
Research Article
Resource Tardiness Weighted Cost Minimization
in Project Scheduling

Ali Shirzadeh Chaleshtari

Department of Industrial Engineering, College of Engineering, Islamic Azad University, Tehran Gharb Branch, Tehran, Iran

Correspondence should be addressed to Ali Shirzadeh Chaleshtari; shirzadeh.a@wtiau.ac.ir

Received 10 August 2016; Revised 30 November 2016; Accepted 4 December 2016; Published 10 January 2017

Academic Editor: Yi-Kuei Lin

Copyright © 2017 Ali Shirzadeh Chaleshtari. This is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly
cited.

In this paper, we study a project scheduling problem that is called resource constrained project scheduling problem under
minimization of total weighted resource tardiness penalty cost (RCPSP-TWRTPC). In this problem, the project is subject to
renewable resources, each renewable resource is available for limited time periods during the project life cycle, and keeping the
resource for each extra period results in some tardiness penalty cost. We introduce a branch and bound algorithm to solve the
problem exactly and use several bounding, fathoming, and dominance rules in our algorithm to shorten the enumeration process.
We point out parameters affecting the RCPSP-TWRTPC degree of difficulty, generate extensive sets of sample instances for the
problem, and perform comprehensive experimental analysis using the customized algorithm and also CPLEX solver. We analyze
the algorithm behavior with respect to the changes in instances degree of difficulty and compare its performance for different cases
with the CPLEX solver. The results reveal algorithm efficiency.

1. Introduction

Resource constrained project scheduling problems are widely
studied in the open literature. Various criteria are studied
in these problems. Project makespan minimization is one of
the most studied objectives which is aimed in the resource
constrained project scheduling problem (RCPSP). Resource
tardiness minimization is another objective that has been
much less studied in the literature. This objective is studied
in the current paper. It differs from makespan minimization,
since it tries to schedule those activities earlier for which
the due dates of the required resources are earlier, even
though this may elongate the project makespan. The optimal
schedule in this case can change by simply changing the due
dates of the resources. But in makespan minimization, the
due dates of the resources are not taken into account.

Resource tardiness minimization is a pervasive objec-
tive in the practical cases of the project scheduling. In
many projects, resources are available for limited periods of
the project life cycle and keeping them available after the

related periods is subject to some tardiness costs. Renewable
resources that are rented from outside the project or the ones
that are common between various projects are usually subject
to this condition. For example, in construction projects,
heavymachines such as tower cranes or bulldozers are usually
subject to this condition.These resourcesmay also have ready
times; that is, they may not be ready at the beginning of the
project. Resource tardiness cost minimization is a preferred
objective in scheduling of these projects.

In this paperwe study an extension of the RCPSPproblem
that is called resource constrained project scheduling prob-
lem under minimization of total weighted resource tardiness
penalty cost (RCPSP-TWRTPC) [1]. In this problem the
project is subject to renewable resources. Each renewable
resource is available for limited time periods during the
project life cycle and keeping the resource for each extra
period results in some tardiness penalty cost. The objective
is to minimize the total resource tardiness penalty cost. We
introduce a branch and bound algorithm to solve the problem
exactly. The branching structure in this algorithm is similar
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to the precedence tree approach, which is a basic approach
to solve the RCPSP problem [2]. We use several bounding,
fathoming, and dominance rules in our algorithm to shorten
the enumeration process. The algorithm performance is
numerically analyzed.The results reveal algorithm efficiency.

The rest of this paper is organized as follows. In the next
section, the related literature is reviewed; in Section 3 the
RCPSP-TWRTPC problem and in Section 4 the branch and
bound algorithm to solve the problem are described in detail.
Section 5 is dedicated to the experimental analysis and finally,
Section 6 contains a few concluding remarks.

2. Related Work

The literature on the RCPSP problem dates back to 1960s
[3]. Different studies have developed exact algorithms for the
problem, such as the binary programming based model of
Patterson andRoth [4], the dynamic programming algorithm
of Carruthers and Battersby [3], and the branch and bound
methods of Brucker et al. [5], Yoosefzadeh and Tareghian [6],
and Dorndorf et al. [7]. Due to the fact that the problem is
NP-hard [8, 9], many inexact methods have been published
for RCPSP as well, such as the heuristic methods of Ying
et al. [10], Zamani [11], Kolisch [12], and Ranjbar [13] and
the metaheuristic methods like Valls et al. [14] which are
based on genetic algorithm, Shukla et al. [15] and Bouleimen
and Lecocq [16] which are based on simulated annealing,
Thomas and Salhi [17] and Nonobe and Ibaraki [18] which
are based on tabu search, [19] which is based on particle
swarm optimization, and Agarwal et al. [20] which is based
on an artificial immune system based approach.Many review
papers have summarized the problem literature, such as
Herroelen et al. [21], Hartmann and Kolisch [22], Kolisch
and Padman [23], and Kolisch and Hartmann [24]. Finally,
the problem has been extended in different ways, such as
the extensions to multiple objectives [25], multiple activity
modes [26], time-cost tradeoff [27], time-cost-quality trade-
off [28], stochastic activity duration time [29], and multiple-
projects [30, 31]. Some other extended forms of the problem
are the hybrids of the aforementioned extended forms, such
as stochastic time-cost tradeoff problem studied in Ke et al.
[32] and Ke et al. [33].

Many project scheduling problems with resource-
oriented objectives have been defined and studied in the
literature. Some of these problems are resource allocation
problem studied in Azaron and Tavakkoli-Moghaddam [34],
resource investment problem studied in Najafi and Niaki [35],
and resource availability cost problem studied in Ranjbar et
al. [36]. A survey of variants of these studies can be found in
Hartmann and Briskorn [37] and Węglarz et al. [38].

