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Abstract—Future networked embedded systems will be com-
plex deployments deeply integrated in the environment that they
monitor. They will have to react to both user and environmental
events, and this may require modifying their structure to handle
the changing situations. In a number of domains including indus-
trial environments, this modification of the system structure will
need to take place in real time. This is a hard problem that will
require novel and paradigmatic solutions involving cross-domain
knowledge to build a middleware for enabling real-time inter-
action between nodes allowing time-bounded reconfiguration.
For supporting real-time, this middleware must be vertically
architected in a modular way from the network and operating
system levels up to the application software and the real-time poli-
cies for achieving time-bounded behavior. This paper presents a
middleware that addresses these characteristics supporting timely
reconfiguration in distributed real-time systems based on services.
Experimental results are shown to validate the middleware in an
actual small-scale video prototype.

Index Terms—Distributed systems, middleware, real-time sys-
tems, reconfiguration, service composition, SOA.

I. INTRODUCTION

C URRENT computing environments are becoming com-
plex infrastructures containing numerous collections of

nodes of heterogeneous nature forming a cloud of processing
points. These nodes sense, process, actuate, and generate in-
formation for human operators and/or for other nodes and sub-
systems. Information captured in different parts of the complex
system can be processed and delivered in real time to other re-
mote spots to further process it and generate the required re-
sults on time. This is, for instance, the case of a complex video
surveillance system with content analysis for monitoring of in-
dustrial processes in hostile environments where no human op-
erators are present. In the near future, these infrastructures are
expected to perform cross-processing of huge bulks of informa-
tion in real time.
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To enable the existence of complex computing environments,
a flexible approach for their design, development, and interoper-
ability is needed. A natural way for this is to allow its subparts
to interact in a decoupled manner. Envisioning other limiting
possibilities (as monolithic development) is really hard at the
present history of technology and in a context where further ap-
plication domain possibilities and user demands appear in the
market so fast.

Introducing decoupled interaction solutions will solve part of
the problem, but it will bring in other challenges related to se-
curity, distributed information processing, synchronization, and
timeliness, among others. Precisely, real-time operation of such
complex infrastructures will be one of the key challenges that
must be handled from a multidomain perspective.

Currently, a clear trend is to support system reconfiguration as
part of the dynamics of these complex environments. A recon-
figuration implies the transition between two different system
states. A number of events may be generated through the system
that require a timely reaction to handle either unexpected or
even expected (application defined) situations. The infrastruc-
ture (i.e., the nodes and their connections) will have to adapt the
execution and even the node links to handle new events, offering
a correct answer to the new system state.

With this challenging problem in mind, we describe the
vision towards real-time reconfiguration from a system level
view presenting the middleware architecture developed in
the iLAND1 project; it is a platform-independent solution for
supporting time-bounded operation and reconfiguration in
service-oriented distributed soft real-time systems. The archi-
tecture defines the set of components and the associated logic to
provide time-deterministic guarantees. Related state-of-the-art
solutions do not integrate built-in algorithms and mechanisms
for supporting time-bounded reconfiguration. They either:
1) concentrate on application-level service composability tech-
niques being silent about real-time characteristics or 2) when
targeting real-time systems, they deal mainly with low-level
processor scheduling with no realistic considerations of distri-
bution issues.

The outline of this paper begins by describing the problem
in Section II. Section III presents the related work. Section IV
describes the concept of real-time reconfiguration and the appli-
cation model; the iLAND architecture is presented in Section V.
Section VI validates it in a small-scale industrial video surveil-
lance application. Section VII concludes the paper.

