دانلود رایگان مقاله انگلیسی + خرید ترجمه فارسی
|
|
عنوان فارسی مقاله: | آبیاری بارانی آب شور تاج پوشش درخت انگور در مراحل مختلف رشد |
عنوان انگلیسی مقاله: | Over-canopy saline sprinkler irrigation of grapevines during different growth stages |
مشخصات مقاله انگلیسی (PDF) | |
سال انتشار | 2011 |
تعداد صفحات مقاله انگلیسی | 9 صفحه با فرمت pdf |
رشته های مرتبط | کشاورزی، مهندسی آبیاری، زراعت واصلاح نباتات، گیاه پزشکی، مدیریت منابع آب، گیاه پزشکی، علوم باغبانی، آبیاری و زهکشی و آب شناسی |
مجله | مجله مدیریت آب کشاورزی (Agricultural Water Management) |
دانشگاه | موسسه تحقیق و توسعه استرالیای جنوبی |
شناسه شاپا یا ISSN | ISSN 0378-3774 |
لینک مقاله در سایت مرجع | لینک این مقاله در سایت ساینس دایرکت |
نشریه | Elsevier |
مشخصات و وضعیت ترجمه مقاله (Word) | |
تعداد صفحات ترجمه مقاله | 21 صفحه با فرمت ورد، به صورت تایپ شده و با فونت 14 – B Nazanin |
ترجمه تصاویر | ترجمه توضیحات زیر تصاویر انجام نشده و اشکال و نمودارها به صورت عکس در فایل ترجمه درج شده است. عبارات روی جداول و اشکال ترجمه نشده است. |
فرمول ها و محاسبات | تمامی فرمول ها و محاسبات به صورت عکس در فایل ترجمه درج شده است. |
فهرست مطالب:
چکیده
۱ مقدمه
۲ مواد و روش ها
۲ ۱ مواد ازمایشی و محیط کشت
۲ ۲ طرح ازمایشی، آبیاری و تیمارها
۲ ۳ اندازه گیری های هواشناسی، آب و خاک
۲ ۴ اندازه گیری های گیاهی
۳ نتایج
۳ ۱ شوری آب و خاک
۳ ۲ غلظت های کلسیم و سدیم برگ، میوه و چوب
۳ ۳ رشد رویشی، عملکرد و ترکیب میوه
۴ بحث
۴ ۱ اثرات خیساندن شاخ و برگ
۴ ۲ تاثیر زمان بندی آبیاری
۵ نتیجه گیری
بخشی از ترجمه:
مرطوب کردن شاخ و برگ گیاه با آبیاری شور موجب افزایش جذب یون های سمی سدیم و کلر می شود.طی بیش از سه فصل متوالی، موهای کلمبراد با آب شور آبیار شور (با هدایت الکرتیکی ۳.۵ds.m) با آبیاری بارانی تاج پوشش طی یکی سه فصل اول رشد آبیاری شدند: از غنچه دهی تا شکوفایی کامل (تیمارهایBB-FB)، شکوفایی کامل تا شروع رسیدگی (تیمار FB-V) و شروع رسیدگی تا برداشت(V-H). در زمان های دیگر، موها آب غیر شور همانند شاهد دریافت کردند. متسط شوری خاک فصلی طی آزمایش نسبتا ثآبت باقی ماند. بر عکس، غلظت های سدیم و کلر در چوب های مو یک ساله و نکتار انگور بیش از و دوبرآبر بود. در تیمار های FB-Vو V-H، عملکرد متوسط طی سه فصل تا بیش از ۱۵ درصد کاهش یافت. نتایج با یافته های حاصله در مطالعه قبلی که در همین منطقه با تیمار های مشآبه توسط آبیاری قطره ای انجام شده بود مقایسه گردید. در آبیاری قطره ای، حداکثر کاهش در عملکرد متوسط طی سه فصل ۲ درصد بود. آبیاری بارای آب شور موجب افزایش غلظت های کلر و سدیم میوه ، پهنک برگ و چوب یک ساله ای شد که به ترتتیب این افزایش ۷، ۵ و ۲ برآبر بیشتر نسبت به افزایش ناشی از همین تیمارها در آبیاری قطره ای بود.افزایش فصلی پیشرونده در غلظت های کلر و سدیم در این بافت ها تا حدودی ناشی از انباشته شدن املاح قبلی در فصول گذشته بود. با آبیاری بارانی آب شور، بزرگی این غلظت ها ۴ برآبر بیش از آن در نسبت به نوع قطره ای بود. با آب شور، با استفاده از سیستم های آبیاری که شاخ و برگ را خیس نمی کنند پرورش دهندگان می توانند خسارات را تا حدودی کاهش دهند.
