
European Journal of Operational Research 178 (2007) 677–685

www.elsevier.com/locate/ejor
Discrete Optimization

On no-wait and no-idle flow shops with makespan criterion

Pawel Jan Kalczynski, Jerzy Kamburowski *

Department of Information, Operations and Technology Management, College of Business Administration, MS #103,

The University of Toledo, Toledo, OH 43606-3390, USA

Received 26 January 2005; accepted 25 January 2006
Available online 17 April 2006
Abstract

The paper deals with the NP-hard problems of minimizing the makespan in m-machine no-wait and no-idle permuta-
tion flow shops. We identify networks whose longest path lengths represent the makespans. These networks reveal the dual-

ity between the two problems, and show graphical explanations of the fact that under no-wait and no-idle conditions the
makespan can be a decreasing function of some job processing times. Moreover, they also lead to a natural reduction of the
no-wait flow shop problem to the traveling salesman problem, some lower bounds on the shortest makespan, and new effi-
ciently solvable special cases.
� 2006 Elsevier B.V. All rights reserved.

Keywords: Scheduling; Flow shops; Makespan; No-wait condition; No-idle condition
1. Introduction

A set of n jobs available at time zero has to be processed in a shop with m machines M1,M2, . . . ,Mm. Each
job is processed first on M1, next on M2, and so on, and lastly on Mm. No machine can process more than one
job at a time, no job preemption is allowed, all setup times are included into the job processing times, and
there is unlimited storage between the machines. The problem, commonly referred to as FmkCmax, is to deter-
mine a schedule that minimizes the completion time of the last job on Mm, also known as the makespan. When
the schedule must have the same job sequence on every machine, the corresponding permutation problem is
denoted by FmjprmujCmax.

The paper deals with minimizing the makespan in permutation flow shops under no-wait and no-idle con-
ditions. When each job must be processed from the start to finish without any interruption between the
machines, the problem Fmjno-waitjCmax is defined. The no-wait condition secures that any no-wait schedule
must be a permutation schedule, and thus Fmjno-waitjCmax and Fmjprmu, no-waitjCmax are the same [9]. On
the other hand, the no-idle permutation problem Fmjprmu,no-idlejCmax is formulated when each machine
0377-2217/$ - see front matter � 2006 Elsevier B.V. All rights reserved.

doi:10.1016/j.ejor.2006.01.036

* Corresponding author. Tel.: +1 419 530 2258; fax: +1 419 530 7744.
E-mail address: Jerzy.Kamburowski@utoledo.edu (J. Kamburowski).

mailto:Jerzy.Kamburowski@utoledo.edu


678 P.J. Kalczynski, J. Kamburowski / European Journal of Operational Research 178 (2007) 677–685
must process the jobs without any idle time. As in the case of FmkCmax, there are instances of Fmjno-idlejCmax

with m P 4 for which the restriction to permutation schedules can be costly [11].
Piehler [14] was the first to show that Fmjno-waitjCmax reduces to an instance of the traveling salesman

problem (TSP); see also [16,21]. When m = 2, this instance becomes solvable by the algorithm of Gilmore–
Gomory [7]; see [16]. Adiri and Pohoryles [3] observed that F2jprmu, no-idlejCmax and F2jprmujCmax are
equivalent, and thus both problems can be solved by Johnson’s [10] algorithm. Röck [17] and Baptiste and
Lee [5] proved that F3jno-waitjCmax and F3jprmu,no-idlejCmax are strongly NP-hard. Numerous practical
examples of job scheduling in no-wait environments are summarized in the review paper of Hall and Sriskand-
arajah [9]. Several applications under the no-idle condition are reported by Saadani et al. [18], and in some of
their references.

It is well known that the makespan of a given job sequence in FmjprmujCmax can be represented as the
length of a critical (longest) path in a network; see e.g. [15, p. 131]. To the best of our knowledge, similar net-
work representations are unknown in the case of Fmjno-waitjCmax and Fmjprmu, no-idlejCmax.