1[Online]. Available: http://www.iland-artemis.org.
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II. PROBLEM PRESENTATION AND APPROACH

A. Requirements

In the first phase of the iLAND project, the above presented
issues with respect to complex networked embedded systems
(NES) have been extensively studied, and a set of requirements
have been identified for the architecture of the software and the
role of the different hardware nodes. Related solutions have also
been analyzed in detail. Knowledge of the industrial experts
on different small-, medium-, and large-scale deployments has
been incorporated, and crosschecks with them for fast creation
of prototypes has been key to successfully obtain the problem
description and the requirements. The project target systems are,
in the end, closely related to the concept of cyber physical sys-
tems (CPSs) [1] that include high-confidence medical devices
and systems, assisted living, traffic control and safety, advanced
automotive systems, process control, and energy conservation,
among others. These studies have concluded by collecting a set
of specific requirements that are the following:

• Heterogeneity: solutions must be adequate for all plat-
forms, so they must be easily customizable.

• Interoperability: systems of different nature will interact
though simple and well defined interfaces. Besides, most
existing NES will be networked; suitable protocols are
data-efficient and lightweight and specifically designed to
facilitate interoperability.

• Time-bounded operation: real-time properties are present
in most of current environments with the only difference of
their temporal criticality level. For some, timeliness is just
a clear added value whereas for others it is a mandatory
requirement. In the context of this project, we deal with
soft real-time requirements.

• Dynamic behavior: it brings in a complex run-time
problem since it requires to deal with functionality re-
placement, load-balancing, and system self-healing,
among others.

• Composability: upgradability, component reuse, flexible
and incremental development, maintainability, and scala-
bility are required in the majority of current developments.

• Integration: system integration can be carried out at soft-
ware/hardware levels. Modular design is key for achieving
integration, based on either components, services, or stan-
dard communication protocols.

B. Vertical View

To meet the above mentioned requirements, a vertical archi-
tectural approach is needed that considers not only the execution
platforms but also the software stack that is capable of dealing
with both the application logic and the extra intelligence nec-
essary for supporting dynamic reconfiguration. In this case, the
software stack will contain the required layers that embed extra
intelligence at different levels:

• OS: enhanced primitives will be needed to manage execu-
tion of individual threads, thread groups, and to provide the
basic synchronization and timing facilities.

• Resource Managers: as enhancement to the OS, resource
managers will execute the algorithms for resource sched-
uling; resources will be assigned to the active entities (i.e.,

applications, threads, or thread groups). These algorithms
need to be effective and feasible online.

• Middleware: it is the minimum communication abstraction
layer providing an efficient distributed software paradigm
for flexible application programming, supporting the spec-
ification of QoS-based execution properties and temporal
characteristics.

C. Timing Requirements and QoS

There are different levels of temporal guarantees. Some com-
ponents require specifying a deadline for performing their op-
erations, so every individual job must fulfill the deadline; oth-
erwise, the system may fail to work properly. However, other
components may also have temporal constraints, but the failure
of some operation to meet some deadline (maybe even influ-
enced by the network effects) does not fully threaten their cor-
rect operation. Examples of such component operations may be
the detection and reaction to some alarm and the display of back-
ground information, respectively.

Current practice for meeting temporal guarantees in critical
parts uses dedicated HW and SW units with an extensive
schedulability analysis. However, the trend is more and more
to execute all software in general-purpose HW/SW platforms
and networks based on TCP/IP protocols and Ethernet. Mixing
software components with different criticality levels in the
same platform threatens the timely execution of the most
critical ones. This is especially evident if also the network
effects and Ethernet collision are considered. Therefore, to
guarantee timeliness the appropriate solutions have to be put
in place ensuring temporal isolation; for this, the operating
system specifics, multiresource scheduling, and efficient mid-
dleware architectures that aid timely interaction in a networked
environment must be considered.

D. Contribution

In current solutions, the integration of new software plat-
forms is based on the usage of direct communication proto-
cols or general purpose middleware. However, support for dy-
namic behavior, QoS-based execution, and online application
composability is not specifically addressed in a combined way
in any solution. Although some online application composi-
tion techniques exist, they have been applied outside the con-
text of real-time systems. In this work, the time-deterministic
dimension applies to both the execution time of services (in-
cluding their communication) and to the duration of the recon-
figuration process. We describe a middleware that addresses
the above-mentioned requirements providing support for dy-
namic behavior with QoS guarantees in the context of a flex-
ible software paradigm for composability of soft real-time dis-
tributed applications. Therefore, time-deterministic reconfigu-
ration is managed from an integrated perspective by providing
the following.