۱ مقدمه
اثرات نامطلوب آبیاری آب شور بر رشد گیاه به اثر اسمزی نسبت داده شده است که در آن غلظت های بالای املاح محلول در خاک موجب تنزل وضعیت آب گیاه شده و نیز اثر سمی که در آن غلظت های بالای سدیم و کلر در بافت های گیاهی موجب اختلال در متآبولیسم گیاهی می شوند( برنشتین ۱۹۷۵). هر دو اثر متناسب با غلظت املاح در محلول خاک می باشند( ارتلی و ریچاردسون ۱۹۶۸، دانتون ۱۹۷۷)، با این حال، روآبط بین غلظت های سدیم و کلر در بافت های گیاهی و محلول خاک را می توان تحت شرایط شوری با عوامل دیگر از جمله روش آبیاری و تهویه خاک اصلاح کرد( برنشتاین و فرانکویس ۱۹۷۵، دانتون ۱۹۸۵، وست و تیلور ۱۹۸۴).
برنشتاین و فرانکویس ۱۹۷۵ و بنس ۱۹۹۶ تاثیر روش آبیاری بر عملکرد را در مطالعاتی بر روی فلفل و جو مورد بررسی قرار دادند. افزودن مستقیم آب شور به سطح خاک به میزان متوسط منجر به کاهش عملکرد و آسیب برگی نشد. آبیاری بارانی با همین مقدار آب موجب کاهش عملکرد و آسیب برگی شد که ناشی از غلظت بالای کلر و سدیم در برگ ها بود. آبیاری بارانی شاخ و برگ های گونه های چند ساله چوبی و غیر چوبی یکساله با مقدار متوسط آب شور موجب افزایش غلظت های کلر و سدیم می شود.
بخشی از مقاله انگلیسی:
Wetting plant foliage with saline irrigation increases the uptake of toxic ions Na+ and Cl−. Over three consecutive seasons, Colombard vines grafted on Ramsey rootstock were irrigated with saline water (EC 3.5 dS/m) by over-canopy sprinklers during any one ofthe firstthree ofthe four annual growth stages: bud burst to full bloom (treatment BB–FB), full bloom to veraison (treatment FB–V), and veraison to harvest (treatmentV–H).At other times, vines received non-saline water (EC 0.5 dS/m) as did the control. Seasonal average soil salinities remained relatively constant over the trial. In contrast, the concentrations of Na+ and Cl− in one-year old wood and grape juice more than doubled. In treatments FB–V and V–H the average yield over the three seasons was reduced by up to 15%. Results were compared with those obtained in an earlier study which was undertaken in the same vineyard with the same treatments applied via dripper. With drippers, the maximum reduction in the average yield over three seasons was 2%. Saline sprinkling caused rises in Na+ and Cl− concentrations of fruit, leaf lamina and one-year-old wood that were at least 7-fold, 5-fold and 2-fold greater, respectively,than the rises caused by application ofthe same treatments with drip. Progressive seasonal rises in the concentrations of Na+ and Cl− in these tissues were due in part to carryover of salt added in previous seasons; with saline sprinkling the magnitude of these carryovers was 4-fold greater than those with saline drip irrigation. With saline water, vignerons can reduce losses by using irrigation systems which do not wet the foliage. 1. Introduction The deleterious effects of saline irrigation on plant growth have been attributed to an osmotic effect in which elevated concentrations of soluble salts in the soil causes a decline in plant water status and a toxic effect in which elevated concentrations Na+ and Cl− in plant tissue poison plant metabolism (Bernstein, 1975). Both effects are proportional to the concentration of salts in soil solution (Oertli and Richardson, 1968; Downton, 1977), however the relationship between the concentrations of Na+ and Cl− in plant tissue and those in soil solution can also be modified under saline conditions by other factors including irrigation method, rootstock and soil aeration (Bernstein and Francois, 1975; Downton, 1985; West and Taylor, 1984). Bernstein and Francois (1975) and Benes et al. (1996) demonstrated the effect of irrigation method on yield in studies on bell peppers and barley. Applying moderately saline water directly to the soil surface did not cause yield loss or leaf damage. Sprinkling with the same water caused yield loss and leaf damage which were associated with higher concentrations of Na+ and Cl− in the leaves. Sprinkling the foliage of woody perennials and non-woody crops with moderately saline water increases concentrations of Na+ and Cl− in leaves (Ehlig and Bernstein, 1959; Maas et al., 1982). Munns (1993) concluded that the deleterious effect of salinity on growth was due to leafloss.Whilst many crops have been shown to suffer foliar damage and