In this paper we present the two missed network representations. They allowed us to reveal a duality rela-
tionship that exists between Fmjno-waitjCmax and Fmjprmu, no-idlejCmax, and explain clearly an observed
anomaly in flow shop scheduling under the no-wait and no-idle conditions. This virtual anomaly is manifested
in the possible reduction in the makespan as a consequence of prolonging the processing of a job on an inter-
mediate machine; see [1,12]. Our network representations also lead to a natural reduction of Fmjno-waitjCmax

to TSP, some lower bounds on the shortest makespans, and new efficiently solvable special cases.

2. Two-machine flow shops

Suppose a set of jobs, {1,2, . . . ,n}, available at time zero has to be processed in a flow shop with two
machines A and B in series. Let ak and bk be the processing times of job k on A and B, respectively, and
let Cmax(p;A,B), Cmax(p;no-wait,A,B), and Cmax (p;no-idle,A,B) be the makespans of a job sequence
p = (p(1),p(2), . . . ,p(n)) in F2jprmujCmax, F2jno-waitjCmax, and F2jprmu, no-idlejCmax.

It was observed in [3], that for every job sequence p,
Cmaxðp; A;BÞ ¼ Cmaxðp; no-idle;A;BÞ ¼ max
k¼1;2;...;n

Xk

j¼1

apðjÞ þ
Xn

j¼k

bpðjÞ

" #
.

Thus, both F2jprmujCmax and F2jprmu, no-idlejCmax can be solved in O(n logn) time by Johnson’s algorithm.
Since
Cmaxðp; no-wait;A;BÞ ¼ apð1Þ þ
Xn�1

j¼1

maxðapðjþ1Þ; bpðjÞÞ þ bpðnÞ;
by adding an artificial job 0 with a0 = b0 = 0, F2jno-waitjCmax reduces to TSP on the (n + 1) · (n + 1) distance
matrix defined by
Djk ¼ maxðak; bjÞ for 0 6 j; k 6 n.
If 0! j1! j2!� � �! jn! 0 is the shortest tour, the job sequence (j1, j2, . . . , jn) is optimal. The TSP on the
above matrix can be solved in O(n logn) time by the GG algorithm of Gilmore and Gomory [7]; see also [20].

3. m-Machine flow shops

3.1. Network representations of the makespans

Let pij be the processing time of job j on machine Mi for i = 1,2, . . . ,m and j = 1,2, . . . ,n. Let Cmax(p;no-
wait) and Cmax(p;no-idle) denote the makespans of a job sequence p = (p(1),p(2), . . . ,p(n)) in Fmjno-wait-
Cmax and Fmjprmu, no-idlejCmax.

The following result shows network representations of Cmax(p;no-wait) and Cmax(p;no-idle).



P.J. Kalczynski, J. Kamburowski / European Journal of Operational Research 178 (2007) 677–685 679
Theorem 1. The makespans Cmax(p;no-wait) and Cmax(p;no-idle), where for simplicity p = (1,2, . . . , n), are the

lengths of critical paths in the networks shown in Figs. 1a and b, and 2a and b, respectively.

Proof. The no-wait and no-idle conditions can be modeled by a technique, developed by Elmaghraby and
Kamburowski [6], for representing generalized precedence relations in activity networks. Using this technique,
Cmax(p;no-wait) is the critical path length in the network of Fig. 1a. Its solid arcs represent the processing of
the jobs, while its dashed arcs are dummy. The network resembles an activity-on-arc type CPM network with
the only difference that two anti-parallel arcs weighted by pij and �pij model the processing of any interme-
diate job j on every intermediate machine Mi. The existence of such arcs secures the no-wait condition. (There
is no need to add the arcs with negative weights for the jobs processed on M1 and Mm, as well as for the first
and last jobs; there exists a critical path that does not pass through such arcs.) The makespan Cmax(p;no-wait)
is also the critical path length in the activity-on-node type network of Fig. 1b; the nodes are numbered by the
corresponding processing times. In order to verify this, it suffices to check that the networks in Figs. 1a and b
are equivalent because there is a one-to-one correspondence between their simple paths, and the related paths
have the same length. Similarly, Cmax(p;no-idle) is the critical path length in the network of Fig. 2a, and the
networks in Figs. 2a and b are equivalent. h