• A vertical architectural design for a middleware that
enables distributed SOA-based applications and that
supports: 1) real-time execution and 2) real-time (or
QoS-based) message exchange among services and nodes.
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• The software architecture shows the specific hooks to sup-
port real-time execution. It is detailed by presenting the
component, structural, and behavioral views.

• A reconfiguration protocol and a service-based compo-
sition algorithm that obtains new system configurations
in bounded-time and with bounded-error according to the
user/system specified criteria. The location of these mech-
anisms inside the middleware is described in the compo-
nents, views, and diagrams of the architecture.

III. RELATED WORK

Most popular application domains of distributed systems are
not strictly sensitive to real-time, and therefore, most research
work either does not consider the temporal aspects in their dy-
namics or does not handle it adequately in the different required
dimensions (i.e., network, operating system, communication
middleware, and application-level programming paradigm). It
is also true that working strictly at network level can bring in
more efficiency and temporal control in networked real-time
systems implementation; however, middleware-based solutions
have progressively gained popularity by trading-off some effi-
ciency and predictability for flexibility and programmability.
Therefore, quite some research effort has moved from the
low level network details to the design and development of
middleware in different domains as multimedia [2] or CPS [3].

At the network level, real-time traffic reconfiguration for ser-
vice-based systems has been partially handled as shown in [4],
where the service composition is done in a central master en-
tity inside a time-triggered network. Here, new configurations
are sent every elementary cycle by means of a trigger message
supporting a basic level of reconfiguration.

On the side of communication middleware, there are a
number of solutions with distinct acceptance levels as, for
instance, the former popular CORBA [5] (and RT-CORBA)
that offered distributed communication based on well defined
interfaces; they are currently abandoned mainly due to their
complex architecture and the associated execution overheads,
especially if compared with other lighter weight technologies
that are gaining market position as Internet communications
engine (ICE) [6], data distribution service (DDS) for real-time
systems [7], or language-dependent solutions as [8] for the
real-time Java language.

Current trends on engineering of dynamic distributed systems
mostly rely on the service-oriented architectures (SOA) para-
digm and on enhanced middleware solutions that use common
exchange languages as XML. The majority of SOA systems and
related middleware target web environments as [10], [11]; also,
research on dynamic SOA-based systems focuses on web ser-
vices composition based on ontology crosschecks and depen-
dency resolution [12]. The temporal aspect is typically not a
concern in web service environments as further evidenced in
[13], and they are silent about finding a solution in bounded-
time. QoS crosschecking applied in web-based service com-
position techniques are mainly restricted to application-related
levels and data semantics [14]. Over the last few years, SOA

paradigms have been applied to resource-limited embedded sys-
tems [15], and, more recently, the real-time embedded commu-
nity has also stepped into scene-providing architectures for gate-
ways to differentiate real-time from non real-time parts of the
service-based distributed system [16]. Therefore, some contri-
butions are appearing at different levels as QoS properties for
service execution and inter-service interaction [17], middleware
support for service-based applications, and composition algo-
rithms theory [18].

Dynamic execution has also been addressed by means of vir-
tual machines that provide, among other facilities, transparent
service execution and portable code. These environments are
typically thick software layers that abstract the real platform.
However, real-time services require a deterministic execution
platform integrating a suitable scheduling scheme as [19], [20].
Advanced features as service migration and code downloading
is still a threat for predictability, and other existing architectures
such as OSGi [21] (and some attempts to integrate timeliness as
[22]) are still far from being real-time.

Some contributions from the software engineering side have
built reconfigurable middleware studying the reflective aspects
to support interoperability, discovery, and mobility through
pluggable overlay networks [23]. Although our middleware can
be deployed in various versions, its configuration must be done
off-line; therefore, our focus is different since the middleware
does not reconfigure itself at run-time but it supports the timely
reconfiguration of applications.