Resource tardiness cost minimization has been stud-
ied in few papers. Ranjbar et al. [1] introduced RCPSP-
TWRTPC and proposed a branch and bound algorithm for
the problem. However the problem they study differs from
the problem we study here, as in their problem only unary
renewable resources are considered; that is, the maximum
availability of the resources in each period and also the
maximum resource requirement of each activity are one.
In Ranjbar [39] a hybrid grasp algorithm was proposed for

this same problem. In Khalilzadeh et al. [40] an extended
form of RCPSP-TWRTPC was introduced and studied. In
that problem which is called multimode RCPSP-TWRTPC
(MRCPSP-TWRTPCP), project activities are multimode and
they are subject to nonrenewable resources in addition to the
renewable resources. The problem aims at the minimization
of the total cost of the resources, including the renewable
resources tardiness weighted cost and the cost of usage of
nonrenewable resources by project activities. To solve this
problem, a metaheuristic algorithm was introduced based on
a modified version of particle swarm optimization method.

3. Problem Description

A project with 𝑛 nondummy activities is considered. There
exist finish-start precedence relations between activities
which are illustrated using an activity-on-node (AON) loop-
less network, with dummy nodes 1 and 𝑛 + 1 as initial and
terminal nodes, respectively. Let 𝐾 = {1, . . . ,NR} be the set
of renewable resources. Each activity 𝑗 (𝑗 = 1, . . . , 𝑛 + 1)
has a fixed duration 𝑑𝑗 and requires 𝑟𝑗𝑘 units of renewable
resource 𝑘 (𝑘 ∈ 𝐾) for each unit of time over its duration.
Besides, activity 𝑗 has a set of predecessor activities, 𝑃𝑗. Every
renewable resource 𝑘 has constant availability of 𝑅𝑘 for each
period over the project duration, the ready time rt𝑘, the
deadline dt𝑘, and the unit tardiness penalty cost of pc𝑘; that
is, the resource is not available before the period rt𝑘, and after
the period dt𝑘 for each period of the resource tardiness, a
penalty cost of pc𝑘 results.Nopreemption is permitted during
the execution of the activities, all of the activities have single
mode, and they are ready at the beginning of the project
horizon. All parameters are integers. The problem is to find
the start time of each activity 𝑗, 𝑆𝑗, (𝑗 = 1, . . . , 𝑛 + 1), such
that all problem constraints are satisfied and the total cost of
renewable resource tardiness is minimized.

Suppose that the earliest start time of each activity 𝑗, EST𝑗,
(𝑗 = 1, . . . , 𝑛+1), is determinedwith forward pass. In order to
get more adequate EST for each activity, we minimally limit
the EST of activities using the renewable resource constraints.
Based on this, the earliest start time of each activity cannot
be earlier than the earliest time that all renewable resources
that are required by the activity are ready. We also determine
the latest start time of each activity 𝑗, LST𝑗, (𝑗 = 1, . . . , 𝑛 +
1), using backward pass. In order to do that, we specify an
upper bound 𝑇 on the project makespan of every optimum
solution for the problem and fix the latest start time of the last
dummy activity equal to this upper bound. We determine 𝑇
by summing the durations of the entire activities and adding
the latest ready time of the renewable resources to this sum.
It can be easily shown that 𝑇 is an upper bound on the
makespan of at least one optimal solution for the problem.

We now define the following decision variables:

𝑥𝑗𝑡 =
{
{
{

1 if activity 𝑗 starts in period 𝑡
0 otherwise

𝑗 = 1, . . . , 𝑛 + 1, 𝑡 = EST𝑗, . . . , LST𝑗.
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𝑦𝑘𝑡

=
{
{
{

1 if renewable resource 𝑘 is used in period 𝑡
0 otherwise

𝑘 ∈ 𝐾, 𝑡 = 0, . . . , 𝑇;
(1)

𝑙𝑘 is renewable resource 𝑘 tardiness.
Then we have, 𝑆𝑗 = ∑

LST𝑗
𝑡=EST𝑗 𝑡 ⋅ 𝑥𝑗𝑡 and the mathematical

model of the problem is as the following:

Min
NR
∑
𝑘=1

pc𝑘 ⋅ 𝑙𝑘 (2)

LST𝑗
∑
𝑡=EST𝑗

𝑥𝑗𝑡 = 1, 𝑗 = 1, . . . , 𝑛 + 1 (3)

LST𝑖
∑
𝑡=EST𝑖

(𝑡 + 𝑑𝑖) ⋅ 𝑥𝑖𝑡 ≤
LST𝑗
∑
𝑡=EST𝑗

𝑡 ⋅ 𝑥𝑗𝑡,

𝑗 = 1, . . . , 𝑛 + 1, 𝑖 ∈ 𝑃𝑗

(4)

𝑛

∑
𝑗=1

min(𝑡,LST𝑗)

∑
𝜏=max(𝑡−𝑑𝑗+1,EST𝑗)

𝑟𝑗𝑘𝑥𝑗𝜏 ≤ 𝑅𝑘 ⋅ 𝑦𝑘𝑡,

𝑘 ∈ 𝐾, 𝑡 = 0, . . . , LST𝑛

(5)

NR
∑
𝑘=1

𝑟𝑡𝑘−1

∑
𝑡=0

𝑦𝑘𝑡 = 0 (6)

𝑡 ⋅ 𝑦𝑘𝑡 − 𝑑𝑡𝑘 ≤ 𝑙𝑘, 𝑘 ∈ 𝐾, 𝑡 = 𝑑𝑡𝑘, . . . , LST𝑛 (7)

𝑥𝑗𝑡 ∈ {0, 1} ,

𝑗 = 1, . . . , 𝑛 + 1, 𝑡 = EST𝑗, . . . , LST𝑗
(8)

𝑦𝑘𝑡 ∈ {0, 1} , 𝑘 ∈ 𝐾, 𝑡 = 0, . . . , LST𝑛+1 (9)

𝑙𝑘 ≥ 0, 𝑘 ∈ 𝐾. (10)

In the model above, objective (2) is the minimization of
the project scheduling cost. Constraints (3) guarantee that
each activity 𝑗 can only have a single start time from the
period [EST𝑗, LST𝑗]. Constraints (4) take into consideration
precedence relations between each pair of activities (𝑖, 𝑗)
where 𝑖 is an immediate predecessor of 𝑗. Constraints (5)
regard renewable resource usage limitation, according to
constraints (6) renewable resources may be used after their
ready times, constraints (7) determine the tardiness value of
each renewable resource, and finally, constraints (8), (9), and
(10) denote the domain of the variables.