defoliation when sprinkled with saline waters (Maas, 1985), demonstration of a yield loss in addition to that expected from rises in soil salinity is limited to the studies of Bernstein and Francois (1975) and Benes et al. (1996). Grapevines can tolerate a partial defoliation without suffering yield loss (May et al., 1969; Kliewer, 1970). In vines undergoing saline drip irrigation, the development of yield loss was associated with inter-seasonal rises in the concentrations of Na+ and Cl− in leaves (Prior et al., 1992a, 1992b). These rises were associated with rises in the concentrations of Na+ and Cl− in both the soil and the canes, a perennating plant organ (Stevens et al., 2011). Over a study of 2 seasons duration on saline sprinkled grapes, Francois and Clark 0378-3774/$ – see front matter. Crown Copyright © 2011 Published by Elsevier B.V. All rights reserved. doi:10.1016/j.agwat.2011.09.003 R.M. Stevens et al. / Agricultural Water Management 101 (2011) 62–70 63 (1979) found that foliar absorbed Na+ and Cl− did not increase the concentration of these ions in the canes. Given that partial defoliation does not necessarily lead to yield loss in vines and that foliar absorbed Na+ and Cl− has not been shown to affect the level of these ions in perennating tissue, then it is unclear whether saline sprinkling of grapevines over consecutive seasons will lead to the development of a yield loss above that to be expected from the effect that saline irrigation has on soil salinity. Stevens et al. (1999) found that 3 consecutive seasons of drip irrigation with saline water in any one of the four seasonal growth stages caused a loss of 2% or less in the average yield over three seasons of Colombard grapevines on Ramsey rootstock. Widespread leaf damage did not emerge until the fourth season of this trial (Stevens, 2005). The current study was located in the same vineyard as the study of Stevens et al. (1999). It applied the same treatments, excepting that over-canopy sprinklers replaced drippers. In it we investigated the effects of saline sprinkling on yield and fruit composition, and on the concentrations of Na+ and Cl− in perennating and non-perennating tissues. Comparisons between this study and the previous study (Stevens et al., 1999, 2011) are used to distinguish the effects of saline sprinkling on production from those of saline drip irrigation. 2. Materials and methods 2.1. Experimental material and culture The trial was located at Loxton, South Australia (34◦38’S, 140◦38’E) in a vineyard which was replanted in 1977 to Colombard vines on Ramsey rootstocks. The vines were spaced at 3.5 m between rows and 2.5 m within rows, with rows aligned N–S. The vines were cane pruned and trained on a 1 m wide-T trellis. Nitrogen was applied as urea in the irrigation water at annual rates of 81 kg N/ha. A full cover herbicide program was applied throughout the growing season. Vineyard soils were sandy, silaceous, thermic Xerollic Calciorthids. The soil textures were: 0–30 cm sand or sandy loam or sandy clay loam, 30–160 cmsandy clay loamor clay loam.Acompact, class 3b, lime layer (Wetherby and Oades, 1975) was found between 85 and 90 cm. 2.2. Trial design, irrigation and treatments The trial was imposed on vine rows which had not been part of the saline experiments described in Stevens et al. (1999, 2011). It was a randomised block design containing 5 replicates. A plot consisted of 3 adjacent rows of 6 vines per row (18 vines). Measurements were made on the middle 2 grapevines in the middle row. The outer rows acted as barrier rows. On the outside of each barrier row, midway between it and the adjacent row, a 1.7 m deep plastic sheet was inserted vertically to act as a soil barrier to the movement of salt between the rows and a 0.9 m high sheet of knitted high density polyethylene monofilament shade cloth was erected at 2.0 m above ground level to intercept sprinkler throw beyond the edge of the plot. In September 1991, one year before treatments commenced,the irrigation system was converted from drip to over-canopy sprinklers. Inverted mini-sprinklers (Rondo, Plastro Gvat, Israel) were suspended at 2.4 m height above ground