دانلود رایگان ترجمه مقاله قیمت مسکن و ریسک اعتباری – الزویر 2015

دانلود رایگان مقاله انگلیسی قیمت های مسکن و ریسک اعتبار: شواهدی از ایالات متحده به همراه ترجمه فارسی

 

عنوان فارسی مقاله قیمت های مسکن و ریسک اعتبار: شواهدی از ایالات متحده
عنوان انگلیسی مقاله House prices and credit risk: Evidence from the United States
رشته های مرتبط علوم اقتصادی، مدیریت، بانکداری، مهندسی مالی و ریسک، مدیریت مالی، اقتصاد پول و بانکداری، اقتصادسنجی
کلمات کلیدی ریسک اعتباری، وام ها ی خنث، بانک ها، قیمت ها ی مسکن، انواع وام، داده ها ی ترکیبی پویا
فرمت مقالات رایگان

مقالات انگلیسی و ترجمه های فارسی رایگان با فرمت PDF آماده دانلود رایگان میباشند

همچنین ترجمه مقاله با فرمت ورد نیز قابل خریداری و دانلود میباشد

کیفیت ترجمه کیفیت ترجمه این مقاله متوسط میباشد 
توضیحات ترجمه این مقاله دارای مشکلات ویرایشی می باشد.
نشریه الزویر – Elsevier
مجله مدلسازی اقتصادی – Economic Modelling
سال انتشار 2015
کد محصول F743

مقاله انگلیسی رایگان (PDF)

دانلود رایگان مقاله انگلیسی

ترجمه فارسی رایگان (PDF)

دانلود رایگان ترجمه مقاله

خرید ترجمه با فرمت ورد

خرید ترجمه مقاله با فرمت ورد
جستجوی ترجمه مقالات جستجوی ترجمه مقالات

  

فهرست مقاله:

چکیده
مقدمه
فرضیات تجربی
مشخصات مدل
مدل ها ی تجربی
روش شناسی اقتصاد سنجی
داده ها
نتایج تجربی
کنترل تجربی
پرتفولیوی وام با کیفیت، قیمت مسکن و خسارت وام
شاخص های قیمت مسکن جایگزین
روش ها و مشخصات جایگزین
نتیجه گیری

 

بخشی از ترجمه فارسی مقاله:

1- مقدمه
بحر ان وام مسکن بی پشتوانه اخیر د ر ایالات متحده، نقش کلیدی ای که با زار مسکن د ر بی ثبات کردن سیستم مالی ایفا می کند، ر ا نشان داد. ا ز اواخر 1990 میلادی، افزایش ناگهانی د ر وام ها ی مسکن بی پشتوانه به دلیل نرخ بهره پایین و استاندارد ها ی ضعیف وام دهی بوده است. با ا ین حال، اگرچه کیفیت پرتفولیوی وام بانک ها با رشد ثابت وام ها ی مسکن بی پشتوانه تضعیف شده است، نرخ ها ی نکول به دلیل افزایش استهلاک قیمت مسکن، پایین بوده است. افزایش قیمت مسکن و نرخ نکول پایین موجب شده است تا بانک ها تشویق به سرمایه گذاری سنگین د ر با زار املاک شوند و ا ین د ر نها یت منجر به ایجاد یک حباب فرضی د ر املاک شده است.
فروپاشی حباب املاک و مستغلات موجب شده است تا فشار زیادی بر روی بانک ها ی د ر معرض با زار ها ی املاک و مستغلات قر ار گیرد. به طور اخص ، بسیاری ا ز موسسات بانک داری ا ز کمبود نقدینگی به دلیل افزایش ناگهانی د ر وام ها ی مسکن خنث رنج می برند. د ر حقیقت، افت قیمت مسکن منجر به تضعیف ارزش وثیقه ها ی املاک شده است و بسیاری ا ز وام دهندگان بی پشتوانه ر ا ر ا تشویق به نکول با زپرداخت ها ی وام کرده است. نرخ نکول بالاتر به نوبه خود منجر به انقباض اعتبار و تضعیف استاندارد ها ی وام دهی د ر بانک ها می شود. د ر نتیجه، تقاضای مسکن به طور قابل توجهی کاهش یافته است و ا ین د ر حالی است که عرضه مسکن به دلیل افزایش تعداد سلب حق مالکیت املاک، افزایش یافته است. عدم توا زن بین عرضه و تقاضا موجب کاهش قیمت ها ی مسکن شده و منجر به تشدید شر ایط با زار اعتباری می شود. ا ین مسئله به شدت بر اقتصاد واقعی اثر گذاشته و منجر به افزایش نرخ نکول د ر همه انواع وام ها شده است.
شکل 1 ر ابطه بین قیمت مسکن ر ا د ر ایالات متحده، وام ها ی بانکی و وام ها ی خنث نشان می دهد. بدیهی است که یک ر ابطه نزدیک بین قیمت ها ی مسکن، سطح وام انباشته و NPL انباشته د ر سیستم بانکدار ی امریکا وجود دارد. به عبارت دیگر، افزایش قیمت مسکن با افزایش وام و نرخ نکول پایین مرتبط بوده است، د ر حالی که NPL زمانی افزایش می یابد که قیمت مسکن و وام انباشته کاهش می یابد. به علاوه، شکل 1 نشان می دهد که پویایی NPL د ر میان انواع مختلف وام و انواع بانک ها متغیر بوده است. به طور اخص، بدیهی است که اثر نوسانات وام مسکن بر روی تسهیلات مستغلات و املاک د ر مقایسه با وام ها ی دیگر بیشتر است. ا ز ا ین روی بدیهی است که د ر مقایسه با موسسات پس اندا ز و قرض الحسنه، بانک ها ی تجاری ا ز خسارت و زیان وام زیاد د ر پاسخ به شر ایط با زاری نامطلوب رنج می برند.
د ر ا ین ر ابطه، بدیهی است که د رک شیوه تاثیر گذاری قیمت مسکن بر روی کیفیت پورتفولیوی وام ا ز اهمیت زیادی بر ای موسسات مالی و نهاد ها ی نظارتی علاقه مند به حفظ پایداری مالی برخوردار است. بر همین اساس، ا ین مطالعه ا ز مدل ها ی داده ها ی ترکیبی پویا بر ای بررسی تجربی اثر نوسانات وام مسکن بر روی تغییر ات NPL د ر بانک ها ی امریکا استفاده می کند. ا ین تحلیل با بررسی ا ین که آیا ا ین ر ابطه د ر انواع وام ها و بانک ها ی مختلف نیز تغییر می کند، بسط داده شده است.