It can be shown that the RCPSP-TWRTPC problem is an
extension of RCPSP and therefore, it is NP-hard.

4. Branch and Bound Algorithm for
RCPSP-TWRTPC

In this section we describe our branch and bound algorithm
for solving the RCPSP-TWRTPC. This method is based on
partial schedules in which only parts of the project activities
are scheduled. In each node of the branch and bound tree,
one activity is selected and scheduled until all activities are
scheduled. Several bounding, fathoming, and dominance
rules are used in the algorithm to shorten this enumeration
process.

Basic scheme of the branch and bound algorithm for solv-
ing RCPSP-TWRTPC, describing each part of the algorithm
in detail, is as follows:

(1) Perform preprocessing and stop if the instance is
infeasible

(2) Determine disjunctive pairs of activities
(3) Specify the initial upper bound on the optimal objec-

tive function value
(4) Generate the initial node and select it for branching
(5) Branch the selected node
(6) Check every new node according to the dominance

rules and fathom the checked node if necessary
(7) Close each new node containing feasible solution and

update the current upper bound
(8) If there is at least one open node yet:

(a) Select a newnode for branching according to the
selection method

(b) Perform fathoming checks on the selected node
and continue from step (5) if the node is not
fathomed; otherwise continue from step (8)

Else:

(a) Report the best feasible solution achieved and
stop

4.1. Preprocessing. There is only one case in which a given
instance of RCPSP-TWRTPC has no feasible solution. In
this case, there is shortage for at least one of the renewable
resources; that is, there exists an activity like 𝑗 and a renewable
resource like 𝑘 in the problem for which 𝑟𝑗𝑘 > 𝑅𝑘. In this
situation the activity cannot be executed and no feasible
solution exists for the problem. Our algorithm checks the
feasibility of the instance in the first step.

4.2. Disjunctive Pairs of Activities. Two activities are in
disjunction if resources available in the problem are not
enough for both of them to execute concurrently, so one of
these disjunctive activities has to finish before the other one
can start. For a pair of disjunctive activities, the following
test can be applied to possibly introduce some precedence
relations between them:

Interval based disjunctive consistency test, Carlier and
Pinson [41]: for two disjunctive activities of 𝑖 and 𝑗, if
LST𝑖-EST𝑗 < 𝑑𝑗, 𝑖must precede 𝑗.
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We determine disjunctive activities at the beginning of
our algorithm to perform this test during the fathoming
check at every node of the branching tree. If some precedence
relation already exists between a pair of activities, the test
brings no new information to the solution method. So
we only determine disjunctive pairs without any existing
precedence relations between the related activities.

4.3. Initial Upper Bound Specification. In order to determine
an initial upper bound on the optimum objective function
value, we generate a feasible solution for the problem using
the following heuristic method and use its related objective
function value as the initial upper bound. In this heuristic
method, first, an activity list (AL) is generated which shows
the priority of the activities in generating the related schedule;
that is, the 𝑖th element in the list has the priority of 𝑖
in the schedule generation process. In order to generate
a precedence feasible schedule, we generate a precedence
feasible activity list in which each activity has a lower priority
than its predecessors. In order to generate this list, we use
a quantity related to each activity which we call maximum
resource tardiness cost of unit extra period (MTC). MTC for
each activity is sum of the unit tardiness costs of those
renewable resources that the activity requires. In order to
generate the AL, activities are sorted in nonincreasing order
of their MTC considering the precedence relations.

In the second step after the generation of theAL, activities
are scheduled using the serial schedule generation scheme
(SSGS). The schedule generated in this way is a feasible and
usually good solution for the problem.

4.4. Initial Node Generation. The branching tree of the algo-
rithm is initiated with the initial node. The related schedule
in this node contains the first dummy activity which is
scheduled in the first period.This node is generated and then
branched as the only available node according to specific
structure of the branch and bound algorithm.

4.5. Branching. In our algorithm, branching is performed
similar to the precedence tree algorithm for the RCPSP
problem. Regarding each selected node 𝑔 for branching, the
set of eligible activities (EJ𝑔) for this node is determined that
contains all activities not scheduled yet whose predecessors
have already been scheduled. For each member of this set
like 𝑗𝑔, a new node is generated and 𝑗𝑔 is scheduled in
the earliest feasible time considering the precedence and
resource constraints. In appendix of this paper, we show that
at least one optimum schedule is gained among the schedules
generated in this way.

4.6. Dominance Rules. Several dominance rules have been
introduced for the precedence tree algorithm for solving
the RCPSP. Some of them have been reviewed in Demeule-
meester and Herroelen [42]. According to these dominance
rules, some of the nodes in the branching tree may be
fathomed before branching them to shorten the enumeration
process because better or the same quality nodes exist in the
branching tree.

Two of the dominance rules of the precedence tree
algorithm for the RCPSP are applicable in our algorithmhere.
Experimental analyses show that these rules are very effective
in the algorithm efficiency. Description of these rules is as
follows.

Regarding each partial schedule in each node, we can
specify an activity list that contains the list of activities in the
order of their start times.When some activities have the same
start times, it is possible to relate more than one activity list to
a given partial schedule. In this case, there can be one node
associated with each of these activity lists in the branching
tree. Therefore if we have two nodes with different activity
lists whose related partial schedules are the same, we can
fathom one of them, because they are related to the similar
solutions. Noting to this, if in some node, for a selected
activity 𝑗 and a previously scheduled activity 𝑖wehave 𝑆𝑗 < 𝑆𝑖,
we fathom the generated node, because it contains the same
partial schedule as another node whose activity list is the
same but orders of activities 𝑖 and 𝑗 are reverse in the list.
Another case is when activity 𝑗 is scheduled in the node with
the same start time as the already scheduled activity 𝑖. In this
case the node contains the same partial schedule with another
one in which the orders of 𝑖 and 𝑗 are substituted. So we can
fathom one of these nodes and as a rule, in such cases we
fathom new node if 𝑗 < 𝑖.