Summarizing, the difference between the existing solutions
and iLAND middleware is twofold: 1) we explicitly consider
the temporal behavior of distributed systems, and 2) we target at
achieving time-bounded reconfiguration to support functional
variations for changing the structure of the distributed system
at run-time in bounded-time. Currently, there is no solution
that integrates support for real-time communication and re-
configuration through service-based composition to achieve
time-bounded reconfiguration. This paper presents a contri-
bution in this precise direction by architecting a QoS-aware
component-based middleware that supports the execution
and communication of service-based applications and their
reconfiguration in real-time. The first stage of the design and
architecture of the middleware was introduced in [24] and the
application model in [25] and [26].

IV. SYSTEM MODEL

A. Reconfiguration Model and Real-Time Properties

The presented middleware targets distributed soft real-time
systems, where failing to meet some deadline need not be ter-
rible and acceptable performance can still be achieved; it may
happen that only a degraded output is delivered, but this result
may still be correct and of a certain utility. As a consequence,
soft real-time systems use the concept of QoS, which relates to
the ability of trading off the resources used by tasks for the deliv-
ered quality. In our model, QoS attributes have two dimensions
[25] depending on their relation to: 1) the physical resources and
2) the application-level functionality.

Dynamics introduce execution uncertainty mainly related
to either functional or resource variation. Functional variation
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refers to the replacement of some self-contained activity (or
functional unit2) by a different one possibly delivering distinct
results. Resource variation refers to the different possible
assignment of resources to the different existing functional
units. Both variation types are inter-related. For instance, a
replacement of a video functional unit by an audio one will
result in a variation in the resource assignment since audio
processing is, on average, less resource consuming than video
processing. However, a variation in the assignment of resources
is not always the result of a functional change; it can be an
internal monitoring decision in response to, for example, a
recalculation of the load balance.3

In this context, a system reconfiguration occurs whenever
there is a functional or a resource variation, which implies to
modify either functional units or their resource assignment. In
any case, it implies a transition from one system state
to a target state . A reconfiguration is, therefore, part
of the dynamic behavior of a system. Consequently, timely re-
configuration is achieved whenever the transition from to

is performed in less than the specified time as

The goal of real-time reconfiguration techniques is to develop
the suitable mechanisms and architectures to develop a frame-
work where the function can be time-bounded. From a soft-
ware-architect point of view, depends on a number of levels
that must be carefully considered.

• Hardware: effects of instruction processing, cache, and
the processor architecture directly influence the execution
timeliness and predictability.

• Operating system: a real-time operating system has time-
bounded primitives, so efficient resource managers are im-
plemented mostly inside the kernel to offer enhanced re-
source scheduling mechanisms.

• Middleware: communication abstractions that hide node
heterogeneity and networking effects have also implica-
tions on the predictability of the system.

B. Software Model

A service-oriented model has been chosen as the software
paradigm, since it increases design and execution flexibility.
Services are self-contained functionality pieces that enable the
building of distributed applications in a decoupled way, i.e., ser-
vices reside in remote nodes in the network and communicate
via messages or events. In this context, a service manages a data
channel as shown in Fig. 1; it receives data through some input
interface, processes the data, and generates a result that can be
delivered to other services through its output interface.

It is possible to build extended functionality (applications) by
connecting services. Service-based applications are a set of con-
nected services in the form of a graph, where the nodes are the

2A functional unit is an execution unit which may either be a task, operating
system thread, active component, or service, depending on the jargon of the
run-time system or the considered execution platform.

3HOLA-QoS [28], [27], [20] deals with this correspondence by off-line pro-
filing of applications through the assignment of the different resource require-
ments to tasks and relating it to the different output qualities. iLAND follows
this principle, and we apply it to the concept of service instead of task or thread.

Fig. 1. Service data channel.

