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Abstract: Many spectral-recovery methods using RGB dig-
ital cameras assume the underlying smoothness of illumi-
nant and reflectance spectra, and apply low-dimensional
linear models. The aim of the present work was to test
whether a direct-mapping method could be used instead of
a linear-models approach to recover spectral radiances
and reflectances from natural scenes with an RGB digital
camera and colored filters. In computer simulations, a con-
ventional RGB digital camera with up to three colored fil-
ters was used to image scenes drawn from a hyperspectral
image database. Three measures were used to evaluate re-
covery with the direct-mapping method: goodness-of-fit,
root-mean-square error, and a color-difference metric. It
was found that with two and three filters both spectral radi-
ances and reflectances could be recovered sufficiently
accurately for many practical applications. With little
increase in computational complexity, an RGB camera and
a few colored filters can provide significantly better recov-
ery of natural scenes than an RGB camera alone. � 2007

Wiley Periodicals, Inc. Col Res Appl, 32, 352 – 360, 2007; Published
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INTRODUCTION

The goal of multispectral imaging is to recover radiance

or reflectance spectra at each pixel in a scene of inter-

est.1–4 Typically, a multispectral system consists of a digi-

tal camera coupled to a range of spectrally broad-band

or narrow-band filters. If the number of filters is suffi-

ciently large and their bandwidths are sufficiently small,

as with a hyperspectral imaging system,2,5,6 spectral

data can be recovered exactly.5–9 But with just a few

broad-band filters, spectral recovery presents an ill-posed

problem.

Many multispectral-imaging methods exploit the under-

lying smoothness of signal spectra,10 with illuminants11–13

and spectral reflectances14,15 represented by low-dimen-

sional models based on principal component analysis

(PCA) or independent component analysis (ICA).16–20

Thus, given a linear model,10,21 if the number of PCA or

ICA coefficients of a particular set of spectra is the same

as the number of camera responses (three in the simplest

trichromatic case), then the spectra can be derived by an

inverse transformation of the set of camera responses,

with the forward transformation being estimated from a

representative (‘‘training’’) data set. If the number of coef-

ficients is more than the number of response values, then

the latter may need to be increased by imaging the scene

under different illuminants or by introducing colored fil-
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ters one at a time in front of the camera to modify the

sensor spectra.18,22,23

Rather than an initial PCA or ICA being performed,

however, the set of signal spectra may instead be esti-

mated directly from the set of camera responses. These

responses may be obtained from the camera itself or, for

the present purposes, calculated from a set of known cam-

era spectral sensitivities (Camera Spectral Sensitivities
and Colored Filters section). For a conventional RGB

digital camera, the set of camera responses comprises a

matrix of three values for each pixel over all the pixels in

the scene. If colored filters are introduced, then the set of

camera responses comprises several of these matrices

(Computations section). The ‘‘direct-mapping’’ method24

is described in more detail in the next section.

Direct Mapping of Camera Responses and Spectra

Given a set of training spectra S (which can be spectral

radiances or reflectances associated with a certain sample

of pixels in the scene) and the corresponding set of cam-

era responses R, a recovery transformation matrix D is

defined by D ¼ SRþ, where Rþ is the pseudoinverse of

R (this notation differs from that in Ref. 24). If R has full

rank, then Rþ ¼ (RtR)�1Rt, where Rt is the transpose of

R. An estimate Ŝ1 of a set of test spectra S1 may then be

obtained from the corresponding set of camera responses

R1 by applying the transformation D, that is, Ŝ1 ¼ DR1

(see Refs. 25 and 26). The direct-mapping method has

been applied successfully to art imaging22,27 and to illu-

minant estimation,3 but it is unclear whether it remains

efficient for radiance or reflectance estimation in condi-

tions where the illumination is uncontrolled. Natural

scenes, the subject of the present study, represent a spe-

cial challenge for spectral-recovery methods.

Recovery of Natural Spectra

The choice of training spectra used to calculate the re-

covery transformation is critical in determining its per-

formance: if the set is insufficiently representative, then

the recovery transformation will be inaccurate; and if it is

too similar to the test set, it will lose generality. In prac-

tice, different training sets are used for different applica-

tions, for example, oil pigments for multispectral analysis

of artworks.22 Although a standard in some laboratory

applications, the Munsell set28 and the Macbeth Color-

Checker,29 which encompass some reflectance spectra

found in natural environments, seem unlikely to provide

optimal training sets because they do not represent the

distribution of natural spectral reflectances.

