این مقاله انگلیسی ISI در نشریه ASCE در 10 صفحه در سال 2010 منتشر شده و ترجمه آن 28 صفحه میباشد. کیفیت ترجمه این مقاله ارزان – نقره ای ⭐️⭐️ بوده و به صورت کامل ترجمه شده است.
دانلود رایگان مقاله انگلیسی + خرید ترجمه فارسی | |
عنوان فارسی مقاله: |
تخلیه آنتی اکسیدان از ژئومبران پلی اتیلن با تراكم بالا تحت شرایط شبیه سازی شده محل دفن زباله |
عنوان انگلیسی مقاله: |
Antioxidant Depletion from a High Density Polyethylene Geomembrane under Simulated Landfill Conditions |
|
مشخصات مقاله انگلیسی | |
فرمت مقاله انگلیسی | pdf و ورد تایپ شده با قابلیت ویرایش |
سال انتشار | 2010 |
تعداد صفحات مقاله انگلیسی | 10 صفحه با فرمت pdf |
نوع مقاله | ISI |
نوع نگارش | TECHNICAL PAPERS |
نوع ارائه مقاله | ژورنال |
رشته های مرتبط با این مقاله | مهندسی عمران و مواد |
گرایش های مرتبط با این مقاله | خاک و پی، مدیریت ساخت، شناسایی و انتخاب مواد مهندسی |
چاپ شده در مجله (ژورنال) | ژورنال مهندسی ژئوتکنیک و مهندسی ژئونولوژیک – Journal of Geotechnical and Geoenvironmental Engineering |
کلمات کلیدی | استقامت. Geomembranes، محل های دفن زباله، لاينرهای محافظ، عمر خدمات، دما، HDPE، ضایعات جامد شهری |
کلمات کلیدی انگلیسی | Durability – Geomembranes – Landfills – Liners – Service life – Temperature; HDPE – Municipal solid waste |
ارائه شده از دانشگاه | گروه مهندسی عمران، مرکز ژئو مهندسی، دانشگاه ملکه، کینگستون، کانادا |
نمایه (index) | Scopus – Master Journals – JCR |
شناسه شاپا یا ISSN | 1090-0241 |
شناسه دیجیتال – doi | https://doi.org/10.1061/(ASCE)GT.1943-5606.0000302 |
ایمپکت فاکتور(IF) مجله | 3.066 در سال 2019 |
شاخص H_index مجله | 129 در سال 2020 |
شاخص SJR مجله | 1.893 در سال 2019 |
شاخص Q یا Quartile (چارک) | Q1 در سال 2019 |
بیس | نیست ☓ |
مدل مفهومی | ندارد ☓ |
پرسشنامه | ندارد ☓ |
متغیر | ندارد ☓ |
رفرنس | دارای رفرنس در داخل متن و انتهای مقاله ✓ |
کد محصول | F1741 |
نشریه | ASCE |
مشخصات و وضعیت ترجمه فارسی این مقاله | |
فرمت ترجمه مقاله | pdf و ورد تایپ شده با قابلیت ویرایش |
وضعیت ترجمه | انجام شده و آماده دانلود |
کیفیت ترجمه | ترجمه ارزان – نقره ای ⭐️⭐️ |
تعداد صفحات ترجمه تایپ شده با فرمت ورد با قابلیت ویرایش | 28 صفحه (2 صفحه رفرنس انگلیسی) با فونت 14 B Nazanin |
ترجمه عناوین تصاویر و جداول | ترجمه شده است ✓ |
ترجمه متون داخل تصاویر | ترجمه نشده است ☓ |
ترجمه متون داخل جداول | ترجمه نشده است ☓ |
ترجمه ضمیمه | ندارد ☓ |
ترجمه پاورقی | ندارد ☓ |
درج تصاویر در فایل ترجمه | درج شده است ✓ |
درج جداول در فایل ترجمه | درج شده است ✓ |
درج فرمولها و محاسبات در فایل ترجمه | به صورت عکس درج شده است ✓ |
منابع داخل متن | به صورت انگلیسی درج شده است ✓ |
منابع انتهای متن | به صورت انگلیسی درج شده است ✓ |
کیفیت ترجمه | کیفیت ترجمه این مقاله پایین میباشد. |
فهرست مطالب |
چکیده |
بخشی از ترجمه |
چکیده |
بخشی از مقاله انگلیسی |
Abstract Accelerated aging tests to evaluate the depletion of antioxidants from a high density polyethylene geomembrane are described. The effects of temperature, high pressure, and continuous leachate circulation on the aging of geomembranes in composite liner systems are examined. The antioxidant depletion rates 0.05, 0.19, and 0.41 month−1 at 55, 70, and 85°C, respectively obtained for the simulated landfill liner at 250 kPa vertical pressure are consistently lower than that obtained from traditional leachate immersion tests on the same geomembrane 0.12, 0.39, and 1.1 month−1 at 55, 70, and 85°C. This difference leads to a substantial increase in antioxidant depletion times at a typical landfill liner temperature 35°C with 40 years predicted based on the data from the landfill liner simulators tests, compared to 15 years predicted for the same geomembrane based on leachate immersion tests. In these tests, the crystallinity and tensile yield strain of the geomembrane increased in the early stages of aging and then remained relatively constant over the testing period. There was no significant change in other geomembrane properties within the testing period. 