Let Cmax((j,k)) be the makespan of a two-job subsequence (j,k) in FmjprmujCmax, and let Cmax(p;Mi,Mi+1)
be the makespan of p in the flow shop with two machines Mi and Mi+1 in series. From Theorem 1 one obtains
the following simple representations of Cmax(p;no-wait) and Cmax(p;no-idle).
p12p11 p13 p1,n-1 p1n

-p22 -p23 -p2,n-1
p21 p2n

p22 p23 p2,n-1

-pm-1,n-1-pm-1,2 -pm-1,3
pm-1,1 pm-1,npm-1,2 pm-1,3 pm-1,n-1

pm2pm1 pm3 pm,n-1 pmn

p11 p12 -p12 p12 p13 -p13 p1,n-1 p1n

p21 p22 -p22 p22 p23 -p23 p2,n-1 p2n

pm-1,1 pm-1,2 pm-1,2 pm-1,3 pm-1,n-pm-1,2 -pm-1,3 pm-1,n-1

pm1 pm2 -pm2 pm2 pm3 -pm3 pm.n-1 pmn

(a)

(b)

Fig. 1. Equivalent networks for computing the makespan Cmax(p;no-wait) for p = (1,2, . . . ,n).



pm-1,npm-1,n-pm-1,2

p11

p21

p21 p22

-p21 -p22

p12

p22

p31 p32

p1,n-1

p2,n-1

-p2,n-1

p2,n-1

p1n

p2n

-p2n

p2n

-p3n-p3,n-1-p32

p3,n-1 p3n

-p31

pm1 pm2 pm,n-1 pmn

pm-1,1

p22

p11 p12 p1np1,n-1

p2,n-1

p21 p2n
-p22 -p2,n-1

pm-1,n-1pm-1,2

pm-1,npm-1,1
-pm-1,n-1-pm-1,2

pm2pm1 pm,n-1 pmn(a)

(b)

Fig. 2. Equivalent networks for computing the makespan Cmax(p;no-idle) for p = (1,2, . . . ,n).

680 P.J. Kalczynski, J. Kamburowski / European Journal of Operational Research 178 (2007) 677–685
Corollary 1. For every job sequence p,

(i) Cmaxðp; no-waitÞ ¼
Pn�1

j¼1 CmaxððpðjÞ; pðjþ 1ÞÞÞ �
Pm

i¼1

Pn�1
j¼2 pi;pðjÞ;

(ii) [12] Cmaxðp; no-idleÞ ¼
Pm�1

i¼1 Cmaxðp; Mi;Miþ1Þ �
Pm�1

i¼2

Pn
j¼1pij.

Note that the makespan Cmax(p;no-wait) has been computed so far by rather complex recursive formulas
developed by Reddi and Ramamoorthy [16].

It could be added here that when the arcs with negative weights are deleted from the network of Fig. 1a, the
critical path length in the resulting activity-on-arc CPM network is Cmax(p;block), that is, the makespan of p
computed for the problem, referred to as FmjblockjCmax, under the so-called blocking condition; see e.g. [15,
p. 143]. On the other hand, when the arcs with negative weights are deleted from the network of Fig. 2a, the
longest path length in the resulting network does not seem to have any known interpretation. This length
equals the makespan of p under the condition that a job completed on a machine must remain on it as long



P.J. Kalczynski, J. Kamburowski / European Journal of Operational Research 178 (2007) 677–685 681
as this machine is idle and waits for other jobs. Since all machines are kept busy, we propose to call the cor-
responding problem, which so far is only a theoretical one, Fmjprmu,busyjCmax.