4.7. Closing Feasible Nodes and Upper Bound Update. After
each branching process, each newly generated node like 𝑔
whose related schedule contains the entire project activities
is closed. Then the related objective function value of the
schedule, say 𝐹𝑔, is compared with the current upper bound
and the upper bound is updated as 𝐹𝑔 if it is more than 𝐹𝑔.

4.8. Node Selection for Branching. We use depth-first-search
method to keep the memory requirements of the algorithm
low. According to this method, an open node is selected from
the higher level of the branching tree. If a tie happens, three
rules are used in respective order until one single node is
chosen, including selecting a node with the most scheduled
activities, a node with the least associated lower bound, and
the node with the least index number.

4.9. Fathoming Check. Fathoming check is performed on
each open node 𝑔 selected for branching.The effectiveness of
this test depends on the current value of the upper bound; that
is, tighter upper bound values lead to more effectiveness in
the test. Since the upper bound may be improved during the
algorithm, we delay the fathoming check of each unfathomed
node asmuch as possible. So the check is performedwhen the
node is selected for branching.

Pseudocode of fathoming check of each selected node
for branching, showing the main steps of this process, is as
follows:

(1) Determine EST of the unscheduled activities
(2) Determine the related lower bound of the node
(3) Fathom the node if the related lower bound of the

node is not less than the current upper bound and go
to step (8)
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(4) Determine LST of the activities
(5) Fathom the node if EST of an unscheduled activity is

more than its LST and go to step (8)
(6) Perform interval based disjunctive consistency test

and make the new relations effective
(7) Continue from step (5) if the node is not fathomed

and EST of any unscheduled activity has been modi-
fied

(8) End the fathoming process

4.9.1. Determining EST of Unscheduled Activities. EST of each
unscheduled activity is determined based on the precedence
relations using forward pass. However, the forward pass
process is modified here by making three modifications.
Firstly, the EST of every scheduled activity is fixed equal
to its start time, secondly, a minimum on the EST of each
unscheduled activity is determined equal to the earliest time
that all renewable resources required by the activity are ready,
and thirdly, aminimumon the start time of each unscheduled
activity is determined using the two dominance rules that
were described in Section 4.6.

4.9.2. Determining the Related Lower Bound of the Node. A
lower bound is determined on the objective function values
of all the nodes that may be generated via branching of the
selected node 𝑔. In order to do that, start time of every
unscheduled activity is supposed equal to its EST; then the
lower bound is specified equal to the objective function value
of the resulting schedule.

4.9.3. Determining LST of the Activities. The LST of each
scheduled activity is considered equal to its start time and an
upper bound on the start time of every unscheduled activity 𝑖,
LST𝑖, is determined using the current upper bound. In order
to do that, it is supposed that the related partial schedule
of the node 𝑔 is completed by scheduling the activity 𝑖 in a
period 𝑆𝑖 and every other unscheduled activity in the earliest
feasible period considering the precedence relations. Then
LST𝑖 is specified as the latest possible value for 𝑆𝑖 in a way that
the related objective function value of the completed schedule
remains less than the current upper bound.

Based on this definition for the LST of an unscheduled
activity, we perform the following three main steps to deter-
mine the latest start time of every unscheduled activity. In
these steps, we note that the LST of an activity cannot be
more than its LST in its parent node.We also use some sets of
activities that we define as the following. For every renewable
resource 𝑘 in the problem, we define the set of the last project
activities requiring the renewable resource k (SLA𝑘) as the set
of activities that require the resource 𝑘 for execution, but
none of their successors requires this resource. Based on this
definition, the last period that the resource 𝑘 is used during
the project life cycle equals the last period of execution of the
activities of SLA𝑘.

Step 1. For every unscheduled activity 𝑖 and every renewable
resource 𝑘, we determine the latest period that the activity 𝑖
may be scheduled in the current partial schedule so that the

current tardiness of the resource 𝑘 does not change. We call
this period RLST𝑖𝑘 and determine it for every resource 𝑘 and
every unscheduled activity 𝑖 in decreasing order of activities
numbers as the following:

(i) If 𝑖 ∈ SLA𝑘, RLST𝑖𝑘 equals the latest period that the
resource 𝑘 is required in the current partial schedule
of the node minus (𝑑𝑖 + 1).

(ii) If the activity 𝑖 and none of its successors belong to
SLA𝑘, RLST𝑖𝑘 may be as large as possible. In this case
we set RLST𝑖𝑘 equal to an upper bound for the project
makespan of the optimal solution.

(iii) If the activity 𝑖 does not belong to SLA𝑘, but at least
one of its successors does, then RLST𝑖𝑘 is determined
using backward pass based on RLST𝑗𝑘 of all other
activities 𝑗 > 𝑖.

Step 2. In this step, we first set the LST of every unscheduled
activity equal to its EST. Then we increase its LST one unit
iteratively and in each iteration, we determine the related
increase in the tardiness cost of the resources. For each value
of the LST for each unscheduled activity 𝑖, the increase in
the tardiness of a resource 𝑘 equals the maximum of zero
and LST𝑖-RLST𝑖𝑘. So the LST can be increased as much that
the total increase in the tardiness cost plus the current lower
bound of the node remains less than the current upper bound
of the problem.

Step 3. In this step the feasibility of the latest start time of
the activities that were determined in the previous step is
checked based on the precedence relations. The backward
pass is performed and if necessary, the latest start times are
lessened and corrected.

4.9.4. Performing the Interval Based Disjunctive Consistency
Test. After the determination of the EST and LST of the activ-
ities in the node, we perform the interval based disjunctive
consistency test for each pair of the disjunctive activities. We
note that the possible relations introduced by this test in each
node𝑔 are only specific to the node𝑔 and its further branches.

