این مقاله انگلیسی ISI در نشریه هینداوی در 10 صفحه در سال 2022 منتشر شده و ترجمه آن 27 صفحه میباشد. کیفیت ترجمه این مقاله ویژه – طلایی ⭐️⭐️⭐️ بوده و به صورت کامل ترجمه شده است.
دانلود رایگان مقاله انگلیسی + خرید ترجمه فارسی | |
عنوان فارسی مقاله: |
آمار و آنالیز تلفیقی اطلاعات هدفمند فقرزدایی با الگوریتم کلان داده کاوی |
عنوان انگلیسی مقاله: |
Statistics and Analysis of Targeted Poverty Alleviation Information Integrated with Big Data Mining Algorithm |
مشخصات مقاله انگلیسی | |
فرمت مقاله انگلیسی | pdf و ورد تایپ شده با قابلیت ویرایش |
سال انتشار | 2022 |
تعداد صفحات مقاله انگلیسی | 10 صفحه با فرمت pdf |
نوع مقاله | ISI |
نوع نگارش | مقاله پژوهشی (Research Article) |
نوع ارائه مقاله | ژورنال |
رشته های مرتبط با این مقاله | اقتصاد – مهندسی صنایع |
گرایش های مرتبط با این مقاله | توسعه اقتصادی و برنامه ریزی – داده کاوی – لجستیک و زنجیره تامین |
چاپ شده در مجله (ژورنال) | Security and Communication Networks |
نمایه (index) | scopus – Master Journal List – JCR – DOAJ |
نویسندگان | Meizhen Gao – Li L – Yetong Gao |
شناسه شاپا یا ISSN | 1939-0114 |
شناسه دیجیتال – doi | https://doi.org/10.1155/2022/1496170 |
ایمپکت فاکتور(IF) مجله | 2.531 در سال 2021 |
شاخص H_index مجله | 50 در سال 2022 |
شاخص SJR مجله | 0.734 در سال 2021 |
شاخص Q یا Quartile (چارک) | Q2 در سال 2021 |
بیس | است ✓ |
مدل مفهومی | دارد ✓ |
پرسشنامه | ندارد ☓ |
متغیر | دارد ✓ |
فرضیه | ندارد ☓ |
رفرنس | دارای رفرنس در داخل متن و انتهای مقاله ✓ |
کد محصول | 13388 |
لینک مقاله در سایت مرجع | لینک این مقاله در سایت Hindawi |
نشریه | هینداوی – Hindawi |
مشخصات و وضعیت ترجمه فارسی این مقاله | |
فرمت ترجمه مقاله | pdf و ورد تایپ شده با قابلیت ویرایش |
وضعیت ترجمه | انجام شده و آماده دانلود |
کیفیت ترجمه | ویژه – طلایی ⭐️⭐️⭐️ |
تعداد صفحات ترجمه تایپ شده با فرمت ورد با قابلیت ویرایش | 27 (1 صفحه رفرنس انگلیسی) صفحه با فونت 14 B Nazanin |
ترجمه عناوین تصاویر و جداول | ترجمه شده است ✓ |
ترجمه متون داخل تصاویر | ترجمه شده است ✓ |
ترجمه متون داخل جداول | ترجمه شده است ✓ |
ترجمه ضمیمه | ندارد ☓ |
درج تصاویر در فایل ترجمه | درج شده است ✓ |
درج جداول در فایل ترجمه | درج شده است ✓ |
درج فرمولها و محاسبات در فایل ترجمه | تایپ شده است ✓ |
منابع داخل متن | به صورت عدد درج شده است ✓ |
منابع انتهای متن | به صورت انگلیسی درج شده است ✓ |
فهرست مطالب |
1. مقدمه 2. بازبینی مطالعات پیشین 3. روش تحقیق 4. نتایج و مباحثات 5. نتیجه گیری در دسترس بودن داده ها تعارض منافع تقدیم تشکر منابع |
بخشی از ترجمه |
برای رسیدن به درکی جامع تر و سیستماتیک تر از تاثیر کمک های دولت به خانوارهای فقیر به منظور تحقق اهداف مبتنی بر کاهش فقر، در این مقاله در کنار بررسی الگوریتم داده کاوی کلان داده ها به بررسی تلفیقی از یک جامعه آماری و تحلیل اطلاعات برنامه کاهش هدفمند فقر می پردازیم. در این بررسی مطابق ماژول خط لوله در یادگیری ماشین (ML) در چارچوب اسپارک که یک چارچوب محاسباتی کلان داده می باشد پیش رفتیم و علم کلان داده های عصر جدید و الگوریتم های شناخته شده داده کاوی را با یکدیگر ادغام نمودیم، پیش تر برای مدل سازی و تحلیل به حجم زیادی از داده نیاز بود اما در این مدل، روش نمونه گیری تصادفی طبقه ای را مورد استفاده قرار دادیم و بدین ترتیب توانستیم مدل جنگل تصادفی، مدل لجستیک و مدل آبشاری جدید پیشنهادی خود برای بررسی خانوارهای فقیر را تدوین نماییم. برای شناسایی خانوارهای ضعیف از چندین روش شناسایی استفاده نمودیم و به ارزیابی مقایسه ای نتایج آن ها پرداختیم، در نهایت، نتایج نشان می دهند هنگامی که با 100 داده واقعی صحت سه روش شناسایی خانوار فقیر را مورد آزمایش قرار دهیم، مقدار مدل جنگل تصادفی تا 82 درصد و مقدار مدل لجستیک تا 72 درصد کاهش می یابد که تغییر اندکی به شمار می آید، اما مقدار مدل آبشاری بدون تغییر در همان 83 در صد ثابت باقی می ماند و در هر سه مدل تغییرات ناچیزی رخ خواهد داد. مزیت طراحی جدیدی که در این مقاله برای مدل آبشاری ارائه شده این است که در این روش می توان تا درصد زیادی نمونه ها را مجدد مورد استفاده قرار داد و از این طریق می توان به شکل موثری از برازش بیش از حد نمونه ها اجتناب ورزید، به همین دلیل دیگر نیازی به وجود حجم زیادی از داده نمی باشد. مدل جدید ما مدلی پایدار و قابل اعتماد می باشد. به کارگیری تلفیقی از الگوریتم های هدفمند کاهش فقر با فناوری اطلاعات کلان و داده کاوی را می توان از عمده دلایلی دانست که منجر شدند نتایج حاصل از استفاده از این مدل دقیق تر و قانع کنندهتر بشوند. شیار تنه و شیار سمت راست غالبا به خاطر جامعه آماری از علت های شایع کنار گذاشته میشوند.
بازبینی مطالعات پیشین |