From the networks of Figs. 1 and 2, as well as Corollary 1, it is evident that a certain duality relationship
exists between Fmjno-waitjCmax and Fmjprmu,no-idlejCmax. (A similar duality relationship exists between
FmjblockjCmax and Fmjprmu,busyjCmax.) Clearly, for a given job sequence p = (p(1),p(2), . . . ,p(n)), define
n artificial machines in series Mpð1Þ;Mpð2Þ; . . . ;MpðnÞ. Define also a sequence J = (J1,J2, . . . ,Jm) of m artificial
jobs, and assume that pij is the processing time of job Ji on machine MpðjÞ. Then Cmax(p;no-wait)
¼CmaxðJ ;no-idle;Mpð1Þ �MpðnÞÞ, and Cmaxðp;no-idleÞ¼CmaxðJ ;no-wait;Mpð1Þ �MpðnÞÞ, where CmaxðJ ;no-idle;
Mpð1Þ �MpðnÞÞ and CmaxðJ ;no-wait;Mpð1Þ �MpðnÞÞ are the makespans of J computed under the no-idle and
no-wait conditions on the ordered machines Mpð1Þ;Mpð2Þ; . . . ;MpðnÞ.
3.2. Reductions of Fmjno-waitjCmax to TSP

From Corollary 1(i) we have
Cmaxðp; no-waitÞ ¼
Xm

i¼1

pi;pð1Þ þ
Xn�1

j¼1

CmaxððpðjÞ; pðjþ 1ÞÞÞ þ
Xm

i¼1

pi;pðnÞ �
Xm

i¼1

Xn

j¼1

pij.
Since
Pm

i¼1

Pn
j¼1pij is a constant, by adding an artificial job 0 with pi0 = 0 for i = 1,2, . . . ,m, Fmjno-waitjCmax

reduces to TSP on the (n + 1) · (n + 1) distance matrix defined by
djk ¼ Cmaxððj; kÞÞ ¼ Cmaxððj; kÞ; no-waitÞ.
The authors of [14,16,21] found an equivalent reduction to TSP with the distance matrix
Djk ¼ max
16i6m

Xi

h¼1

phj �
Xi�1

h¼1

phk

" #
;

which is commonly presented in the scheduling literature; see e.g. [1,9,15].

3.3. Anomalies in no-wait and no-idle scheduling

Given a job sequence p and its makespan, the corresponding schedules are defined by the job start times.
Therefore, let sij denote the start time of job j on machine Mi. Although the makespan representations of
Figs. 1a and 2a have cycles, all sij can be found in O(mn) time, which is demonstrated below for p =
(1,2, . . . ,n) and Fmjno-waitjCmax.

Algorithm 1 (Finding a no-wait schedule for a given job sequence). Let si0 = pi0 = s0j = p0j = 0 for i = 1,2, . . . ,m

and j = 1,2, . . . ,n, and

For j = 1,2, . . . ,n do

set sij = max(si�1,j + pi�1,j, si+1, j�1) for i = 1,2, . . . ,m � 1, and smj = max(sm�1,j + pm�1,j, sm,j�1 + pm,j�1);
set sij ¼: max(sij, si+1,j � pij) for i = m � 1,m � 2, . . . , 1;
Next j.
Since the problem Fmjprmu, no-idlejCmax was found to be dual to Fmjno-waitjCmax, the computations of sij

for a no-idle permutation schedule are left as an exercise.
The existence of the arcs with negative weights in the networks of Figs. 1a and 2a explains clearly the

known fact that the makespan can be reduced by slowing down the processing of some jobs [1,12].

Example 1. Consider a three-machine no-wait flow shop with three jobs defined by p11 = 1, p21 = 1, p31 = 5,
p12 = 2, p22 = 2, p32 = 2, p13 = 3, p23 = 3, and p33 = 1. The makespan of p = (1,2,3) is Cmax(p;



M1 p11 p12 p13

M2 p21 p22 p23

M3 p31 p32 p33

0 1 2 3 4 5 6 7 8 9 10 11 12

Fig. 3. Gantt’s charts of the no-wait schedule for Example 1.