ا ین مقاله، به شیوه ها ی مختلف به کامل تر شدن منابع و مطالعات موجود کمک می کند. اولا، ما به طور ویژه به بررسی اثر نوسانات قیمت مسکن بر روی کیفیت پورتفولیوی وام ها د ر سطح بانک می پردا زیم. کار ها ی تجربی موجود بر نقش قیمت ها ی مسکن د ر بی ثبات سا زی سیستم بانکداری به طور کلی متمرکز هستند( رینهارت و ر اکوف 2008، بارل و همکار ان 2010)، د ر حالی که اثر قیمت ها ی مسکن بر روی کیفیت پورتفولیوی وام د ر تک تک بانک ها کم تر بررسی شده است. پان و وانگ(2013) د ر ر ابطه با ا ین بعد خاص ا ز تحلیل، به بررسی اثر ات رشد د ر امد بر روی ر ابطه بین قیمت ها ی مسکن و NPL می پردا زد. با ا ین حال، پان و وانک(2013)، تنها اثر غیر متقارن قیمت ها ی مسکن ر ا بر روی وام ها ی خنث د ر نظر گرفته است، د ر حالی که سایر عوامل موثر بر ریسک خطا می تواند اثر ات نامتقارن بر روی نرخ نکول داشته باشد. د ر ا ین مطالعه تجربی، اثر ات نامتقارن بالقوه عوامل ریسک اعتباری بر روی نرخ نکول با بررسی پویایی NPL د ر طی دوره ها ی زمانی مختلف بررسی می شود.
دوما، تا آنجا که می دانیم، ا ین اولین مطالعه ای است که به بررسی ا ین می پردا زد که چگونه انواع وام ها ی مختلف تحت تاثیر نوسانات قیمت مسکن قر ار می گیرند. استفاده ا ز NPL ترکیبی بر ای بررسی ر ابطه بین قیمت مسکن و کیفیت پورتفولیوی وام ر ا می توان به صورت تغییر ترکیب پورتفولیو ها ی وام د ر موسسات مختلف به چالش کشاند( لوسیز و همکار ان 2012). به علاوه، شکل 1 نشان می دهد که پویایی NPL تفاوت معنی داری د ر انواع مختلف وام ها با نوسانات قیمت مسکن بر ای توسعه اطلاعات بر ای نهاد ها ی تنظیم کننده و نظارتی مالی بر ای ار ایه شیوه ها ی بهتر بر ای بانک ها با ترکیبات پرتفوی وام وجود دارد.
سوما، تفاوت ها ی بالقوه بین عوامل موثر بر وام ها ی خنث د ر انواع مختلف موسسات سپرده گذاری امریکا، علی رغم اهمیت ها ی نظارتی و قانونی آن ها ناشناخته باقی مانده است. استدلال بر ا ین است که سیاست ها ی وام دهی یک بانک بر نگرش خطر و ریسک آن اثر می گذارد و ا ین به نوبه خود بستگی به ساختار سا زمانی و ماموریت آن دارد. به علاوه، همان طور که د ر شکل 1 نشان داده شده است، تفاوت ها ی عمده ای بین پویایی وام ها ی خنث و SI با گذشت زمان وجود دارد. ا ز ا ین روی، ا ین مطالعه با بررسی ا ین که آیا اثر قیمت ها ی مسکن بر روی تکامل وام ها ی خنث د ر دو نوع موسسه سپرده گذاری CB-SI متغیر است یا خیر، به تقویت منابع و مطالعات فعلی د ر خصوص ریسک اعتباری کمک می کند.
د ر نها یت، ویژگی دیگر ا ین مقاله ا ین است که ما ریسک اعتبار- قیمت مسکن ر ا بر اساس داده ها ی سطح دولتی و د ر طی شر ایط اقتصاد کلان مختلف ارزیابی می کنیم. استدلال بر ا ین است که پویایی قیمت مسکن هم د ر مقیاس زمانی و هم د ر مقیاس مکانی متفاوت است. به طور ویژه، علی رغم افزایش قیمت مسکن د ر امریکا، الگو ها ی قیمت مسکن د ر میان ایالت ها ی مختلف غیر یکنواخت باقی مانده است. اگرچه برخی ایالات نظیر کالیفرنیا و فلوریدا، تغییر ات معنی داری ر ا د ر قیمت مسکن تجربه کرده اند، برخی ا ز ایالات نظیر ورمونت و مونتانا، تنها تحت استهلاک شدید قیمت مسکن قر ار گرفته اند