the echogenicity of the patients. Furthermore, a number of postformation image processing techniques such as image registration, image segmentation, data classification, and texture analysis have been introduced for cardiac data acquired using modalities such as CT and MRI [18]–[20]. These techniques enable the development of tools and protocols that enhance the accuracy, robustness, and repeatability of the diagnostic process. Over the last few years, similar postprocessing techniques have been attempted on cardiac ultrasound images [21]–[24]. Recent advances in real-time 3-D echocardiography (RT3DE) extend the potential application of such techniques [25], [26]. However, while postformation image processing techniques may work on high quality images, high levels of noise, low contrast, speckle, and shadowing limit their effectiveness in a considerable proportion of clinical cardiac ultrasound datasets. The development of effective postprocessing methods that enhance the quality and diagnostic value of cardiac ultrasound images is, therefore, desirable. Postprocessing techniques do not require hardware modifications and can be applied to both existing and new data. This study attempts to provide a thorough review of such image-enhancement postprocessing techniques for cardiac ultrasound images.

 

دیدگاهتان را بنویسید

نشانی ایمیل شما منتشر نخواهد شد. بخش‌های موردنیاز علامت‌گذاری شده‌اند *

دکمه بازگشت به بالا