Fig. 2. (a) Application as a graph structure (AG or application graph). (b) Ex-
panded graph (XG) containing the different service implementations of each
service of the AG.

services and the connecting lines or arrows are the messages
exchanged between them. Service connections inside an appli-
cation can have dependencies that can be both functional (the
type of data processed by two connected services must be com-
patible) and nonfunctional (e.g., execution timeliness and re-
source requirements). In this model, a service is characterized
by the functionality it offers. A service (which is a conceptual
functionality-driven entity) is realized by one or more service
implementations that are the actual running entities. A service
implementation is a particular version of a specific service [see
Fig. 2(a) and (b)].

Therefore, a running application is a collection of service im-
plementations, and, as a consequence, an execution graph con-
tains only service implementations in execution. We define three
types of graphs:

Application graph (AG) is one that contains only services. It
is the static view of a desired application. ,
where is the set of services of application ; is the set of
relations (arrows) between nodes and contains elements of type

, where service is connected to in the graph; Q
is the set of quality of service parameters related to the specific
application data processing and to the needs for resources.

Expanded graph (XG) contains all possible service imple-
mentations. , where is the set of ser-
vice implementations of application ; is the set of service
implementations of service ; is the
set of relations (arrows) between nodes and contains elements of
type where service implementation is connected
to in the graph; is the same set of quality of service pa-
rameters of its application graph.

Execution graph (EG) is the application in execution; it con-
tains running service implementations.
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where the set of service implementations contained in are
only the ones that have been selected by the composition logic
(later explained in Section V); is a subset of and has
the same structure as for the .

The service-based approach suits most naturally the dynamic
behaviour of systems (i.e., where a reconfiguration must take
place by modification of the execution graph). A reconfiguration
is, therefore, the transition from one execution graph to another.
Triggers for reconfiguration can be diverse: 1) user action as a
request for a change of a functionality piece in the application
or an explicit request for a change in the output quality deliv-
ered by some application; 2) internal system decision usually
detected through system monitoring; this can be the case when
the load of the system must be balanced and the required mech-
anisms are launched for this purpose; and 3) Application deci-
sion due to some application-specific condition or programmed
event. These triggers lead to two reconfiguration types: 1) func-
tional, where a service has to be started, stopped, or replaced,
and 2) internal, where a service implementation is replaced.

V. MIDDLEWARE FOR REAL-TIME RECONFIGURATION

To achieve real-time reconfiguration in iLAND, an a priori
study of the system must be undertaken where the temporal
analysis of the system is performed. a priori study of the system
allows also to discard nondeterministic executions and complex
graph structures that will lead to a combinatorial explosion of
the system state set. In real-time systems, it is not possible to
achieve time-bounded reconfiguration in the complete absence
of knowledge about the system structure, its temporal require-
ments, and the characteristics of its constituent parts. For this
reason, iLAND distinguishes different phases, given here.

• Initialization phase consisting of the specification of the
system by establishing the application structure, its service
set, the service implementations of each service, etc. In this
phase, the off-line study of the system and its timing prop-
erties (graphs and temporal cost of the transitions) is car-
ried out. This phase brings in knowledge about the future
run-time behavior and possibilities of the system.

• Operation phase; after passing an initialization phase, the
system is ready to execute. In this phase, the composition
of the services and their execution takes place.

In the initialization phase, a default configuration is stored
by the middleware; this default configuration is a system state
that is of the minimum acceptable quality and, therefore, it has
been off-line proved to be always schedulable. The purpose of
this default configuration is to have a system state that could be
executed in case that the reconfiguration time slot is not fulfilled
by the middleware at some point of the execution.

A. Architecture

iLAND middleware architecture follows the classical princi-
ples of a layered middleware, adding a number of extensions for
specific cases:

• support of service oriented applications;
• integration of time-deterministic reconfiguration tech-

niques and service-composition algorithms;

Fig. 3. iLAND middleware architecture.