The aim of the present work was to test whether the

direct-mapping method could be used instead of a linear-

models approach to recover spectral radiances and reflec-

tances satisfactorily from natural scenes. The natural

spectra were obtained by hyperspectral imaging5 and the

recovery matrix was estimated using the simulated res-

ponses of a conventional RGB digital camera coupled to

several combinations of colored filters.

It was found that natural spectra could indeed be accu-

rately recovered with this simple system, and, as antici-

pated, accuracy was significantly better when natural radi-

ances and reflectances were used as the training set rather

than those from a color chart.

METHODS

Hyperspectral Data

Hyperspectral data from thirty natural scenes, fifteen of

rural environments and fifteen of urban environments,

were drawn from a high-spatial-resolution database.5 The

scenes were taken from the Minho region of Portugal,

which has a temperate climate and variety of vegetation

and natural rock formations. The hyperspectral imaging

system used a Peltier-cooled digital monochromatic cam-

era with spatial resolution 1344 3 1024 pixels (Hama-

matsu, model C4742-95-12ER, Hamamatsu Photonics

K.K., Japan) with a fast-tunable liquid-crystal filter

(VariSpec, model VS-VIS2-10-HC-35-SQ, Cambridge

Research & Instrumentation Inc., Woburn, MA) mounted

in front of the lens, with infra-red blocking filter. For

each scene, 33 images were captured at 10-nm intervals

over 400–720 nm, with 12-bit intensity resolution at each

pixel. These raw image sequences were corrected for

noise, stray light, off-axis vignetting, and chromatic dif-

ferences of magnification or translation. The spectral re-

flectance at each pixel was estimated by normalizing the

corrected signal against that obtained from a neutral refer-

ence consisting of a small planar gray (Munsell N5 or

N7) surface placed in the scene. The reflected spectral

radiance at the reference was measured with a telespec-

troradiometer (SpectraColorimeter, Model PR-650, Photo

Research, Chatsworth, CA), whose calibration was trace-

able to the National Physical Laboratory (U.K.). The

reflected spectral radiance at each pixel was estimated by

multiplying the estimated spectral reflectance by the

effective incident spectral irradiance at the neutral refer-

ence (in turn the quotient of reflected radiance by the

known reflectance of the reference). An analysis of the

assumptions underlying this estimation procedure for

directly and indirectly illuminated surfaces is given in Ap-

pendix A of Ref. 30. The method applied here is neutral

with respect to the nature of the signal being modeled:

both radiance and reflectance spectra were considered.

Camera Spectral Sensitivities and Colored Filters

The calculated camera responses were obtained using the

spectral sensitivities of a digital RGB camera with spatial

resolution 1280 3 1024 pixels (QImaging, model Retiga

1300, QImaging Corp., Canada) with 12-bit intensity reso-

lution per channel at each pixel. Figure 1(a) shows the

spectral sensitivities of the red, green, and blue CCD sen-

sors of the camera. The peak sensitivities and bandwidths
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of the three channels are similar to those of commercially

available digital RGB cameras.31 Figure 1(b) shows the

spectral transmittances of five colored filters, which, in the

simulation, were placed in front of the camera to modify

the camera responses. The filters were samples of common

transparent acrylic plastic materials: two magenta (MG1

and MG2), one orange (O), one green (G), and one blue

(B). This selection was based on a previous exploratory

computational optimization of different filters with Gaussian

spectral transmittances and variable bandwidths.3

Computations

Different sets of scene fragments were used for the

training and test sets. The matrix-training set, used to

obtain the recovery matrix, was formed from 30 different

fragments, one from each scene, each fragment of size

151 3 151 pixels. The following three additional data sets

were used for verification of the method’s accuracy. Test

set 1 was formed from three randomly selected fragments

of the matrix-training set. Test set 2 was formed from 30

fragments of 61 3 61 pixels with none of the pixels in

common with those of the matrix training set. And test

set 3 was formed by three additional fragments of 151 3
151 pixels from other scenes (close-up views not used in

the matrix-training set). The influence of any possible cor-

relation between adjacent pixels was tested for by sam-

pling half of the scenes over alternate pixels vertically

and horizontally (i.e., every fourth pixel) and comparing

the recovered radiance spectra with those obtained from

the unsampled scenes. The two sets of recovered signals

(whose distributions were nonnormal by the Kolmogorov-

Smirnov test) were significantly different for all filter

combinations (P < 0.001, Wilcoxon signed rank tests).