و برخی دیگر، نظیر جرجیا و میشیگان، تنها با کاهش ها ی قابل توجه د ر طی دوره افزایش قیمت مواجه شده اند. ا ین تغییر ات معنی دار د ر قیمت ها ی مسکن منطقه ای منعکس کننده تفاوت ها د ر عرضه و تقاضای با زار مسکن است که به نوبه خود بر عوامل جمعیت شناختی و اجتماعی و فرهنگی شر ایط اقتصادی محلی، قوانین منطقه ای و سیستم ها ی مالی محلی اثر دارد. اگرچه ا ین عوامل نقش مهمی د ر تنوع خطر اعتباری د ر ایالات متحده دارند، اثر تغییر ات زمانی و مکانی د ر قیمت مسکن بر روی تغییر ات ریسک اعتباری به شدت د ر منابع و مطالعات نادیده گرفته شده است. ا ز ا ین روی ما به بررسی اثر نوسانات قیمت مسکن سطح ایالتی بر روی تکامل NPL د ر طی شر ایط اقتصاد کلان می پردا زیم.
اساسا، نتایج تجربی نشان می دهد که قیمت مسکن اثر معنی داری بر روی کیفیت پرتفوی وام بانک دارد. به طور ویژه، یک ر ابطه قوی منفی بین تغییر ات د ر قیمت مسکن و تکامل NPL د ر تک تک بانک ها وجود دارد و ا ین موید ا ین است که قیمت مسکن یک شاخص کلیدی است. بارل و همکار ان(2010). ما هم چنین به ا ین نتیجه رسیدیم که اثر قیمت مسکن بر روی وام خنث د ر طی شر ایط اقتصادی نامطلوب، عمیق تر است. د ر حقیقت، ما نشان می دهیم که عوامل سیستمی و خاص بانکی ، اثر غیر متقارنی بر روی زیان وام د ر طی شر ایط اقتصادی مختلف دارند. ا ین یافته مهم مکمل و غنی کننده مطالعات ریسک اعتباری است( پان و وانگ 2013.) به علاوه بر خلاف مطالعات قبلی د ر زمینه بانک داری، ما نشان می دهیم که اثر قیمت مسکن بر روی زیان وام تغییر ات معنی داری ر ا د ر انواع وام ها ی مختلف نشان می دهد. به طور ویژه، ما نشان می دهیم که افت قیمت مسکن منجر به زیان وام بیشتر د ر پرتفولیوی وام مستغلات می شود و ا ین به طور ضمنی بیانکر آن است که بانک ها ی با وام املاک بیشتر، با محدودیت ها ی مالی بیشتری د ر صورت افت قیمت مسکن مواجه می شوند. نتایج تجربی ما نشان می دهد که اثر قیمت ها ی مسکن د ر میان بانک ها ی مختلف متغیر است. به طور ویژه، ما نشان می دهیم که CB به افت قیمت مسکن به شدت حساس است، و ا ین د ر حالی است که SI بیشتر بر وام ها ی مسکن متمرکز می باشد. نتایج نشان می دهد که اثر قیمت مسکن بر روی زیان وام بسته به کیفیت پرتفوی وام متغیر است. به عبارت دیگر، پرتفوی وام با کیفیت پایین تر به نوسانات قیمت مسکن حساس تر است. ا ین یافته موید ا ین است که یک ر ابطه چرخه ای بین قیمت مسکن، رفتار وام دهی بانک ها و زیان وام وجود دارد. د ر نها یت ما نشان می دهیم که یافته ها ی کلیدی ما زمانی ثابت هستند که ما به ارزیابی استواری نتایج با استفاده ا ز شاخص ها ی مختلف مسکن روش ها ی اقتصاد سنجی مختلف و مشخصات مدل بپردا زیم.
ادامه ا ین مقاله به صورت زیر سا زمان دهی شده است. بخش دوم، یک پیش زمینه نظری ر ا ار ایه کرده و فرضیاتی که بایستی تحت ا زمون قر ار گیرد ر ا نشان می دهد. د ر بخش 3، مدل ها ی تجربه و روش ها ی بر اورد معرفی شده است. بخش 4، به توصیف داده ها می پردا زد و بخش 5 مربوط به بحث نتایج تجربی د ر خصوص هر فرضیه است. د ر بخش 6، ما یافته ها ی مربوط به ا زمایشات تجربی ر ا کزارش می کنیم. بخش 7 د ر بر گیرنده نتیجه گیری است.