Having performed the test in the node 𝑔, if some new
relations are introduced between the activities, wemade them
effective by updating the EST and LST of the activities. Let us
suppose that a new relationmakes an activity 𝑖 the immediate
predecessor of the activity 𝑗 in a node 𝑔. This new relation is
made effective in the following way:

(i) If the activity 𝑗 is an unscheduled activity in the node,
either the activity 𝑖 is scheduled or not:

(a) If EST𝑖+𝑑𝑖 > EST𝑗, EST𝑗 is updated as EST𝑖+𝑑𝑖
and if necessary, EST of every successor of the
activity 𝑗 is updated using forward pass.

(b) If EST of an activity increases here, the related
lower bound of the node should be updated too
and if it gets more than the current upper bound
of the problem, the node is to be fathomed.
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(ii) If the activity 𝑗 and not the activity 𝑖 is scheduled:

(a) If LST𝑖 +𝑑𝑖 > LST𝑗, LST𝑖 is updated as LST𝑗 −𝑑𝑖
and if necessary, LST of every predecessor of
the activity 𝑖 is updated using backward pass.
In this case, if LST of the activity 𝑖 or one of
its predecessors turns less than the EST of the
related activity, the node is fathomed.

5. Experimental Analysis

In this part we present the results of a comprehensive
computational experiment that we conducted regarding the
algorithm presented in this paper for the RCPSP-TWRTPC.
The algorithm was coded and executed on C#.NET 2010
platform. In addition, the CPLEX solver version 12.4 was used
in the analyses. Experimental tests were performed on a PC
with Core 2 Duo 2.53GHz CPU and 3GBs RAM.

In the following sections, we first describe the sample
problems that we used and then we present and discuss the
results categorized in four parts. We used the customized
algorithm and also the CPLEX solver to solve each sample
problem. A time limit of 10 seconds was imposed on the
execution time for solving each instance by the algorithm
and by the CPLEX solver, so that the experiments could be
completed within a reasonable time. In order to evaluate
the effectiveness of the algorithm for solving the RCPSP-
TWRTPC, we used two metrics. The first metric is the
number of instances solved within 10 seconds and the second
metric is the actual execution time for solving every instance
that was solved within 10 seconds.

5.1. Sample Problems. As the RCPSP-TWRTPC is an exten-
sion of the RCPSP, all parameters that affect the degree of
difficulty of an instance of the RCPSP (i.e., the computational
requirement of any algorithm for solving the instance) are
likely to affect the corresponding degree of difficulty of an
instance of the RCPSP-TWRTPC, too. Besides, the additional
parameters regarding the renewable resources may affect
the degree of difficulty of the RCPSP-TWRTPC instances.
We distinguished two parameters in this regard which
we describe in the following. The actual effects of these
parameters in the degree of difficulty of the instances are
experimentally viewed in the computational results in the
next sections.

The first parameter is regarding how similar are the
amounts of analogous parameters of different renewable
resources; more specifically, the less different the ready
times, deadlines, and unit penalty costs of different renew-
able resources, the more the degree of difficulty of the
related instance. Roughly deducing, this is mainly because
the difference between the objective function values of the
various solutions is less remarkable for resources with more
similarity, so it will be harder to distinguish the optimality
of different alternatives in the middle stages of the solving
process of the problem. Similar reasoning is considerable for
the other parameter which regards the earliness value of the
resources deadlines. Based on this parameter, the earlier the

deadlines of the resources are, the more the computations
required to solve the instances are.

Based on the aforementioned parameters affecting the
degree of difficulty of the instances, we constructed four
groups of instances. In order to do that, we generated a set
of twenty instances as the base set and included it in every
group. In addition, in each group we included several other
sets whose instances were the same as the base set but differed
in only one parameter affecting the degree of difficulty.These
other instances are described in the following sections.

In order to have a full factorial design of the parameters
that are related to the RCPSP, we chose sample problems of
the base set from the well-known project scheduling library
(PSPLIB) [43], but instead of using the RCPSP instances
of this library, we used the multimode RCPSP (MRCPSP)
instances, because they were generally subjected to less
number of activities and renewable resources. We randomly
selected twenty instances from the set j30 of the MRCPSP
instances of the library and transformed each instance to
an instance of the RCPSP-TWRTPC using the following
method:

(i) In the instances of the set j30, each nondummy
activity has three executionmodes. To transform each
selected instance, onemode was randomly chosen for
each activity. Duration and the renewable resource
requirement of the activity were set equal to the
related amounts for the selected mode.

(ii) We randomly generated the ready time of the renew-
able resources using the normal distribution. We set
the mean and standard deviation of the distribution
equal to one-third and one-twelfth of the project
critical path length, respectively.

(iii) We randomly generated the deadline of the renewable
resources using the normal distribution. We set the
mean and standard deviation of the distribution equal
to three-fourths and one-fourth of the project critical
path length, respectively.

(iv) We randomly generated the unit penalty cost of the
renewable resources using the normal distribution.
We set both of the mean and variance of the distri-
bution equal to three.

5.2. Group I: Instances withDifferent Number of Activities. We
included instances with different number of activities in the
first group. We generated and included three sets in the same
way of the generation of the base set, but instead of using
the j30 set of the MRCPSP instances of the PSPLIB, we used
instances with the same parameters but with 10, 20, and 60
activities. Relating to the instances with 10 and 20 activities,
we used the j10 and j20 sets of the MRCPSP instances of the
PSPLIB. Since no MRCPSP sample instance with more than
30 activities is available in the PSPLIB, we had to generate
the relatedMRCPSP instances with 60 activities.We used the
project generator software Progen to generate these instances.

Table 1 shows the number of instances solved to optimal-
ity within 10 seconds from each set in groups I, and Figure 1
shows the solving time of each instance by each solver. In
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Table 1: Number of instances of each set of group I out of 20 solved to optimality in 10 seconds by the branch and bound algorithm and the
CPLEX solver.