• real-time communications by defining the complete net-
work protocol stack (i.e., time-triggered level-2 media ac-
cess control to enable schedulability analysis);

• portability to different communication off-the-shelf mid-
dleware backbones such as DDS or ICE, and also inte-
gration with DSA [9]; it is achieved by the definition of a
common communication bridge for synchronous and asyn-
chronous interaction models.

The above-mentioned characteristics are reflected in Fig. 3
that presents the overview of the middleware architecture.

The Core Functionality Layer (CFL) contains most of the
key added-value functionality related to application manage-
ment and reconfiguration control. Its components are given here.

• Service Manager (SM) contains the primitives for declara-
tion, deletion, and modification of the properties (including
their resource requirements) of individual services and
their particular implementations.

• Application Manager (AM) component includes the logic
to define the structure of an application (service graph),
i.e., its services and their connections. Application-level
QoS parameters (i.e., end-to-end properties for the whole
service graph) are specified using this component.

• Composition Logic (CL) contains the logic for service-
based composition consisting of finding a set of services to
construct a specified application compliant with the spec-
ified QoS parameters. Examples of composition criteria
are minimizing the memory consumption of all services or
minimizing/meeting the end-to-end deadline. Since each
service can have different versions that realize it, the com-
plete graph to search for a valid solution can be of high
complexity; this is eliminated in iLAND by defining dif-
ferent phases in the design, development, and execution
of the system. Algorithms should be efficient and time-
bounded since they will be executed on-line.

• Control Manager (CM) component contains the logic for
coordinating the reconfiguration of the system; it captures
the reconfiguration triggers and initiates the process that
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Fig. 4. Component diagram.

has different individual steps. The duration of each step is
also controlled to perform a bounded-time transition.

• QoS Communication Manager (QS) component configures
the global QoS parameters for the communication.

The Communication Backbone and Resource Management
Layer (CBL) includes the following components.

• Backbone Core Communication Middleware (CC) or core
communication model. It allows to use and benefit from
any of the basic middleware interaction: P/S (pub/sub),
MOM (message oriented middleware), DOM (distributed
object middleware), or RPC (remote procedure call).

• The QoS Resource Manager (QoSRM) aims at QoS-based
resource management. Scheduling for multi-resource man-
agement lies inside this component. It uses the primitives
of an RTOS (i.e., priority-based preemptive scheduling and
access to higher resolution timers) to implement budget
scheduling techniques providing the basic resource usage
accountability, temporal isolation, and mode change pro-
tocols.

• The Custom Protocol Stack (CPPS) provides the network
traffic management. It allows to offer backward compati-
bility with legacy systems as well as supporting applica-
tions with hard real-time requirements by including real-
time network scheduling protocols.

The Network Layer (NL) contains the basic functionality for
real-time transmission on general networks that offer TCP/UDP
over IP. An application-specific communication protocol can be
used in the specific module, such as streaming communication
with specialized protocols as RTP enhanced with RTCP-based
communication at transport level.

B. Component and Structural Views

The component view of iLAND is presented in Fig. 4,
showing the most relevant modules of the middleware as the
constituent components.

This view is complemented by the structural view (in UML)
outlined in Fig. 5 that is a class diagram showing the function-
ality of the components of iLAND and their interfaces. It can be
seen that the SM and AM components allow the specification of

Fig. 5. Simplified class diagram.

services, service implementations, and applications, including
their QoS characterization.

One of the key components of the middleware is the CM,
which coordinates the reconfiguration. The CM component
interacts with SM and AM components to obtain information
about services, service implementations, and the application
itself. It interoperates with the CL component to execute the
composition algorithm and with the QoSRM to run the ad-
mission control test to determine the resource availability and
temporal schedulability of the application. In the case that there
is not a feasible solution (the admission test is not passed),
the middleware may either renegotiate a lower quality for the
application or reduce the quality of other running applications4

installing the default configuration.
Once the application has been constructed fulfilling the real-

time application requirements, the CM component should start
the execution of the application by launching the service imple-
mentations, thus the application execution flow starts.5

The execution is monitored by the QoSRM component; it also
enforces the resource budgets assigned to the service implemen-
tations according to the resource scheduling policy6 and guar-
antees temporal isolation. The QoSRM has a centralized and a
distributed part. Local monitoring of resource consumption is
performed at each node. One of the nodes acts as the master
node that has the overall view of the system state.

