دانلود رایگان ترجمه مقاله ژن های مختلف و توابع فیزیولوژیکی در گیاهان – ASPB 2004

دانلود رایگان مقاله انگلیسی ناقل سدیم در گیاهان، ژن های مختلف و توابع فیزیولوژیکی به همراه ترجمه فارسی

 

عنوان فارسی مقاله: ناقل سدیم در گیاهان، ژن های مختلف و توابع فیزیولوژیکی
عنوان انگلیسی مقاله: Sodium Transporters in Plants. Diverse Genes and Physiological Functions
رشته های مرتبط: زیست شناسی و کشاورزی، علوم سلولی و مولکولی، علوم گیاهی، ژنتیک، ژنتیک مولکولی و مهندسی ژنتیک، فیزیولوژی گیاهان زراعتی و علوم باغبانی
فرمت مقالات رایگان مقالات انگلیسی و ترجمه های فارسی رایگان با فرمت PDF میباشند
کیفیت ترجمه کیفیت ترجمه این مقاله پایین میباشد 
نشریه ASPB
کد محصول f189

مقاله انگلیسی رایگان (PDF)

دانلود رایگان مقاله انگلیسی

ترجمه فارسی رایگان (PDF)

دانلود رایگان ترجمه مقاله

خرید ترجمه با فرمت ورد

خرید ترجمه مقاله با فرمت ورد
جستجوی ترجمه مقالات جستجوی ترجمه مقالات

 

بخشی از ترجمه فارسی مقاله:

انتقال سدیم های سمی به داخل ریشه ها :
یک سوال مهمی که در رجوع در فشار های شوری در گیاهان ایجاد شده معرفی کانال ها ومسئولیت های ناقل ها برای نشت یون سدیم به داخل سلول های ریشه است 0مطالعات کلاسیکی نشت یون سدیم به داخل ریشه های جو با اجزلا چند بخشی ان ها نشان مید هد 0 (Rains and Epstein, 1965, 1967).علاوه بر این جهش های جایکاههی تکی که باعث کاهش بزرگ نشت سدیم به داخل گیاهان پیدا شده است پیشنهاد میکند که چندین راه برای این عمل موجود است 0 (Schroeder et al., 1994).
در مطالعت الکترو فیزیولوژیکال در سلول های کورتکس ریشه گندم (Tyerman et al., 1997 ذرت (Roberts and Tester, 1997)و سلول های کشت شده جو (Amtmann et al., 1997). پیشنهاد میکند که نشت سدیم بواسطه اختلاف پتانسیل است 0 درکانال های مثبت غیر انتخابی (named VIC or NSC; Tyerman and Skerrett, 199) ممانعت یون کلسیم از نشت یون سدیم در سدیم مشاهده شده است 0 (Tyerman et al., 1997),)
جریانNSCدر سلول های کورتکس ریشه گندم وابسته به ولتاژ ضعیف وغیر اتخابی بودن میان مونووالانت های مثبت است 0(Davenport and Tester, 2000). علاوه بر این در سلول هلی کورتکس ریشه گندم محروم از پتاسیم به بالا بودن جریان های نشت یون سدیم وتهیه مدرکی که ناقلین محروم ایجاد شده یون پتاسیم به نشت یون سدیم کمک میکنند نشان داده شده بودند (Buschmann et al., 20000 هد چند شناسایی مولکولی VIC/NSC ناشناخته باقی می مانند وبیشتر از یک ژن ناقل ممکن است به این فآلیت کمک کنند.
یک cDNAحلقوی از گندم جدا شده بود که میانجی ئابستگی پایین یون پتاسیم و انتقال مثبت در مخمرLCT1 نامیده میشود 0 (Schachtman et al., 1997).0 انالیز ساختمان دوم LCT1حظور 8 به 10 هیدروفوبیک با یک پایانه هیدروفیلیک N را پیشگویی میکند 0منطقه هیدرو فیلی وزمان کمک به دیگر ژنهای ناقل مشخص شده است.
mRNAوLCT1در سطوح پایین در ریشه های گندم نشان داده شده است عملکردLCT1بعنوان یون های غیر انتخابی نشت پذیر ناقل ها در مخمر میانجی نه فقط نشت یون پتاسیم است بلکه انتقال Rb1, Na1, Cd21, and Ca2 برعهده دارند0 Schachtmanet al., 1997; Clemens et al., 1998))بیان LCT1ترجمه شده مخمر وبیشتر حساس به نمک است (Amtmann et al2001)هر چند انالیز های پیشین نیازمند به تعیین این است که کدام غشا وتیپ های سلول های گیاهان LCT1هدف گزاری شده اند و نقش های ماند0می فیزیولوژیکی LCT1نشناخته شده باقیمیماند.
تنظیم کم میزان جریانهای VIC/NSCدر اربیدوپسیس بوسیله اضافه cAMP and cGMP حلقوی است(Maathuis and Sanders, 2001; Fig. 1).علاوه بر این ازمایشات نشت یون سدیم نشان میدهند که نشت یون سدیم در حضور نوکلوئتید های سیلیک ونیز تحمل شوری گیاهان ارابیدوپسیس بهبود یافته است0(Maathuis and Sanders, 2001 این نتایج هیپوتیز را که ممانعت کانال های نوکلو ئتید سیلیک ممکن است به جریان VIC/NSC currentsکمک کند را پشتیبانی میکند 0
ژنوم ارابیدوپسیس شامل 20 نوکلوئتید و ژن های شبه کانال (Ma¨ser et al., 2001), ونقش های انها در نشت یون سدیم به ذاخل ریشه تعیین شده میماند.