بخشی از مقاله انگلیسی:

1. Introduction

The recent subprime mortgage crisis in the United States has demonstrated the key role that the housing market plays in destabilizing the financial system. From the late 1990s, there was a sharp increase in the subprime mortgages fuelled by low interest rates and lax lending standards. However, while the quality of banks’ loan portfolios was deteriorating by the constant growth of the subprime mortgages, the default rates remained artificially low due to the rapid house price appreciation. The booming house prices and low default rates encouraged banks to invest heavily in the real estate market, which eventually led to the creation of a speculative real estate bubble. The collapse of the real estate bubble exerted enormous pressure on the banks that were highly exposed to the real estate market. In particular, many banking institutions suffered from severe liquidity shortages due to a sharp increase in their nonperforming real estate loans. In fact, falling house prices undermined the value of real estate collaterals, which motivated many subprime mortgage borrowers to default on their loan repayments. Higher default rates, in turn, led to credit contraction and tightening of the lending standards in banks.

As a consequence, the housing demand substantially dropped, while the housing supply was increasing due to the rising number of real estate foreclosures. The imbalances between supply and demand further reduced house prices and exacerbated deteriorating credit market conditions, which severely affected the real economy and led to high default rates across all loan categories. Fig. 1 demonstrates the relationship between U.S. house prices, bank lending, and nonperforming loans (NPL). It appears that there is a close relationship between house prices, aggregate loan level, and aggregate NPL in the U.S. banking system. In other words, rising house prices are associated with increased lending and low default rates, while NPL increase substantially when house prices and real estate lending drop. In addition, Fig. 1 shows that NPL dynamics vary significantly across loan categories and bank types. More specifically, it appears that the impact of house price fluctuations is much higher on real estate loans, compared to other loan categories. It also emerges that, compared to savings institutions (SI), commercial banks (CB) suffer from higher loan losses in response to deteriorating market conditions. Against this background, it is clear that understanding how house prices affect the quality of loan portfolios is of crucial importance to financial institutions and regulators interested in maintaining financial stability. Accordingly, this study uses dynamic panel data models to empirically investigate the impact of house price fluctuations on the evolution of NPL across U.S. banks. The analysis is further extended by examining if this relationship varies across different loan categories and different types of banks.