During the execution of the application, service implemen-
tations communicate with each other using either: 1) the CC
component functions since it allows to use QoS communication

4Negotiation is based on HOLA-QoS principles with an a priori mapping of
delivered output quality to resource requirements [28], [20] for service imple-
mentations.

5Different mode change policies exist (as [27]) that can include some applica-
tion semantics, i.e., they consider the sequence to stop and launch the required
threads (i.e., service implementations in our case) depending on the nature and
the relative importance of applications.

6Budget scheduling is used for assigning resources to service implementa-
tions and guaranteeing temporal isolation [19], [20].
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Fig. 6. Component interactions during the reconfiguration.

characteristics of the underlying backbone middleware as, for
instance, those provided by DDS, or 2) the CPPS component
that enables the usage of a custom real-time network protocol.
The communication properties are set with the functions pro-
vided by the QS component.

Depending on the computation power of the nodes and the
role they play in the system, they will contain a different ver-
sion of the architecture: star, planet, or satellite. A star node
contains the composition logic (the master node), the planet con-
tains all iLAND code except for the composition and reconfigu-
ration control parts. Satellite nodes only contain the basic func-
tionality as the interacting parts in the iLAND network. Satellite
nodes run the lightest-weight version of the middleware since
some component are not present.

C. Time-Bounded Reconfiguration

Here, we describe the specific functionality of the middleware
components and their interactions to achieve time-bounded re-
configuration controlled by the CM (control manager of the
CBL layer). The CM detects the reconfiguration triggers that
are a user request, an application logic event, or a run-time con-
dition of the system state. The latter is detected by the QoSRM
that monitors the execution of the service implementations. Sit-
uations requiring reconfiguration can be the failure of a node or
of a service implementation, overruns of the resource budgets
assigned to some service implementation, or frequent overrun
attempts of a given service implementation. The reconfiguration
protocol is orchestrated by the CM (see Fig. 6), and it includes
internal readjustment of resource assignments to the running en-
tities. If the detected situation cannot be handled by the QoSRM
(i.e., there is no schedulable execution graph), this is caused by
an erroneous a priori study of the system in the initialization
phase or by an exceptional execution condition.

Once the reconfiguration is triggered, the CM component ex-
pands the application graph (AG). To do this, the CM checks the

restrictions introduced by the QoS parameters7; consequently,
not all existing service implementations are part of the final XG,
so the XG is pruned to contain only those service implementa-
tions that have passed the compatibility crosschecks. Then, the
CM initiates the admission protocol for all possible paths of the
XG. Only those paths that are schedulable are extracted from
the XG.

The QoSRM contains the algorithms that determine the
schedulability of a set of service implementations using
real-time theory (utilization based or response time analysis).
The XG will be further pruned to be left only with the schedu-
lable paths and leading to a schedulable expanded graph or
schedulable graph. It is worth noting that for the complete
reconfiguration process to be time bounded, the duration of
the interaction between CM and QoSRM for obtaining the
schedulable graphs must be bounded. The initialization phase
guarantees that the XG contains schedulable paths that will
allow, in the worst case and for short reconfiguration slots, that
at least one path can be selected in the first round.

The scheduled graph is then fed to the composition algorithm
in the CL component. As a result, one of the scheduled paths is
selected that constitutes the execution graph (EG), i.e., the ap-
plication to be executed. The generation of the execution graph
follows a QoS criteria (Q parameter) that is the end-to-end re-
sponse time. This parameter is the center element for all the val-
idation application domains of iLAND. However, such criteria
may be different according to the application needs; in real-time
applications, a widely accepted approach is to use time values
(i.e., end-to-end deadline).

