دانلود ترجمه مقاله کاربرد کامپوزیت نانولوله کربنی در سوییچ SRR کاملا اپتیکال – مجله الزویر

elsevier

 

دانلود رایگان مقاله انگلیسی + خرید ترجمه فارسی

 

عنوان فارسی مقاله:

سوییچ SRR تماما نوری با استفاده از کامپوزیت نانولوله کربنی

عنوان انگلیسی مقاله:

All optical SRR switch using carbon nanotube composite

  • برای دانلود رایگان مقاله انگلیسی با فرمت pdf بر روی عنوان انگلیسی مقاله کلیک نمایید.
  • برای خرید و دانلود ترجمه فارسی آماده با فرمت ورد، روی عنوان فارسی مقاله کلیک کنید.

 

مشخصات مقاله انگلیسی (PDF)
سال انتشار  ۲۰۱۴
تعداد صفحات مقاله انگلیسی  ۶ صفحه با فرمت pdf
رشته های مرتبط با این مقاله  مهندسی مواد و مهندسی برق
گرایش های مرتبط با این مقاله   مهندسی پلیمر، اپتیک و لیزر، مخابرات میدان، نانومواد، کامپوزیت، نانو فناوری و برق مخابرات
مجله  مجله بین المللی برای نور و اپتیک الکترونی(Optik- International Journal for Light and Electron Optics)
دانشگاه  دانشکده مهندسی برق و کامپیوتر، دانشگاه تربیت مدرس، تهران
کلمات کلیدی  سوییچ SRR تماما نوری، کامپوزیت های CNT، اثرات غیر خطی، فرامواد
شناسه شاپا یا ISSN ISSN ۰۰۳۰-۴۰۲۶
لینک مقاله در سایت مرجع لینک این مقاله در سایت ساینس دایرکت
نشریه الزویر Untitled

 

مشخصات و وضعیت ترجمه فارسی این مقاله (Word)
تعداد صفحات ترجمه تایپ شده با فرمت ورد با قابلیت ویرایش و فونت ۱۴ B Nazanin ۱۷ صفحه
ترجمه عناوین تصاویر و جداول ترجمه شده است
درج تصاویر در فایل ترجمه درج شده است
درج فرمولها و محاسبات در فایل ترجمه به صورت عکس درج شده است

 


  • فهرست مطالب:

 

 چکیده
۱ مقدمه
۲ ساختاری پیشنهادی
۳ پارامتر های نوری موثر کامپوزیت CNT
۳ ۱ کامپوزیت CNT پارافین
۳ ۲ کامپوزیت
۴ بحث و نتایج شبیه سازی
۴ ۱ کامپوزیت CNT پارافین
۴ ۲ کامپوزیت CNT BaTiO3
۵ نتیجه گیری


  • بخشی از ترجمه:

 

در این مقاله ما اقدام به ارایه و بررسی نانوساختار های جدید برای سوییچ های فرامواد تمام نوری SRR بر اساس کامپوزیت MWCNT به عنوان لایه غیر خطی کردیم. نتایج به دست آمده نشان داد که پاسخ سوییچینگ را می توان از صفر به یک تغییر داد که نسبت خاموش و روشن عالی را می دهد. هم چنین ما از کامپوزیت CNT-BaTiO3 با اثر غیر خطی بالا استفاده کردیم که مقدار توان آستانه پایین را برای سوییچینک نشان می دهد که ۷٫۱۶ mV2 در واحد سلول است.
دیگر مزیت ساختار پیشنهادی استفاده از کامپوزیت های مبتنی بر CNT می باشد که نه تنها خواص غیر خطی قوی را دارد بلکه دارای شرایط عملی خوب در خصوص احتمالات تولید است.
در نهایت، ساختار پیشنهادی دارای پتانسیل بالا برای استفاده در همه مدار های فوتونیک نوری یکپارچه می باشد.