682 P.J. Kalczynski, J. Kamburowski / European Journal of Operational Research 178 (2007) 677–685
no-wait) = p11 + p21 + p31 � p22 + p13 + p23 + p33 = 12; see Fig. 3. If p22 increases from 2 to 3, the makespan
decreases from 12 to 11.

Example 2. Consider a three-machine no-idle permutation flow shop with three jobs defined by p11 = 1,
p21 = 2, p31 = 4, p12 = 3, p22 = 2, p32 = 2, p13 = 3, p23 = 2, and p33 = 1. The makespan of p = (1,2,3) is
Cmax(p;no-idle) = p11 + p12 + p13 � p22 + p31 + p32 + p33 = 12; see Fig. 4. If p22 increases from 2 to 3, the
makespan decreases from 12 to 11.

The anomaly in no-wait scheduling was used by Abadi et al. [1] in a heuristic that can be regarded as that
for solving FmjblockjCmax. Since Fmjno-waitjCmax reduces to TSP, they proposed to find a no-wait schedule
by a good TSP heuristic first. Then attempts are made to shorten this schedule by some increases in the job
processing times. Therefore, assume that the times pij are allowed to be increased, and let Cmax(p;no-wait,xij)
be the makespan of p with the increased processing times xij. It was proven in [1] that for any p, there exist
xij P pij such that Cmax(p;no-wait,xij) = Cmax(p;block). The authors of [1] find the optimal xij by solving an
instance of the minimum cost flow problem defined on a directed network with O(mn) nodes and O(mn) arcs.
Fig. 1a reveals that the optimal xij can be determined by the following O(mn) algorithm presented below for
p = (1, 2, . . . ,n). It finds the earliest and latest start times eij and ‘ij of job j on machine Mi under the blocking
condition, and use them to define xij.

Algorithm 2 (Finding a no-wait schedule with slowing down)

Step 1. (Finding the earliest blocking schedule)
Let ei0 = pi0 = e0j = p0j = 0 for i = 1,2, . . . ,m and j = 1,2, . . . ,n, and
For j = 1,2, . . . ,n do
set eij = max(ei�1,j + pi�1,j, ei+1, j�1) for i = 1,2, . . . ,m � 1, and emj = max(em�1,j + pm�1,j, em,j�1 +
pm,j�1);

Next j.
Step 2. (Finding the latest blocking schedule)

Let ‘i,n+1 = ‘0j = emn + pmn for i = 0,1, . . . ,m and j = 1,2, . . . ,n, and

For j = n,n � 1, . . . , 1 do

set ‘mj = ‘m,j+1 � pmj and ‘ij = min (‘i+1,j � pij, ‘i�1,j+1) for i = m � 1,m � 2, . . . , 1;
Next j.

Step 3. For j = 1,2, . . . ,n, let Mij be a machine such that eij ¼ ‘ij , and define

xmj = pmj, xij = ‘i+1,j � ‘ij if i < ij, and xij = ei+1,j � eij if i P ij and i 5 m.

Theorem 2. Given p = (1,2, . . . , n), Algorithm 3 finds the increased processing times xij such that Cmax(p; no-

wait,xij) = Cmax(p; block) and
Pm

i¼1

Pn
j¼1xij is minimum.
M1 p11 p12 p13

M2 p21 p22 p23

M3 p31 p32 p33

0 1 2 3 4 5 6 7 8 9 10 11 12

Fig. 4. Gantt’s charts of the no-idle schedule for Example 2.



