عنوان فارسی مقاله: | شبیه سازی و کنترل و تنظیم کلاچ الکتروهیدرولیک |
عنوان انگلیسی مقاله: | Simulation and control of an electro-hydraulic actuated clutch |
دانلود مقاله انگلیسی: | برای دانلود رایگان مقاله انگلیسی با فرمت pdf اینجا کلیک نمائید |
سال انتشار | 2011 |
تعداد صفحات مقاله انگلیسی | 12 |
تعداد صفحات ترجمه مقاله | 22 |
مجله | سیستم های مکانیکی و پردازش سیگنال (Mechanical Systems and Signal Processing) |
دانشگاه | کنترل اتوماتیک و انفورماتیک کاربردی رومانی |
کلمات کلیدی | شبیه سازی , مدل سازی دینامیک , سیستم هیدرولیک , کنترل کلاچ , استراتژی کنترل پیش بینی شده شبکه , متغیر با زمان تأخیر . |
نشریه | Elsevier |
فهرست مطالب:
چکیده
1 مقدمه :
2 مدل سازی سیستم محرک کلاج
2 1 ساختار عملکرد کاربردی
2 2 مدل ورودی – خروجی سیستم کلاج محرک
3 شبکه استراتژی کنترل
3 1 مدل CARIMAبرای سیستم محرک کلاج
3 2 استراتژی کنترل
3 3 تأخیر متغیر زمان
3 4 معماری کنترل
4 شبیه سازی و نتایج تجربی
4 1 اعتبارسنجی مدل
4 2 اجرای کنترلر
5 نتیجه گیری
بخشی از ترجمه:
2-4 اجرای کنترلر
این بخش به ارائه امکان سنجی استراتژی های کنترل پیش بینی پیشنهادی جهت بررسی مدل با استفاده از برنامه متلب پرداخته است.
شکل 7: جابجایی کلاچ الف: کنترلر PI ب: کنترل پیش بینی
اجزای همان زیر سیستم ها را می توان برای تأخیر ارتباطی از حسگر به کنترل و کنترل به محرک را در نظر گرفت. با استفاده از نرم افزار متلب می توان این موارد را نشان داد. نتایج بدست آمده با دو کنترل کننده مختلف ارائه شده است.
شکل 7 , 4 سیگنال را نشان می دهد که شامل جابجایی کلاچ مرجع و پاسخ سیستم با استفاده از کنترل PI بدون تأخیر ارتباطی و با تأخیر ارتباطی و پاسخ سیستم با تأخیر زمانی که کنترل پیش بینی اعمال شده است.
در شکل 8 , سیگنال های کنترل برای pi برای پیش بینی نشان داده شده است . می توان نتیجه گرفت اجرای روش کنترل پیش بینی بهتر از روش پیش بینی اسمیت توسعه یافته است.
شكل8:سیگنال های کنترل الف: کنترل pi و ب: کنترل پیش بینی
5- نتیجه گیری
در این مقاله یک مدل خطی ورودی- خروجی برای یک کلاچ الکتروهیدرولیک توسعه داده شده است. موارد ساده به منظور بدست آوردن تابع انتقال مناسب در محیط شبیه سازی بوده و برای رسیدن به یک رفتار مناسب برای خروجی است. مدل با مقایسه نتایج با داده ها بدست آمده ودر واقع تأییدی برای آزمون ارائه شده است. براساس مدل ورودی – خروجی معتبر, شبکه کنترل پیش بینی برای کلاچ با هدف فعال کرده آن توسط یک شیر الکتروهیدرولیک می باشد در حالی که کاهش نفوذ از تأخیر زمان در حلقه بسته اجرای کنترل در شبکه های ارتباطی است. شبیه سازی و همچنین نتایج تجربی منجر به ارائه یک مدل سازی و کنترل شده یک روش مناسب است.