Since reflectances differed sufficiently over adjacent pix-

els, introducing larger pixel spacings, which would have

lost the spatial integrity of the sample, was considered

unnecessary.

The matrix-training set comprised 151 3 151 3 30

(684030) spectra each defined over 400–700 nm. These

and other spectra were interpolated at 5-nm intervals to

match the sampling interval for the camera spectral sensi-

tivities (originally sampled at 10-nm intervals), thus yield-

ing a matrix S of 684030 3 61 values. The camera

responses ri to these spectra (i ¼ 1, 2, and 3 for red,

green, and blue sensors, respectively) were calculated as

follows. At each pixel, suppose that S(k) is the signal

spectrum; Ri(k) is the camera spectral sensitivity for each

sensor i; and F(k) is the spectral transmittance of one of

the selected filters, where k ¼ 400, 405, : : :, 700 nm. Then

ri ¼
X700
l¼400

SðlÞFðlÞRiðlÞ: (1)

With a total of n colored filters, there are 3n þ 3 cam-

era responses for each pixel (including responses with no

colored filters) forming the response matrix R for the

entire scene fragment. As indicated in the Introduction,

the (3n þ 3) 3 61 recovery matrix D was calculated from

the pseudoinverse Rþ of R by

D ¼ SRþ: (2)

The matrix D was calculated for the camera without any

colored filter, with one filter (each one of the set of five),

with two filters (four different combinations of two col-

ored filters), and with three filters (two different combina-

tions). The filters used in the two-filter combinations were

selected from those yielding the best performance with

one-filter recovery. In turn, the filters used in the three-fil-

ter combinations were selected from those yielding the

best performance with two-filter recovery. Four different

two-filter combinations and two different three-filter com-

bination were tested.

Evaluation of Spectral and Colorimetric

Quality of Recovered Signals

Three measures of recovery performance were used to

avoid the idiosyncrasies of any single measure32,33: two

were spectral measures and one was colorimetric, taking

FIG. 1. (a) Normalized spectral sensitivities of RGB digital camera sensors (QImaging Retiga 1300). (b) Spectral transmit-
tances of colored filters used with camera.
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into account the eye’s sensitivity to color differences. The

first was the goodness-of-fit coefficient (GFC), defined as

the cosine of the angle between the recovered signal Ŝ
and original signal S, thus

GFC ¼
P700

l¼400
bSðlÞSðlÞP700

l¼400
bSðlÞ2� �1=2 P700

l¼400 SðlÞ2
� �1=2

: (3)

This commonly used measure of spectral similarity has

the advantage of not being affected by scale factors. Val-

ues range from 0 to 100%, with GFC ‡ 99.5% corre-

sponding to acceptable recovery and GFC ‡ 99.99% to an

almost-exact fit.32,34 The second measure was the root-

mean-square error (RMSE), which, for radiances, was

scaled by the maximum of each over the wavelength

range. The third was the CIELAB color difference DE*ab,
which was calculated with reference to the color signal of

a white patch included in the scene for illuminant estima-

tion. For reflectances, an equienergy illuminant was

assumed for the evaluation of color differences. Real or

standard illuminants were not used since the main aim

was to compare different filter combinations. This equie-

nergy illuminant should not be confused with the scene il-

luminant recorded at the time of image acquisition

(Hyperspectral Data section). These three measures were

applied to the spectral recovery of test sets 1, 2, and 3.

RESULTS AND COMMENT

From the direct-mapping method, two estimates of the re-

covery matrix D were obtained. The first related camera

responses to spectral radiances and the second related

camera responses to spectral reflectances. By definition,

the spectral radiance at a pixel coincides with the product

of the spectral reflectance and the spectral power distribu-

tion of the scene illuminant (Hyperspectral Data section),

but the recovery of the two kinds of estimates was not

identical. Radiance and reflectance estimates are therefore

considered separately in the following two subsections

(Spectral-Radiance Recovery and Spectral-Reflectance Re-
covery sections), respectively.

Recovery also depended on the matrix-training data.

Although in CIELAB space the rural and urban matrix-

training data had similar lightness ranges, the distribution

of their chromaticities differed, as the plots of b* versus

a* values in Fig. 2 show. The differences between the

two sets of data are considered in Differences Between
Rural and Urban Scenes section.