P.J. Kalczynski, J. Kamburowski / European Journal of Operational Research 178 (2007) 677–685 683
Proof. To secure the makespan Cmax(p;block) = emn + pmn and the minimum
Pm

i¼1

Pn
j¼1xij, it is necessary to

process every job j in the interval [‘1j,emj + pmj]. The definition of xij in Step 3 leads to Cmax(p;no-wait,xij) =
Cmax(p;block) and

Pm
i¼1xij ¼ emj þ pmj � ‘1j for j = 1,2, . . . ,n. h

Reconsider the instance of Example 1. Algorithm 2 finds x22 = 3 and leaves the remaining times unchanged.
This leads to Cmax(p;no-wait,xij) = 11, and we also have Cmax(p;block) = 11.

A similar slowing-down algorithm can be proposed for finding xij P pij such that Cmax(p;no-idle, xij) =
Cmax(p;busy) and

Pm
i¼1

Pn
j¼1xij is minimum. When applied on the instance of Example 2, it would find

x22 = 3 to yield Cmax(p;no-idle, xij) = 11, and match Cmax(p;busy) = 11.

3.4. Lower bounds and efficiently solvable special cases

In the first part of this subsection we consider Fmjno-waitjCmax. The makespan representation shown in
Corollary 1(i) allows us to define a polynomially-found sequence phi and the corresponding lower bound
Lhi on the shortest no-wait makespan for every pair of machines (Mh,Mi) such that h < i.

Algorithm 3 (Finding phi and Lhi)

Step 1. Define two artificial machines A and B in series with the times ak ¼
Pi�1

g¼hpgk and bk ¼
Pi

g¼hþ1pgk for
k = 1,2, . . . ,n.

Step 2. For every pair of jobs (r, s), define a dummy job 0 with a0 ¼
Pi�1

g¼hpgs and b0 ¼
Pi

g¼hþ1pgr, apply the
GG algorithm on the (n � 1) · (n � 1) distance matrix Djk = max(ak,bj), where j,k 2 {0, 1, . . . ,n}-
{r, s}, to find the (n � 2)-element sequence p(r, s), and compute
Cðr; sÞ ¼
Xh�1

g¼1

pgr þ Cmaxððr; pðr; sÞ; sÞ; no-wait;A;BÞ þ
Xm

g¼iþ1

pgs.
Step 3. Find r* and s* that minimize C(r, s), and let phi = (r*,p(r*, s*), s*) and Lhi = C(r*, s*).

Since the computations of all ak and bk require O(mn) time, and the GG algorithm has to be repeated n2

times when 1 < h < i < m, the overall complexity of Algorithm 3 is O(max(m,n2 logn)n). It reduces to
O(max(m,n logn)n) when h = 1 or i = m, and O(max(m, logn)n) when h = 1 and i = m.

Definition 1. We say that machine Mg is

(i) [13] dominated by Mg�1, written Mg�1 P Mg, if pg�1,k P pgj for all j 5 k;
(ii) weakly dominated by Mg�1 and Mg+1, written (Mg�1,Mg+1) P wMg, if max(pg�1,k � pgj,pg+1,j � pgk)P 0

for all j 5 k.

Note that Mg�1 P Mg implies (Mg�1,Mg+1) P wMg.

Theorem 3. For every job sequence p and 0 6 h < i 6 m, Cmax(p; no-wait) P Lhi. If M1 P M2 P � � �P Mh,

(Mg�1,Mg+1) P wMg for g = h + 1,h + 2, . . . , i � 1, and Mi P Mi+1 P � � �P Mm, then phi is optimal for

Fmjno-waitjCmax.

Proof. Observe first that the sequence phi minimizes
LhiðpÞ ¼
Xh�1

g¼1

pg;pð1Þ þ apð1Þ þ
Xn�1

j¼1

maxðapðjþ1Þ; bpðjÞÞ þ bpðnÞ þ
Xm

g¼iþ1

pg;pðnÞ.
Since for every p and j = 1,2, . . . ,n � 1,
CmaxðpðjÞ; pðjþ 1ÞÞP
Xh

g¼1

pg;pðjÞ þmaxðapðjþ1Þ; bpðjÞÞ þ
Xm

g¼i

pg;pðjþ1Þ; ð1Þ
from Corollary 1(i) and the definition of Lhi, we have Cmax(p;no-wait) PLhi(p) P Lhi.