بخشی از مقاله انگلیسی:
1. Introduction Nowadays, clutch pedals as well as automatic transmissions, double-clutch transmissions, hybrid drive concepts and chassis control systems increasingly require open-loop and closed-loop controlled actuators. The introduction of a new actuator opens up new opportunities for controlling the engine and drive-line, and new strategies that can improve the drive-line performance are predictable. In the last decades, the use of control systems for automated clutch and transmission actuation has been constantly increasing; a clear trend is that automatic clutch systems will be introduced and used in a wider variety of applications, which would benefit from advanced clutch control. For example, start and stop strategies can be employed and in addition the clutch control can be utilised in automated manual transmissions to reduce the time for gear changes. Furthermore, clutch control is also a factor in look-ahead control. Recent attention has focused on modelling different valve types used as actuators in automotive control systems: physics-based nonlinear model for an exhausting valve [1], nonlinear state-space model description of the actuator that is derived based on physical principles and parameter identification [2,3], nonlinear physical model for programmable Contents lists available at ScienceDirect journal homepage: www.elsevier.com/locate/jnlabr/ymssp Mechanical Systems and Signal Processing 0888-3270/$ – see front matter & 2011 Elsevier Ltd. All rights reserved. doi:10.1016/j.ymssp.2011.01.009 n Corresponding author. E-mail addresses: abalau@ac.tuiasi.ro, andreea1984@yahoo.com (A.-E. Balau), caruntuc@ac.tuiasi.ro (C.-F. Caruntu), clazar@ac.tuiasi.ro (C. Lazar). Mechanical Systems and Signal Processing 25 (2011) 1911–1922 Downloaded From http://www.elearnica.ir valves [4], nonlinear model of an electro-magnetic actuator used in brake system based on system identification [5], mathematical model obtained using identification methods for a valve actuation system of an electro-hydraulic engine [6], linear model constructed based on a grey-box approach which combines mathematical modelling and system identification for an electro-magnetic control valve [7], input–output simplified mathematical model and state-space mathematical model for an electro-hydraulic valve actuator, both based on parameter identification and physical laws [8]. Also, during the last years, the automated clutch actuators have been actively researched and different models and control strategies have been developed: a model for an electro-hydraulic valve used as actuator for a wet clutch [9], dynamic modelling and control of electro-hydraulic wet clutches [10], PID control for a wet plate clutch actuated by a pressure reducing valve [11], predictive and piecewise LQ control of a dry clutch engagement [12], switched control of an electro-pneumatic clutch actuator [13], Model Predictive Control of a two stage actuation system using piezoelectric actuators for controllable industrial and automotive brakes and clutches [14], explicit Model Predictive Control of an electro-pneumatic clutch actuator [15]. All of the above control solutions assume that the sensors, controllers and actuators are directly connected, which is not realistic. Rather, in modern vehicles, the control signals from the controllers and the measurements from the sensors are exchanged using a communication network, e.g., Controller Area Network (CAN) or Flexray, among control system components, yielding a so called Networked Control System (NCS). Although these NCSs brought many attractive advantages, which include: low cost, simple installation and maintenance, increased system agility, higher reliability and greater flexibility, this also brings up a new challenge on how to deal with the effects of the network-induced delays and packet losses in the control loop. The delays may be unknown and time-varying and may degrade the performances of control systems designed without considering them and can even destabilise the closed-loop system. The predictive control techniques were introduced mainly in order to deal with plants that have complex dynamics (unstable inverse systems, time-varying delay, etc.) and plant model mismatch. These strategies are of a particular interest from the point of view of both broad applicability and implementation simplicity, being applied on large scale in industry processes, having good performances and being robust at the same time. They were initially utilised for slow processes: oil refineries, petrochemicals, pulp and paper, primary metal industries, gas plant [16], but starting with the evolution of hardware components and algorithms, the possibility to implement these types of control algorithms to fast processes, which have reduced sampling periods, appeared: vehicle engine and traction control, aero-spatial applications, autonomous vehicles, power generation and distribution [17]. Some predictive control algorithms were already proposed for different vehicle subsystems: Anti-lock Braking System (ABS) control [18], Vehicle Dynamics Control (VDC) [19], vehicle magnetic actuators [20], middle-layer control [21], but without taking into account the delays that can appear in a networked environment. As such, in this paper, an input–output model for a wet clutch actuated by an electro-hydraulic valve used by Volkswagen for automatic transmission is developed. The electro-hydraulic valve used to control the wet clutch is not a typical one, being especially designed for Volkswagen vehicles. This type of valve was not modelled in literature and a proper model was needed in order to control the wet clutch with the aim of lowering emissions, reducing fuel consumption and increasing comfort. The designed electro-hydraulic clutch actuator model has as input the supply voltage and as outputs the clutch pressure and the clutch piston displacement. Starting from the developed model, a simulator was implemented in Matlab/Simulink and the model was validated against data obtained from a test-bench provided by Continental Automotive Romania, which includes the Volkswagen DQ250 wet clutch actuated by the electrohydraulic valve DQ500. The simulations are very similar to the experimental data proving that the modelling approach is suitable to this kind of clutch actuated by an electro-hydraulic valve. Using the developed input–output model for the valve–clutch system, an appropriate networked controller based on a predictive strategy is proposed in order to control the clutch piston displacement, while decreasing the influence of the variable time delay induced in the CAN-based NCS on the control performance. The plant is a subsystem of the automatic transmission of a Volkswagen vehicle and the main control goal is to make the clutch plates position track a given external reference, while taking into account the delays that appear in the NCS. The results obtained with the proposed method are compared with the ones obtained with different networked controllers and it is shown that the strategy presented in this paper can indeed improve the performances of the control system.
عنوان فارسی مقاله: | شبیه سازی و کنترل کلاچ الکتروهیدرولیک |
عنوان انگلیسی مقاله: | Simulation and control of an electro-hydraulic actuated clutch |
خرید ترجمه فارسی مقاله با فرمت ورد