# activities in instance set # instances solved by the CPLEX solver # instances solved by the branch and bound algorithm
10 20 20
20 19 20
30 4 19
60 0 19

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

j10
j20

j30
j60

0
2
4
6
8

10
12

(a)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
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4
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8

10
12

(b)

Figure 1: Solving time (seconds) of the instances of group I by (a) the CPLEX Solver and (b) the branch and bound algorithm.

this figure, the solving time of the unsolved instances in the
time limitation has been shown to be 10 seconds. As the
number of activities in the instances increases, according to
the table, we can observe that the number of solved instances
within 10 seconds decreases and also, according to the figure,
the solving time of the instances generally increases. These
trends imply a higher degree of difficulty for solving the
problem as the number of activities increases, which is of
course consistent with expectation. Comparing the results
of the branch and bound algorithm with the results of the
CPLEX solver in the table shows that they perform almost
the same for the instances with 10 and 20 activities, but the
branch and bound algorithm works remarkably better than
theCPLEX solver for solving the instanceswithmore number
of activities. Also according to the figure, we can see that the
branch and bound algorithm performs much faster than the
CPLEX solver for most instances.

5.3. Group II: Instances with Different Number of Renewable
Resources. We included instances with different number of
renewable resources in the second group. We generated and
included two sets other than the base set in this group. For
the instances of the first set, one renewable resource was
considered. We generated the instances of this set in the
same way as the base set, but in each instance, we randomly
removed one of the two renewable resource constraints. In
the instances of the second included set other than the
base set, four renewable resources were considered. Again
we generated the instances of this set in the same way
as the base set; however we extended the number of the
renewable resource constraints. In order to do that, during
the transformation of each selected MRCPSP instance to a
RCPSP-TWRTPC instance of this set according to the process

which was described in Section 5.1, instead of using the
related resource requirement data of the activity under the
selected mode, we used the data related to the unselected
modes. The data related to each unselected mode were used
as the resource requirements of the activity for two of the four
resources. Also, the total availabilities of the third and fourth
resources were set equal to the total availabilities of the first
and second resources, respectively.

Table 2 shows the number of instances of each set of group
II solved to optimality by the branch and bound algorithm
and the CPLEX solver, and Figure 2 shows the solving time
of each instance by each solver. In this figure, the solving
time of the unsolved instances in the time limitation has
been shown to be 10 seconds. As the number of renewable
resources in the instances increases, we can observe that,
according to the table, the number of problems solved to
optimality by both solvers decreases and according to the
figure, the solving time of each instance generally increases.
These trends clearly show the direct impact of the number of
the renewable resources in the computational requirements
for solving the problem. Based on the results of the table,
the branch and bound algorithm works remarkably better
than the CPLEX solver for solving instances of the entire sets
and the difference increases as the number of the renewable
resources increases. Also, based on the figure, we can see that
the branch and bound algorithm works much faster than the
CPLEX solver for solving most instances.

5.4. Group III: Instances with Different Levels of Similarity
of Renewable Resources Parameters Amounts. We included
instances with different levels of similarity of the renewable
resources parameters amount in the third group. In order to
generate such different instances, we changed the variances of
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Table 2: Number of instances of each set of group II out of 20 solved to optimality in 10 seconds by the branch and bound algorithm and the
CPLEX solver.

# renewable resources in instance set # instances solved by the CPLEX solver # instances solved by the branch and bound algorithm
1 13 20
2 5 19
4 0 17

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
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2, renewable resource

3, renewable resource
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Figure 2: Solving time (seconds) of the instances of group II by (a) the CPLEX Solver and (b) the branch and bound algorithm.

the three distribution functions used in the generation of the
ready time, deadline, and unit penalty cost of the renewable
resources.Themore the values of the related variances are, the
less analogous the resources are expected to be.We generated
and included two sets in the sameway as the base set in group
III, but in the first and second additional sets, we multiplied
the base values of the three variances which were considered
in the base set by 0.5 and 2, respectively.

Table 3 shows the number of instances of each set of
group III solved to optimality by the branch and bound
algorithm and the CPLEX solver, and Figure 3 shows the
solving time of each instance by each solver. In this figure, the
solving time of the unsolved instances in the time limitation
has been shown to be 10 seconds. As instances with less
analogous resources are targeted, we can observe that, based
on the table, the number of problems solved to optimality
by the CPLEX solver increases and based on the figure, the
solving time of instances by both solvers generally decreases.
These trends show the impact of the levels of similarity of
the renewable resources parameters in the computational
requirement for solving the problem. However, the table
shows that the amount of changes in the levels considered
in different instances here has no remarkable impact on the
performance of the branch and bound algorithm.

Comparing the results of the branch andbound algorithm
with the results of the CPLEX solver in Table 3 indicates that
the branch and bound algorithm works remarkably better
than the CPLEX solver for solving instances of the entire sets
and the difference increases as the similarity of the renewable
resources decreases. Also, based on Figure 3, we can see that

the branch and bound algorithm works much faster than the
CPLEX solver for solving most instances.

5.5. Group IV: Instances with Different Earliness Value of
Renewable Resources Deadlines. We included instances with
different earliness value of the renewable resources deadlines
in the fourth group. In order to generate such different
instances, we changed the mean of the distribution functions
of deadline of the renewable resources. We generated and
included two sets in the same way as the base set in the group
IV, but in the first and second additional sets, we set themean
value of the resources deadlines equal to half and one time of
the project critical path length, respectively.

Table 4 shows the number of instances of each set of group
IV solved to optimality by the branch and bound algorithm
and the CPLEX solver, and Figure 4 shows the solving time
of each instance by each solver. In this figure, the solving
time of the unsolved instances in the time limitation has been
shown to be 10 seconds. As instances with earlier value of the
renewable resources deadlines are targeted, we can observe
that, based on the table, the number of problems solved to
optimality by the CPLEX solver increases and based on the
figure, the solving time of instances by both solvers generally
decreases. These trends show the impact of this parameter
in the computational requirement for solving the problem.
However, the table shows that the amount of changes in this
parameter has no remarkable impact on the performance of
the branch and bound algorithm.