684 P.J. Kalczynski, J. Kamburowski / European Journal of Operational Research 178 (2007) 677–685
For the machine dominance relations specified in the theorem, we have the equality in (1). Hence, Cmax

(p;no-wait) = Lhi(p) for every p, and since phi minimizes Lhi(p), Cmax (phi;no-wait) = Lhi. h

In the remainder of this subsection we consider the problem Fmjprmu,no-idlejCmax. Let pi be a sequence
found by Johnson’s algorithm applied on machines Mi and Mi+1, i = 1,2, . . . ,m � 1. The makespan represen-
tation given in Corollary 1(ii) leads to the following result.

Theorem 4. For every job sequence p, Cmax(p;no-idle) P L ¼
Pm�1

i¼1 Cmaxðpi; Mi;Miþ1Þ �
Pm�1

i¼2

Pn
j¼1pij. If

[min(phk,ph+1,j) � min(phj,ph+1,k)][min(pik, pi+1,j) � min(pij, pi+1,k)] P 0 for all jobs j 5 k and machines Mh and

Mi such that 1 6 h < i < m, then the lower bound L is tight and Fmjprmu, no-idlejCmax polynomially solvable.

Proof. The lower bound L was presented in [12]; its computations require O(mn logn) time. Recall that John-
son’s algorithm applied on times ak and bk finds one of the so-called Johnson’s sequences that satisfy the rule:
j precedes k if min(ak,bj) > min(aj,bk). Under the condition specified in the theorem, the sequence ph may dif-
fer from pi only in the ordering of jobs j and k for which [min(phk,ph+1,j) � min(phj,ph+1,k)][min(pik,pi+1,j) �
min(pij,pi+1,k)] = 0. By breaking these ties successively [2,19], all pi can be transformed into a Johnson’s
sequence p* that is optimal for all (Mi,Mi+1) and satisfies Cmax(p*;no-idle) = L. h

It is noteworthy that, as opposed to Fmjprmu, no-idlejCmax, the optimality of p* for all (Mi,Mi+1) does not
guarantee the optimality of p* in FmjprmujCmax, see [2,13]. The efficiently solvable special case of
Fmjprmu, no-idlejCmax presented in Theorem 4 corrects the erroneous case claimed in Theorem 4(iii) of [12].

4. Final remarks

The technique we adapted to model the makespans in no-wait and no-idle flow shops can also be imple-
mented for some hybrid flow shops. To illustrate, consider the problem Fmjblock(1,2), no-waitjCmax, that
is, there is no storage between M1 and M2, and the no-wait condition must be respected by the remaining
machines. When the arcs with negative weights �p2j are deleted from Fig. 1a, the critical path length in the
resulting network is the corresponding makespan. In particular, this shows that both F3jblock(1,2), no-
wait(2, 3)jCmax and F3jno-wait(1,2), block(2,3)jCmax reduce to F3jblockjCmax, and hence they are strongly
NP-hard; see Lemmas 2 and 3 in [9].

The lower bound L falls beyond the idea of a constructive heuristic for solving Fmjprmu, no-idlejCmax [11]
that was shown to outperform significantly earlier heuristics. We strongly believe that the sequences phi (in
particular p1m) can be used to develop an efficient Fmjno-waitjCmax constructive heuristic whose solution will
become a good initial sequence for metaheuristics; see e.g. [4,8]. We also believe that the lower bounds L and
Lhi will find applications in developing effective branch and bound algorithms.