level along the trellis line and spaced at 2.5 m. Enclosed testing ofthis sprinkler arrangement, that is 2.5 × 3.5 m non-offset spacing, returned a sprinkler precipitation pattern with a coefficient of uniformity of 88% (Christiansen, 1942). During this season all vines were irrigated with non-saline water (electrical conductivity [EC] 0.5 dS/m). Treatments commenced in September 1992. The vines were irrigated with saline water (EC 3.5 dS/m) during any one of the first three ofthe four annual growth stages. Saline irrigation was applied to treatment BB–FB from bud-burst until full-bloom, and to treatment FB–V from full-bloom until veraison and treatment V–H from veraison until harvest. In Colombard, veraison was signified by a change in the appearance of the outer surface of the grape skin from dull and waxy to clear and translucent. From harvest to leaf fall and at other times, they were irrigated with non-saline water (EC 0.5 dS/m) as was a control (CONT) which received non-saline water throughout the season. In this vineyard, bud burst occurred in September and leaf fall in May. The irrigations were scheduled to maintain the soil water content of a 1.6 m deep rootzone within 60 mm of field capacity. Irrigations commenced at 1800 h and were applied at a rate of 7 mm/h. Non-saline water was drawn from the Murray River at Loxton and in the early 1990s in such water with an EC of 0.5 dS/m the average concentrations of Na+, Ca2+, Mg2+, K+, Cl− were 2.5, 0.4, 0.5, 0.1, and 2.6 mmol/L. Saline water was generated by adding a sodium chloride brine to non-saline water to produce water with an EC of 3.5 dS/m. The brine was prepared by adding food grade salt to nonsaline water. Two grades of salt were used. One was comprised of NaCl 99.8% by weight and Ca2+ and Mg2+ at concentrations of 300 and 45 ppm, respectively. The second grade was similar to the first, but also contained sodium aluminosilicate at 0.5% by weight. During irrigations the brine was continuously agitated. 2.3. Meteorological, water and soil measurements Measurements of rainfall and data for calculation of reference evapotranspiration (ETo) were sourced from an Australian Government Bureau of Meteorology station, which was located 100 m east ofthe experimental site (station number 024024). This site was surrounded by irrigated crops. The reference evapotranspiration for grass (ETo) was calculated following the procedures of Allen et al. (1998). Irrigation volumes were measured with an in-line flow meter. Water salinities (EC) were measured on samples collected by continuously bleeding the supply lines for each treatment through micro-capillary tubes into 4 L jars. Rainfall at a rate greater than 5 mm/d was considered to be effective. For each growth stage and for the entire season, the EC of water received by the grapevines (ECw) was expressed as a volume-weighted average. For the purpose of this calculation both irrigation and effective rainfall were considered to be water additions with the EC of rainfall taken as 0.044 dS/m (Blackburn and McLeod, 1983). Test wells with casing depths of 3.2 m were installed at 6 sites. A site was located in each treatment of the replicate located in the middle of the block and in the control treatments of the replicates located on the eastern and western edges of the block. The depth to the top of the perched watertable was read once weekly during the season. Soil salinity was quantified as the EC of the saturated paste extract (ECe). Soil samples were taken in 3 replicates just before bud–burst and at full-bloom, veraison, harvest and just after leaf fall. Soil was sampled at 0.05, 0.35, 0.75, 1.1 and 1.6 m depth. In order to aid in the interpretation ofthe soil salinity measure, at each sample time a single root-weighted value (RWECe) was calculated for each sample location. The calculation and the root length data used in it are described in Stevens and Douglas (1994).
دانلود رایگان مقاله انگلیسی + خرید ترجمه فارسی
|
|
عنوان فارسی مقاله: | آبیاری بارانی آب شور تاج پوشش درخت انگور در مراحل مختلف رشد |
عنوان انگلیسی مقاله: | Over-canopy saline sprinkler irrigation of grapevines during different growth stages |