این مقاله انگلیسی ISI در نشریه اسپرینگر در 20 صفحه در سال 2000 منتشر شده و ترجمه آن 31 صفحه میباشد. کیفیت ترجمه این مقاله ارزان – نقره ای ⭐️⭐️ بوده و به صورت کامل ترجمه شده است.
دانلود رایگان مقاله انگلیسی + خرید ترجمه فارسی | |
عنوان فارسی مقاله: |
مدل برنامه نويسی خطی چند معياری برای انتخاب نمونه کارها |
عنوان انگلیسی مقاله: |
Multiple criteria linear programming model for portfolio selection |
|
مشخصات مقاله انگلیسی | |
فرمت مقاله انگلیسی | |
سال انتشار | 2000 |
تعداد صفحات مقاله انگلیسی | 20 صفحه با فرمت pdf |
نوع مقاله | ISI |
نوع ارائه مقاله | ژورنال |
رشته های مرتبط با این مقاله | مهندسی کامپیوتر |
گرایش های مرتبط با این مقاله | رایانش ابری، مهندسی الگوریتم ها و محاسبات، برنامه نویسی کامپیوتر |
چاپ شده در مجله (ژورنال) | سالنامه های تحقیقات عملیات – Annals of Operations Research |
کلمات کلیدی | انتخاب نمونه کارها، چندمعياری، برنامه نويسی خطی، تساوی حقوق |
کلمات کلیدی انگلیسی | portfolio selection – multiple criteria – linear programming – equity |
ارائه شده از دانشگاه | پژوهشکده مهندسی کنترل و محاسبات، دانشگاه صنعتی ورشو، لهستان |
نمایه (index) | Scopus – Master Journals – JCR |
شناسه شاپا یا ISSN | 0254-5330 |
شناسه دیجیتال – doi | https://doi.org/10.1023/A:1018980308807 |
ایمپکت فاکتور(IF) مجله | 2.942 در سال 2019 |
شاخص H_index مجله | 90 در سال 2020 |
شاخص SJR مجله | 1.032 در سال 2019 |
شاخص Q یا Quartile (چارک) | Q1 در سال 2019 |
بیس | نیست ☓ |
مدل مفهومی | ندارد ☓ |
پرسشنامه | ندارد ☓ |
متغیر | ندارد ☓ |
رفرنس | دارای رفرنس در داخل متن و انتهای مقاله ✓ |
کد محصول | F1771 |
نشریه | اشپرینگر – Springer |
مشخصات و وضعیت ترجمه فارسی این مقاله | |
فرمت ترجمه مقاله | pdf و ورد تایپ شده با قابلیت ویرایش |
وضعیت ترجمه | انجام شده و آماده دانلود |
کیفیت ترجمه | ترجمه ارزان – نقره ای ⭐️⭐️ |
تعداد صفحات ترجمه تایپ شده با فرمت ورد با قابلیت ویرایش | 31 صفحه (1 صفحه رفرنس انگلیسی) با فونت 14 B Nazanin |
ترجمه عناوین تصاویر | ترجمه شده است ✓ |
ترجمه متون داخل تصاویر | ترجمه نشده است ☓ |
ترجمه ضمیمه | ندارد ☓ |
ترجمه پاورقی | ندارد ☓ |
درج تصاویر در فایل ترجمه | درج شده است ✓ |
درج فرمولها و محاسبات در فایل ترجمه | به صورت عکس درج شده است ✓ |
منابع داخل متن | به صورت عدد درج شده است ✓ |
منابع انتهای متن | به صورت انگلیسی درج شده است ✓ |
کیفیت ترجمه | کیفیت ترجمه این مقاله متوسط میباشد. |
فهرست مطالب |
1 مقدمه |
بخشی از ترجمه |
مسئله انتخاب نمونه کارها معمولاً به عنوان مسئله بهينه سازي دومعياري در نظرگرفته مي شود که در آن يک سبک سنگين کردن معقول بين نرخ مورد انتظار بازگشت و ريسک مورد جستجو قرار مي گيرد. در مدل کلاسيک مارکووويتز، ريسک با واريانس اندازه گيري و در نتيجه يک مدل برنامه نويسي درجه دوم توليد مي شود. مدل مارکووويتز غالباً به اين عنوان که با مدل هاي بديهي ترجيحات براي انتخاب تحت ريسک سازگار نيست، مورد انتقاد قرار مي گيرد. مدل هاي سازگار با حقايق ترجيح مبتني بر رابطه غلبه تئوري مطلوبيت مورد انتظار است. پياده سازي مورد اول براي مقايسه هاي جفتي نمونه کارها معين ساده است در حاليکه هر ابزار محاسباتي را براي تحليل مسئله انتخاب نمونه کارها ارائه نمي دهد. مورد دوم زماني که براي مسئله انتخاب نمونه کارها استفاد شود، در ترجيحات مدلسازي سرمايه گذاران، محدود است. در اين مقاله، يک مدل برنامه نويسي خطي چندمعياري مسئله انتخاب نمونه کارها توسعه مي يابد. اين مدل بر اساس حقايق ترجيح براي انتخاب تحت ريسک است. هرچند، يکي را براي به کارگيري رويه هاي معيارهاي چنداستانداردي براي تحليل مسئله انتخاب نمونه کارها ميسر مي سازد. نشان داده شده است که رويکردهاي کلاسيک متوسط ريسک حاصل در مدل هاي برنامه نويسي خطي متناظر با تکنيک هاي راه حل خاص اعمال شده براي مدل چند معياري ما است. 1. مقدمه .6. نتایج و تحقیقات بیشتر |
بخشی از مقاله انگلیسی |