Comparing the results of the branch andbound algorithm
with the results of the CPLEX solver in Table 4 indicates that
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Table 3: Number of instances of each set of group III out of 20 solved to optimality in 10 seconds by the branch and bound algorithm and
the CPLEX solver.

Instance set # instances solved by the CPLEX solver # instances solved by the branch and bound algorithm
First additional set 4 19
Base set 6 19
Second additional set 11 18
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(b)

Figure 3: Solving time (seconds) of the instances of the group III by (a) the CPLEX Solver and (b) the branch and bound algorithm.

the branch and bound algorithm works remarkably better
than the CPLEX solver for solving instances of the entire
sets and the difference increases as the earliness value of
the renewable resources deadlines decreases. Also, based on
Figure 4, the branch and bound algorithm works much faster
than the CPLEX solver for solving most instances.

6. Conclusions

In this paper we introduced and studied the RCPSP-
TWRTPC problem. We customized a fundamental branch
and bound method of RCPSP, precedence tree algorithm, for
solving the problem. We also introduced several bounding
and fathoming rules in the customized method, including
the ones extracted from the original methods of RCPSP and
used without any change or after customization and the ones
designed specifically for the RCPSP-TWRTPC.

We performed a comprehensive computational exper-
iment using the customized algorithm and reported the
results. We also used the CPLEX solver in the analyses
and comparisons. We generated and used different instances
with different number of activities, number of renewable
resources, level of similarity renewable resources parame-
ters, and earliness value of renewable resources deadlines.
Analyses showed that these three parameters affect the
computational requirement for solving the problem and also
the relative performance of the branch and bound algorithm
and the CPLEX solver with respect to each other. The branch
and bound algorithm revealedmuch better performance than
the CPLEX solver by solvingmore instances of each set in the
limited time and performing much faster for solving most
instances, which implies its high efficiency in solving the
RCPSP-TWRTPC problem.

More complicated branch and bound logics such as mini-
mal delaying alternative can be studied in future works. Also,
as the problem in question is NP-hard, devising nonexact
or bounding methods would benefit handling instances,
especially the large-sized ones.

Appendix

Assume that Sch𝑂 is an optimum schedule for a given
instance of the RCPSP-TWRTPC. Let AL𝑂 be an activity
list corresponding to the schedule Sch𝑂. In this activity list,
activities are ordered in nondecreasing order of their start
times in the schedule Sch𝑂 and those activities with the
same start times are ordered in increasing order of their
index number. It is evident that since the schedule Sch𝑂 is
precedence feasible, the resulting activity list is precedence
feasible too; that is, the order of each activity in the list is
later than the order of every predecessor of the activity. So
corresponding to this order, there must be a node like 𝑔 in
the last level of the branching tree of the instance, unless this
node is not generated because of the dominance with another
node. We prove that the schedule related to the node 𝑔, Sch𝑔,
is an optimum solution for the problem. So whether node
𝑔 is generated or dominated by another node, the optimum
solution for the problem is gained in the branching tree. In
order to prove this, we use deductive reasoning. We check
the start time of the activities according to their order in AL𝑂
and prove that the start time of each activity 𝑗 in the schedule
Sch𝑔, 𝑆𝑗,𝑔, is not later than its start time in the schedule Sch𝑂,
𝑆𝑗,𝑔 . So the related tardiness of each renewable resource in
the schedule Sch𝑔 cannot be more than the related value in
the schedule Sch𝑂. First we check the start time of the first
activity in AL𝑂. The first dummy activity of the project is



10 Advances in Operations Research

Table 4: Number of instances of each set of group IV out of 20 solved to optimality in 10 seconds by the branch and bound algorithm and
the CPLEX solver.

Instance set # instances solved by the CPLEX solver # instances solved by the branch and bound algorithm
First additional set 3 19
Base set 7 19
Second additional set 16 18
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Figure 4: Solving time (seconds) of the instances of the group IV by (a) the CPLEX Solver and (b) the branch and bound algorithm.

the first activity in AL𝑂, because no activity can have earlier
start time than this activity in any feasible period and it also
has the least index number. According to the structure of the
branch and bound algorithm, this activity is scheduled in the
first period; that is, 𝑆0,𝑔 = 0. So 𝑆0,𝑔 cannot be less than
𝑆0,𝑔. Now we assume that, for every activity 𝑗 in the position
1, . . . , 𝑖 − 1 of the activity list AL𝑂, 𝑆𝑗,𝑔 ≤ 𝑆𝑗,𝑔 and we show
that 𝑆𝑖,𝑔 ≤ 𝑆𝑖,𝑔 . According to the structure of the branch
and bound algorithm, activity 𝑖 is scheduled in the earliest
feasible period. As 𝑆𝑖,𝑔 is a feasible period for scheduling 𝑖, it
is scheduled either in this or in an earlier period, so 𝑆𝑖,𝑔 ≤ 𝑆𝑖,𝑔 .
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[9] P. Brucker, A. Drexl, R. Möhring, K. Neumann, and E. Pesch,
“Resource-constrained project scheduling: notation, classifica-
tion, models, and methods,” European Journal of Operational
Research, vol. 112, no. 1, pp. 3–41, 1999.

[10] K.-C. Ying, S.-W. Lin, and Z.-J. Lee, “Hybrid-directional
planning: improving improvement heuristics for schedul-
ing resource-constrained projects,” International Journal of
Advanced Manufacturing Technology, vol. 41, no. 3-4, pp. 358–
366, 2009.

[11] R. Zamani, “A parallel complete anytime procedure for project
scheduling under multiple resource constraints,” The Interna-
tional Journal of Advanced Manufacturing Technology, vol. 50,
no. 1–4, pp. 353–362, 2010.

[12] R. Kolisch, “Efficient priority rules for the resource-constrained
project scheduling problem,” Journal of Operations Manage-
ment, vol. 14, no. 3, pp. 179–192, 1996.

[13] M. Ranjbar, “Solving the resource-constrained project schedul-
ing problem using filter-and-fan approach,” Applied Mathemat-
ics and Computation, vol. 201, no. 1-2, pp. 313–318, 2008.