We identified duality relations that exist between Fmjno-waitjCmax and Fmjprmu, no-idlejCmax, and
FmjblockjCmax and Fmjprmu,busyjCmax. Future research is necessary to better explore the observed dualities.
We hope that the new theoretical problem Fmjprmu,busyjCmax will find validations in real world flow shop
scheduling.
Acknowledgements

The authors are grateful to three anonymous referees for their valuable suggestions and comments.
References

[1] I.N.L. Abadi, N.G. Hall, C. Sriskandarajah, Minimizing cycle time in a blocking flowshop, Operations Research 48 (2000) 177–180.
[2] N.R. Achuthan, A special case of the (n/m/F/Fmax) problem, Opsearch 14 (1977) 71–87.
[3] I. Adiri, D. Pohoryles, Flow-shop/no-idle or no-wait scheduling to minimise the sum of completion times, Naval Research Logistics

Quarterly 29 (1982) 495–504.
[4] A. Allahverdi, T. Aldowaisan, No-wait flowshops with bicriteria of makespan and maximum lateness, European Journal of

Operational Research 152 (2004) 132–147.



P.J. Kalczynski, J. Kamburowski / European Journal of Operational Research 178 (2007) 677–685 685
[5] P. Baptiste, K.H. Lee, A branch and bound algorithm for the Fjno-idlejCmax, in: International Conference on Industrial Engineering
and Production Management (IEPM’97), Lyon, 1997.

[6] S. Elmaghraby, J. Kamburowski, The analysis of activity networks under generalized precedence relations (GPRs), Management
Science 38 (1992) 1245–1263.

[7] P.C. Gilmore, R.E. Gomory, Sequencing a one state variable machine: A solvable case of the traveling salesman problem, Operations
Research 12 (1964) 655–679.

[8] J. Grabowski, J. Pempera, Some local search algorithms for no-wait flow-shop problem with makespan criterion, Computers and
Operations Research 32 (2005) 2197–2212.

[9] N.G. Hall, C. Sriskandarajah, A survey of machine scheduling problems with blocking and no-wait in process, Operations Research
44 (1996) 510–515.

[10] S.M. Johnson, Optimal two- and three-stage production schedules with setup times included, Naval Research Logistics Quarterly 1
(1954) 61–68.

[11] P.J. Kalczynski, J. Kamburowski, A heuristic for minimizing the makespan in no-idle flow shops, Computers and Industrial
Engineering 49 (2005) 146–154.

[12] J. Kamburowski, More on three-machine no-idle flow shops, Computers and Industrial Engineering 46 (2004) 461–466.
[13] C.L. Monma, A.H.G. Rinnoy-Kan, A concise survey of efficiently solvable special cases of the permutation flow-shop problem,

RAIRO Recherche Operationelle 17 (1983) 105–119.
[14] J. Piehler, Ein Beitrag Zum Reinhenfolgeproblem, Unternehmensforschung 4 (1960) 138–142.
[15] M. Pinedo, Scheduling: Theory, Algorithms, and Systems, Prentice Hall, Upper Saddle, NJ, 2002.
[16] S.S. Reddi, C.V. Ramamoorthy, On the flowshop sequencing problem with no-wait in process, Operational Research Quarterly 23

(1972) 323–331.
[17] H. Röck, The three machine no-wait flowshop problem is NP-complete, Journal of the Association for Computing Machinery 31

(1984) 336–345.
[18] H. Saadani, A. Guinet, M. Moalla, Three stage no-idle flow-shops, Computers and Industrial Engineering 44 (2003) 425–434.
[19] W. Szwarc, Optimal two-machine orderings in the 3 · n flow-shop problem, Operations Research 25 (1977) 70–77.
[20] G. Vairaktarakis, Simple algorithms for Gilmore–Gomory’s traveling salesman and related problems, Journal of Scheduling 6 (2003)

499–520.
[21] D.A. Wismer, Solution of the flowshop scheduling problem with no intermediate queue, Operations Research 20 (1972) 689–697.


	On no-wait and no-idle flow shops with makespan criterion
	Introduction
	Two-machine flow shops
	m-Machine flow shops
	Network representations of the makespans
	Reductions of Fm mid no-wait mid Cmax to TSP
	Anomalies in no-wait and no-idle scheduling
	Lower bounds and efficiently solvable special cases

	Final remarks
	Acknowledgements
	References