Eventually, the QoSRM will coordinate the launching of the
EG through a mode change. If there is no schedulable solution
found inside the reconfiguration slot, the system sets the default
configuration established in the initialization phase.

VI. EXPERIMENTAL VALIDATION

The validation of the architecture has been carried out on
a small scale video surveillance application for remote moni-
toring of industrial processes, implemented and deployed in a
distributed environment. Results have been obtained after de-
veloping the iLAND reference implementation. The validating
scenario contains all of the needed elements and possible de-
ployments of the middleware to validate it. The different nodes
of the prototype are given here.

1) Terminal machine that contains a satellite version of the
middleware acting as the access point for an external oper-
ator to interact with the system which, in turn, triggers the
reconfiguration process.

2) Controller machine containing a star version of the middle-
ware and, therefore, embeds the logic for coordinating the
reconfiguration process. It receives reconfiguration trig-
gers from the terminal machine and interacts with all the
nodes containing services to reconfigure the system.

3) Service machine with a planet version of the middleware.
It has the application logic in the form of three different
service implementations for three different services.

7Functional and non-functional dependency checks across services and ser-
vice implementations are performed as described in [25].
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Fig. 7. Execution of an actual video surveillance application.

TABLE I
RECONFIGURATION TIMES

The network has a 10/100-Mbps Linksys switch. All nodes
run a Linux Ubuntu 10.4 distribution with a real-time patch that
enables the usage of priory-based preemptive scheduling essen-
tial for real-time scheduling. The CBL level uses the real-time
capabilities of DDS as core communication backbone running
the Prismtech implementation v4.5.1.

The demonstrator consists of a full-HD video application de-
livering a frame rate of 24 fps (frames per second) and having
three services: (i) video capture that uses a camera as input
of frames, (ii) video compression, and (iii) video displays on
screen. The system generates alarms simulating that the mon-
itoring parameters of the physical process has to be changed
(e.g., different cameras have to be activated, the compression
format has to be changed to increase image resolution, or the
system itself has detected an overload and requires nodes to be
rebalanced). Video compression is a scalable service therefore
it is delivered as different service implementations. The recon-
figuration slot is set to 41 ms which is a safe time limit in quality
video surveillance. Fig. 7 shows the results obtained for the re-
configuration on a real execution of the system nodes in the pres-
ence of interference.

Results show the execution over a representative interval size
of 200 reconfiguration triggers showing the efficient behavior of
the system. Reconfiguration times are shown in the presence of
interference from services and from the control activities of the
particular DDS implementation used. In these circumstances,
the middleware proves to have a good predictability level and a
time-bounded reconfiguration process (as shown in Table I) with
an average value of 7753 s that does not exceed the value set
at the initialization phase. The standard deviation is 957 s that
shows that the achieved reconfiguration times are highly stable
and suitable for soft real-time environments. Relation between
the average and standard deviation times is of 12%. Also, it is

remarkable that the internal execution of the middleware proves
to be efficient and stable and, therefore, the main deviation in
the measurements is derived from the usage of a TCP/IP net-
work with no real-time traffic scheduling that would lead to an
increased predictability.

VII. CONCLUSION

This paper has presented the architecture of a middleware
that supports time-deterministic reconfiguration in distributed
soft real-time environments with a software model based on ser-
vices. The software architecture has been detailed and justified
according to the requirements of the target systems and their
temporal properties. With respect to existing middleware solu-
tions that target application composability and dynamics, the
presented middleware contributes by including time-bounded
reconfiguration and service-based composition algorithms
that are built on top of real-time resource management; this
supports predictable execution as opposed to other existing
solutions. The validation of the middleware architecture has
been performed over a real distributed environment that is a re-
duced scale video surveillance system; this setting can actually
be used in hostile environments. Experimental measurements
show the validity of the vertical design and development and
the stability of the time bounds obtained for the reconfiguration
process suiting the needs of distributed soft real-time systems.
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