نتیجه گیری
استرس نمک یک مشکل عمده تهدید کننده بهره وری و بهره وری کشاورزی در قرن 21 است. شوری بسیاری از مناطق خشک و پرجمعیت جهان را تهدید می کند. ترکیبی از تجزیه و تحلیل بیولوژیکی، ژنتیکی، ژنتیکی، و ژنتیکی و مولکولی بیولوژیکی فیزیولوژیک، بیوشیمیایی، ژنوم، و مولکولی منجر به شناسایی و مشخصه ژن ها و پروتئین های مهم ناقل Na1 شده است. جالب توجه است، ژن هایی که از طریق جهش در گیاهان مورد تجزیه و تحلیل قرار گرفته اند، نقش مهمی و متمایز در کنترل استرس شوری دارند. این یافته ها منجر به تشکیل فرضیه های جدید در مورد تداخل Na1، حمل و نقل از راه دور و نفوذ است که به مکانیزم های متفاوتی از تحمل نمک گیاه اشاره می کند و نشان می دهد که تحمل به نمک می تواند توسط مهندسی مولکولی گیاهان با استفاده از این ژن ها مورد استفاده قرار گیرد. تحقیق و توسعه بیشتر با استفاده از این ژن ها و پروتئین های گوناگون که بافت و شرایط وابسته هستند، به مهندسی آینده محصولات با مقاومت شوری بیشتر کمک خواهد کرد. تجزیه و تحلیل ژنوم نشان می دهد که کلاس های اضافی از حمل کننده Na1 احتمالا وجود دارد .

بخشی از مقاله انگلیسی:

TOXIC SODIUM INFLUX INTO ROOTS

One of the important questions to be addressed with respect to salinity stress in plants is the identification of channels and transporters responsible for toxic Na1 influx into root cells. Classical 22Na1 influx studies showed multiple kinetic components of Na1 influx into barley roots (Rains and Epstein, 1965, 1967). Furthermore, single locus mutations that greatly diminish Na1 influx into plants have not been found, suggesting that several parallel redundant pathways exist (Schroeder et al., 1994). Na1 influx currents have been characterized in electrophysiological studies in root cortex cells of wheat (Tyerman et al., 1997), maize (Roberts and Tester, 1997), and barley suspensioncultured cells (Amtmann et al., 1997). These studies suggest that Na1 influx is mediated by voltage-independent, nonselective cation channels (named VIC or NSC; Tyerman and Skerrett, 1999). Calcium inhibition of Na1 influx in wheat was observed (Tyerman et al., 1997; Buschmann et al., 2000; Davenport and Tester, 2000). The NSC current in wheat cortex cells is weakly voltage dependent and nonselective among monovalent cations (Davenport and Tester, 2000). Furthermore, in wheat root cortex cells K1 deprivation was shown to enhance Na1 influx currents, providing evidence that K1 starvation-induced transporters contribute to Na1 influx (Buschmann et al., 2000). However, the molecular identity of VIC/NSC remains unknown and more than one transporter gene may contribute to this activity. A cDNA was isolated from wheat that mediates low-affinity K1 and cation transport in yeast and was named LCT1 (Schachtman et al., 1997). Analysis of the secondary structure of LCT1 predicts the presence of 8 to 10 hydrophobic domains with a hydrophilic N terminus. The hydrophobic region is distinctive and novel compared to other transporter genes. LCT1 mRNA is detected at low levels in wheat roots and leaves. LCT1 functions as a nonselective cation permeable transporter in yeast mediating not only K1 influx but also Rb1, Na1, Cd21, and Ca21 transport (Schachtman et al., 1997; Clemens et al., 1998). LCT1 expression rendered yeast more salt sensitive (Amtmann et al., 2001). However, further analyses will be required to determine to which plant membrane and cell types LCT1 is targeted and physiological roles of LCT1 remain to be identified. VIC/NSC currents in Arabidopsis are downregulated by the addition of cAMP and cGMP (Maathuis and Sanders, 2001; Fig. 1). Furthermore, 22Na1 tracer influx experiments show reduction in Na1 influx in the presence of cyclic nucleotides and salt tolerance of Arabidopsis plants was improved (Maathuis and Sanders, 2001). These results support the hypothesis that cyclic nucleotide inhibited channels may contribute to VIC/NSC currents (Fig. 1). The Arabidopsis genome includes 20 cyclic nucleotide gated channel-like genes (Ma¨ser et al., 2001), and their roles in root Na1 influx remain to be determined.

CONCLUSIONS

Salt stress is a major problem threatening agricultural productivity and yields in the 21st century. Salinity threatens many arid and heavily populated regions of the world. The combination of physiological, biochemical, genomic, genetic, and molecular biological analyses has led to the identification and characterization of important Na1 transporter genes and proteins. Interestingly, the genes that have been analyzed via mutagenesis in plants to date show important and distinct roles in controlling salinity stress. These findings have led to the formulation of novel hypotheses on Na1 sequestration, long-distance transport, and influx that point to mechanisms mediating plant salt tolerance and demonstrate that salt tolerance can be manipulated by molecular engineering of plants using these genes. Further research and development using these genes and diverse promoters, which are tissue and condition dependent, will likely contribute to the future engineering of crops with enhanced salinity resistance. Genome-wide analyses indicate that additional classes of Na1 transporters are likely to exist and characterization of further complexities and interesting functions of Na1 transporters are on the horizon.

 

دیدگاهتان را بنویسید

نشانی ایمیل شما منتشر نخواهد شد. بخش‌های موردنیاز علامت‌گذاری شده‌اند *

دکمه بازگشت به بالا