1- Introduction A modern municipal solid waste MSW landfill basal liner system typically consists of, from top to bottom: a granular leachate drainage/collection layer, a needle-punched nonwoven geotextile GT protection layer, and a geosynthetic composite liner, typically comprising a 1.5- or 2.0-mm-thick geomembrane and either a geosynthetic clay liner GCL or compacted clay liner or both. Because of their excellent resistance to advective flow and diffusive migration of inorganic contaminants, high density polyethylene HDPE geomembranes are extensively used as part of a composite liner in modern landfills Rowe et al. 2004; Rowe et al. 2007; Bouazza et al. 2008; Brachman and Gudina 2008a,b; Saidi et al. 2008; Rowe et al. 2009. Although, the long-term performance of geomembrane liners under field conditions is unknown, the potentially contaminating lifespan of the landfills is likely to be centuries Rowe et al. 2004. The geomembrane should perform adequately as an effective hydraulic and diffusive barrier throughout the potentially contaminating lifespan of the landfill. Some field investigations Schmidt et al. 1984; Brady et al. 1994; Rollin et al. 1994; Maisonneuve et al. 1997; Rowe et al. 2003 provide evidence that the HDPE geomembrane may experience aging or degradation with time. HDPE geomembranes may undergo degradation due to oxidation, extraction, ultraviolet degradation, and thermal degradation. Among these, oxidation of the polymer is considered to be the most significant degradation mechanism Hsuan and Koerner 1995. With the progression of oxidation, the physical and mechanical properties of the geomembrane decrease leading eventually to the failure of the geomembrane. To limit the oxidation of polyethylene, suitable stabilizers antioxidants are added to the resin used to manufacture the geomembrane. The most common types of antioxidants added to HDPE geomembranes along with their effective temperature ranges have been described by Fay and King 1994 and Hsuan and Koerner 1998. Viebke et al. 1994 and Hsuan and Koerner 1998 described the oxidative degradation as a three-stage process. Stage I involves the depletion of antioxidants which is caused by the chemical reactions of antioxidants with oxygen, free radicals or hydroperoxide and/or physical loss by diffusion, evaporation, extraction, or washing out Gedde et al. 1994; Hsuan and Koerner 1998; Haider and Karlsson 2002; Sangam and Rowe 2002; Dopico Garcia et al. 2004. During Stage I, the engineering properties of the geomembrane do not change significantly. Stage II is an induction time to the onset of the degradation and begins after the antioxidants are depleted. The end of Stage II corresponds to the time when oxidation causes the first measurable changes in the geomembrane. In Stage III, oxidation causes significant changes to the physical and mechanical properties which will eventually lead to geomembrane failure. Failure in this context refers to a decrease in an engineering property e.g., stress-crack resistance, tensile break stress, and tensile break strain to a specified value. The value defining the end of Stage III is somewhat subjective and engineers my select different definitions depending on circumstances. The two most commonly used values correspond to 50% of the initial property or the specified property value the latter is fairer for products whose initial value of a property, such as stress-crack resistance, significantly exceeds the minimum specified value. The service life of the HDPE geomembrane is taken as the sum of the duration of the above three stages. Because of the long time required to obtain results from actual field conditions, laboratory accelerated aging tests are conducted to evaluate the components of geomembrane service life. Most commonly, immersion tests have been used to evaluate the antioxidant depletion Stage I for HDPE geomembranes e.g., see Hsuan and Koerner 1998; Sangam and Rowe 2002; Muller and Jacob 2003; Gulec et al. 2004; Rimal et al. 2004; Jeon et al. 2008; Rowe and Rimal 2008b; Rowe et al. 2008; Rimal and Rowe 2009a,b. Immersion tests are conducted by incubating the geomembrane in the medium of interest, for example, air, water, leachate, acid mine drainage, or jet fuel. Antioxidant depletion times predicted from immersion tests are expected to underestimate the actual depletion times relative to most field applications since both sides of the geomembrane are exposed to leachate. The actual antioxidant depletion time will likely be longer in a landfill because, in areas where there are no holes in the geomembrane, only one side of the geomembrane will be exposed to the landfill leachate. However, there are only three research studies in the literature Hsuan and Koerner 1998; Rowe and Rimal 2008a,b that have attempted to investigate the aging of the geomembrane under simulated liner conditions as discussed below. |