  • بخشی از مقاله انگلیسی:

Introduction Metamaterials with unavailable optical properties in nature such as the negative refraction, have been studied extensively from opticalto microwave frequency ranges [1]. They show a wide range of new applications such as sub wavelength image [2], slow light and cloaking [3]. In many cases, metallic resonators such as split ring resonators (SRRs) and fishnet structures are used to demonstrate the negative index metamaterial [4,5]. The design of all optical switches based on SRRs has attracted a great deal of attention in recent years, however only a limited number of materials have been used in their design and fabrication. For example, Chen et al. [6] have proposed a structure for terahertz electro optical switch based on SRRs and Gong et al. [7] have investigated theoretically an all optical absorption switch using an effective medium which its strong Kerr nonlinear effect has been discussed in [8]. Since their discovery in 1991 by Ijima [9], CNTs have found practical applications in several fields. It is well known that, materials with large third order optical nonlinearities are required for photonic applications including all optical switching, data processing, eye and sensor protection. Due to superior electrical and optical characteristics, the CNT structures and composites have been attracted by the researchers for using in electrical and optical devices [10–۱۵]. Also the optical switching properties of CNT composites have been discussed in [16]. But all optical metamaterial switch structure based on the Kerr effect of CNT composite which is presented and discussed in this paper is a new idea which has not been introduced before. The strong third order optical nonlinearity of CNT-paraffin composite provides it as a good candidate for nonlinear optical applications. CNTs have third order susceptibility (3) dependent on the nanotube radius. In order to prevent the inter-band absorption and achieve a transparent region for the CNT composite, there is a low frequency limit where the incident photon energies satisfy the condition ωi < <εg. For the case of CNT-paraffin composite, the imaginary part of (3) is equal to zero and thus no inter-band absorption is occurred, whereas its real part is obtained about 10−۷ esu [17]. This value is appropriate for practical applications in nonlinear optical devices. In this paper, we introduce a novel structure for all optical SRR switch based on metamaterial which the CNT composite has been used as the nonlinear layer. For the three-dimensional simulation of switching performance we need to have the optical parameters of CNT composite layer. In [18], the permittivity dispersion of single wall CNT (SWCNT) has been calculated using some experimental results for the grapheme permittivity. Here we combine some methods to calculate theoretically the effective parameters from experimentally verified references. In addition, two kinds of nonlinear layer including CNT-paraffin and CNT-BaTiO3 have been implemented and studied in the structure, which latter choice has a higher third order nonlinear susceptibility than former one [19]. So our work is a combination of several efforts such as the calculation of effective parameters for MWCNT and MWCNT composite, the structure design for an all optical switch and the simulation of switching performance. The paper is organized as follows: In Section 2, the proposed structure for the all optical SRR switch is introduced and discussed. Section 3 discusses about the effective optical parameters of CNT composite. Then in Section 4, the simulation results are presented. In this section, two cases for the nonlinear layer are considered: in one case, Paraffin has been used as the host media for the CNT composite, and in the other case, BaTiO3 has been used. Finally in Section 5, the paper is concluded. 2. The proposed structure Fig. 1 shows the schematic of total structure and the related unit cell for the proposed all optical SRR switch. The implemented unit cell in the structure is based on a recently presented electric analog to split ring resonators (SRRs) which consists of two single golden SRR put together on a split gap side [6–۲۰]. In our proposed structure,this unit cell is placed on a CNT composite layer deposited on the glass substrate. It should be noted that, the switch structure is illuminated from the top of it, as indicated in Fig. 1. The schematic of total structure and the related unit cell for the proposed all optical SRR switch, with a = 10, b = 2, c = 4 and p = 50 nm, and consequently the output wave as the switch response (transmission) will be obtained and detected by a detector placed under the switch structure. Fig. 3 shows the equivalent circuit model for the split ring resonator (SRR) unit cell. A capacitor-like structure couples to the electric field and is connected in parallel with two loops, which each provides an inductance to the circuit model, as discussed in [21]. This configuration allows the electric field to drive the LC resonance providing both positive and negative electric polarizations at different frequencies along the resonance curve, where the phase of resonator response is in phase and out of phase with the driving field, respectively [20]. The two inductive loops are connected in parallel, so the equivalent inductance will be L/2.


 

 

دانلود رایگان مقاله انگلیسی + خرید ترجمه فارسی

 

عنوان فارسی مقاله:

سوییچ SRR تماما نوری با استفاده از کامپوزیت نانولوله کربنی

عنوان انگلیسی مقاله:

All optical SRR switch using carbon nanotube composite

  • برای دانلود رایگان مقاله انگلیسی با فرمت pdf بر روی عنوان انگلیسی مقاله کلیک نمایید.
  • برای خرید و دانلود ترجمه فارسی آماده با فرمت ورد، روی عنوان فارسی مقاله کلیک کنید.

 

 

 

ارسال دیدگاه

نشانی ایمیل شما منتشر نخواهد شد. بخش‌های موردنیاز علامت‌گذاری شده‌اند *