The portfolio selection problem is usually considered as a bicriteria optimization problem where a reasonable trade-off between expected rate of return and risk is sought. In the classical Markowitz model the risk is measured with variance, thus generating a quadratic programming model. The Markowitz model is frequently criticized as not consistent with axiomatic models of preferences for choice under risk. Models consistent with the preference axioms are based on the relation of stochastic dominance or on expected utility theory. The former is quite easy to implement for pairwise comparisons of given portfolios whereas it does not offer any computational tool to analyze the portfolio selection problem. The latter, when used for the portfolio selection problem, is restrictive in modeling preferences of investors. In this paper, a multiple criteria linear programming model of the portfolio selection problem is developed. The model is based on the preference axioms for choice under risk. Nevertheless, it allows one to employ the standard multiple criteria procedures to analyze the portfolio selection problem. It is shown that the classical mean-risk approaches resulting in linear programming models correspond to specific solution techniques applied to our multiple criteria model. 1. Introduction 1. Introduction The portfolio selection problem considered is based on a single period model of investment. At the beginning of the period, the investor allocates capital among various securities, assigning a nonnegative weight to each security. During the period, each security generates a random rate of return so that at the end of the period, the capital has been changed by the weighted average of the returns. In selecting security weights, the investor faces a set of linear constraints, one of which is that the weights must sum to one. Following the seminal work by Markowitz [12], the portfolio selection problem is usually modeled as a bicriteria optimization problem where a reasonable trade-off between expected rate of return and risk is sought. The Markowitz model is frequently criticized as not consistent with axiomatic models of preferences for choice under risk (Bell and Raiffa [1]). Models consistent with the preference axioms are based on the relation of stochastic dominance or on expected utility theory (Levy [9]). The former is quite easy to implement for pairwise comparisons of given portfolios whereas it does not offer any computational recipe to analyze the portfolio selection problem. The latter when used for the portfolio selection problem is restrictive in modeling preferences of investors. 6. Conclusions and further research Following the pioneering work of Sharpe [18], many attempts have been made to linearize the portfolio selection problem. There were introduced several risk measures which lead to linear programming mean-risk models. In this paper we have developed a multiple criteria linear programming model of the portfolio selection problem. The classical linear programming mean-risk approaches turn out to be specific aggregation techniques applied to our multiple criteria model. The model is based on the preference axioms for the choice under risk. Therefore, by looking for various efficient solutions of the multiple criteria linear program, we are able to identify solutions of the portfolio selection problem which are optimal with respect to various risk averse preferences. Nevertheless, the model allows one to employ the variety of standard multiple criteria procedures to analyze the portfolio selection problem. |