This paper complements the existing literature in several ways. First, we specifically examine the impact of house price fluctuations on the quality of loan portfolios at bank-level. Available empirical works focus primarily on the role of house prices in destabilizing the banking system as a whole (see, e.g., Reinhart and Rogoff (2008); Barrell et al. (2010)), while the impact of house prices on the quality of loan portfolios in individual banks is less investigated. Closely related to this particular aspect of our analysis, Pan and Wang (2013) study the threshold effects of income growth on the relationship between house prices and NPL. However, Pan and Wang (2013) only consider the asymmetric impact of house prices on NPL, whereas other credit risk determinants may also have asymmetric effects on default rates. In this empirical study, we account for potential asymmetric effects of all credit risk determinants on default rates by investigating NPL dynamics during different time periods. Second, to the best of our knowledge, this is the first study that investigates how different loan categories are affected by house price movements. Using aggregate NPL to examine the relationship between house prices and the quality of loan portfolios may be challenged as the composition of loan portfolios varies widely across banking institutions (Louzis et al., 2012). In addition, it is evident in Fig. 1 that NPL dynamics vary substantially across different loan categories. Therefore, it is essential to investigate the sensitivity of different loan categories to house price fluctuations in order to develop an insight for financial regulators to provide better regulatory practices for individual banks with different loan portfolio compositions. Third, potential differences between determinants of NPL across different types of the U.S. depository institutions have remained undetected, despite their important regulatory implications. It is argued that a bank’s lending policies reflect its risk attitude, which in turn depends on its mission and institutional structure (see Salas and Saurina (2002)). Furthermore, as seen in Fig. 1, there are major differences between NPL dynamics of CB and SI over time. Therefore, this study adds to the existing credit risk literature by examining if the impact of house prices on the evolution of NPL varies across two types of depository institutions, namely CB and SI.1 Finally, another feature of this paper is that we assess the house price-credit risk nexus based on state-level data and during different macroeconomic conditions. It is argued that the dynamics of house prices vary widely both over time and across geographical regions (see, e.g., Mian and Sufi (2009); Holly et al., (2010)). In particular, despite the recent boom and bust cycle in U.S. national house prices, the patterns of house prices were non-uniform across states. While some states, such as California and Florida, experienced substantial changes in the house prices over both boom and bust periods, some states, such as Vermont and Montana, only underwent rapid house price appreciation, and some other states, such as Georgia and Michigan, only faced large declines over the bust period.
 
These substantial variations in regional house prices reflect differences in the housing market supply and demand, which in turn depend on demographic and socio-cultural factors, local economic conditions, regional regulations and jurisdictions, and local financial systems. Although these factors can contribute markedly to the diversity of credit risk within the United States, the impact of time and regional variations in house prices on the evolution of credit risk has been largely neglected by the literature. Therefore, we investigate the impact of state-level house price fluctuations on the evolution of NPL during different macroeconomic conditions. In essence, the empirical results reveal that house prices significantly affect the quality of banks’ loan portfolios. More specifically, there is a strong negative relationship between changes in house prices and evolution of NPL in individual banks, which supports the view that house prices can serve as a key macroprudential indicator (see, e.g., Davis and Zhu (2009); Barrell et al. (2010)). We also find that the impact of house prices on NPL is more pronounced during adverse economic conditions. In fact, we show that most bank-specific and systematic factors have asymmetric impact on loan losses during different economic conditions. This important finding complements the credit risk literature as similar studies examine the potential asymmetric effects of only one variable on default rates (see, e.g., Marcucci and Quagliariello (2009); Pan and Wang (2013)). 
 
Furthermore, unlike prior studies in the banking literature, we show that the effects of house prices on loan losses vary significantly across different loan categories. More specifically, it is shown that falling house prices lead to higher loan losses in real estate loan portfolios, implying that banks with higher real estate lending may face greater financial constraints when house prices drop. Our empirical results also show that the impact of house prices varies among bank types. In particular, we show that CB are more sensitive to falling house prices although SI are traditionally mandated to concentrate on residential mortgages. It is also found that the impact of house prices on loan losses varies depending upon the quality of loan portfolios. In other words, lower quality loan portfolios are more sensitive to house price fluctuations. This particular finding supports the view that there is a circular relationship between house prices, bank lending behavior, and loan losses. Finally, we show that our key findings remain unchanged when we assess the robustness of our results by using different house price indicators, different econometric methodologies, and alternative model specifications. The remainder of this paper is organized as follows. Section 2 provides some theoretical background and highlights the hypotheses to be tested. In Section 3, the empirical models and estimation procedure are introduced. Section 4 describes the data, while Section 5 discusses the empirical results associated with each hypothesis. In Section 6 we report findings from further empirical checks. Section 7 concludes.
 

 

دیدگاهتان را بنویسید

نشانی ایمیل شما منتشر نخواهد شد. بخش‌های موردنیاز علامت‌گذاری شده‌اند *

دکمه بازگشت به بالا