Advances in Operations Research 11

[14] V. Valls, F. Ballest́ın, and S. Quintanilla, “A hybrid genetic
algorithm for the resource-constrained project scheduling
problem,”European Journal ofOperational Research, vol. 185, no.
2, pp. 495–508, 2008.

[15] S. K. Shukla, Y. J. Son, and M. K. Tiwari, “Fuzzy-based adap-
tive sample-sort simulated annealing for resource-constrained
project scheduling,” The International Journal of Advanced
Manufacturing Technology, vol. 36, no. 9-10, pp. 982–995, 2008.

[16] K. Bouleimen andH. Lecocq, “A new efficient simulated anneal-
ing algorithm for the resource-constrained project scheduling
problem and its multiple mode version,” European Journal of
Operational Research, vol. 149, no. 2, pp. 268–281, 2003.

[17] P. R. Thomas and S. Salhi, “A tabu search approach for the
resource constrained project scheduling problem,” Journal of
Heuristics, vol. 4, no. 2, pp. 123–139, 1998.

[18] K. Nonobe and T. Ibaraki, “Formulation and tabu search algo-
rithm for the resource constrained project scheduling problem,”
in Essays and Surveys in Meta-Heuristics, C. C. Ribeiro and
P. Hansen, Eds., pp. 557–588, Kluwer Academic Publishers,
Dordrecht, The Netherlands, 2002.

[19] Q. Jia and Y. Seo, “An improved particle swarm optimization
for the resource-constrained project scheduling problem,” The
International Journal of Advanced Manufacturing Technology,
vol. 67, no. 9, pp. 2627–2638, 2013.

[20] R. Agarwal, M. K. Tiwari, and S. K. Mukherjee, “Artificial
immune system based approach for solving resource con-
straint project scheduling problem,”The International Journal of
Advanced Manufacturing Technology, vol. 34, no. 5-6, pp. 584–
593, 2007.

[21] W.Herroelen, B. De Reyck, and E. Demeulemeester, “Resource-
constrained project scheduling: a survey of recent develop-
ments,” Computers and Operations Research, vol. 25, no. 4, pp.
279–302, 1998.

[22] S. Hartmann and R. Kolisch, “Experimental evaluation of
state-of-the-art heuristics for the resource-constrained project
scheduling problem,” European Journal of Operational Research,
vol. 127, no. 2, pp. 394–407, 2000.

[23] R. Kolisch and R. Padman, “An integrated survey of determinis-
tic project scheduling,”Omega, vol. 29, no. 3, pp. 249–272, 2001.

[24] R. Kolisch and S. Hartmann, “Experimental investigation
of heuristics for resource-constrained project scheduling: an
update,” European Journal of Operational Research, vol. 174, no.
1, pp. 23–37, 2006.

[25] B. Abbasi, S. Shadrokh, and J. Arkat, “Bi-objective resource-
constrained project scheduling with robustness and makespan
criteria,” Applied Mathematics and Computation, vol. 180, no. 1,
pp. 146–152, 2006.

[26] B. Jarboui, N. Damak, P. Siarry, and A. Rebai, “A combinatorial
particle swarm optimization for solving multi-mode resource-
constrained project scheduling problems,”AppliedMathematics
and Computation, vol. 195, no. 1, pp. 299–308, 2008.

[27] H. Mokhtari, A. Aghaie, J. Rahimi, and A. Mozdgir, “Project
time-cost trade-off scheduling: a hybrid optimization
approach,” The International Journal of Advanced Manufactur-
ing Technology, vol. 50, no. 5–8, pp. 811–822, 2010.

[28] A. Salmasnia, H. Mokhtari, and I. N. Kamal Abadi, “A robust
scheduling of projects with time, cost, and quality consider-
ations,” The International Journal of Advanced Manufacturing
Technology, vol. 60, no. 5-8, pp. 631–642, 2012.

[29] S. Li, Y. Jia, and J. Wang, “A discrete-event simulation approach
with multiple-comparison procedure for stochastic resource-
constrained project scheduling,” The International Journal of

AdvancedManufacturing Technology, vol. 63, no. 1–4, pp. 65–76,
2012.

[30] S. Kumanan, G. Jegan Jose, and K. Raja, “Multi-project schedul-
ing using an heuristic and a genetic algorithm,” The Interna-
tional Journal of Advanced Manufacturing Technology, vol. 31,
no. 3-4, pp. 360–366, 2006.

[31] M.-C. Wu and S.-H. Sun, “A project scheduling and staff
assignment model considering learning effect,” The Interna-
tional Journal of Advanced Manufacturing Technology, vol. 28,
no. 11-12, pp. 1190–1195, 2006.

[32] H. Ke,W.Ma, and Y. Ni, “Optimizationmodels and a GA-based
algorithm for stochastic time-cost trade-off problem,” Applied
Mathematics andComputation, vol. 215, no. 1, pp. 308–313, 2009.

[33] H. Ke, W. Ma, and X. Chen, “Modeling stochastic project time–
cost trade-offs with time-dependent activity durations,”Applied
Mathematics and Computation, vol. 218, no. 18, pp. 9462–9469,
2012.

[34] A. Azaron and R. Tavakkoli-Moghaddam, “A multi-objective
resource allocation problem in dynamic PERT networks,”
Applied Mathematics and Computation, vol. 181, no. 1, pp. 163–
174, 2006.

[35] A. A. Najafi and S. T. A. Niaki, “A genetic algorithm for
resource investment problem with discounted cash flows,”
AppliedMathematics and Computation, vol. 183, no. 2, pp. 1057–
1070, 2006.

[36] M. Ranjbar, F. Kianfar, and S. Shadrokh, “Solving the resource
availability cost problem in project scheduling by path relinking
and genetic algorithm,” Applied Mathematics and Computation,
vol. 196, no. 2, pp. 879–888, 2008.

[37] S. Hartmann and D. Briskorn, “A survey of variants and exten-
sions of the resource-constrained project scheduling problem,”
European Journal of Operational Research, vol. 207, no. 1, pp. 1–
14, 2010.
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