Spectral-Radiance Recovery

Figure 3 shows four examples of spectral-radiance re-

covery for different scene fragments. The examples on

the top row, (a) and (b), are from test set 1 and those on

the bottom row, (c) and (d), are from test set 2. Those on

the left, (a) and (c), have GFC and RMSE values in the

top 5th centile and those on the right, (b) and (d), in the

bottom 5th centile. The large differences in radiance

scales are due to some recovered radiances being from

areas directly illuminated by the sun and others from

areas in shadow.30 Recovery appears to be independent of

signal scale, owing to the linearity of the camera

responses and the direct-mapping method.

Recovery clearly improves as the number of camera fil-

ters increases. The filter combinations shown correspond

to those producing the best results with the test sets used,

although the worst two-filter combination was still better

than any filter alone, and the worst three-filter combina-

tion was still better than any two-filter combination. But

introducing more colored filters, with a consequent

increase in image-acquisition time, was thought unlikely

to produce significant improvement.

Table I shows the mean (and sample standard devia-

tion) of GFC, RMSE, and DE*ab values calculated across

all spectra (68403 for test sets 1 and 3, 111630 for test

set 2). Only the best filter combination is shown for two-

FIG. 2. CIELAB plot of (a*, b*) values of the matrix-training set for (a) rural data and (b) urban data.
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and three-filter combinations. The RMSE values are

reasonably low particularly for two- and three-filter com-

binations. Color differences DE*ab do not exceed unity,

implying that there would be little noticeable colorimetric

difference between recovered and original signals. The

effects of number of filters and of filter type were con-

firmed by a nonparametric Friedman’s two-way ANOVA

applied to the three measures, the results of which were

statistically very highly significant (P < 0.001). These

statistical tests show that the differences in recovery with

one, two and three filters are significant and that recovery

with the best two- and three-filter combinations is signifi-

cantly better than with other possible combinations.

Recovery was better for test set 1 than for test sets 2

and 3. This was not unexpected, since estimation of the

recovery matrix was based on test set 1. Figure 4 shows

visualized images of a fragment of scene radiance spectra

(a) and its recovery (b) with three colored filters. The vis-

ualization was based on the calculated camera response

values. Colorimetric differences between the recovered

and original images are not visually detectable, as pre-

dicted by the DE*ab values, which were less than unity.

FIG. 3. Recovery of spectral radiances for two members (a) and (b) of test set 1 and for two members (c) and (d) of test
set 2 with (a) and (c) having goodness-of-fit coefficient (GFC) in top 5th centile, and (b) and (d) in bottom 5th centile. GFC
values for color filter G were (a) 99.87%, (b) 98.17%, (c) 99.93%, and (d) 94.62%.

TABLE I. Quality of recovery of spectral radiances from natural scenes.

Measure Test set

Color filters

None MG 1 MG 2 B G O G þ O G þ O þ MG2

GFC (%) 1 99.20 (0.76) 99.64 (0.57) 99.67 (0.56) 99.55 (0.43) 99.50 (0.57) 99.62 (0.41) 99.71 (0.34) 99.86 (0.12)
2 97.06 (7.14) 98.34 (4.88) 98.46 (4.52) 98.54 (3.46) 98.08 (5.05) 98.46 (3.54) 99.01 (2.39) 99.34 (1.58)
3 97.05 (5.61) 98.64 (3.44) 98.69 (2.92) 98.53 (3.06) 98.61 (3.26) 98.61 (2.24) 98.96 (1.80) 99.26 (1.40)

RMSE (%) 1 8.28 (2.46) 5.12 (2.09) 4.83 (2.11) 5.99 (1.92) 6.42 (1.84) 5.53 (1.48) 4.72 (1.82) 3.32 (1.15)
2 9.96 (3.96) 6.65 (3.48) 6.44 (3.29) 6.82 (3.14) 7.37 (3.67) 7.02 (3.15) 5.65 (3.04) 4.55 (2.83)
3 9.31 (3.35) 6.34 (2.50) 6.17 (2.50) 6.73 (2.54) 6.37 (2.54) 6.21 (2.82) 6.14 (2.24) 5.00 (2.17)

DE*ab 1 0.32 (0.16) 0.09 (0.05) 0.10 (0.06) 0.22 (0.13) 0.06 (0.04) 0.18 (0.12) 0.09 (0.06) 0.05 (0.04)
2 0.63 (0.61) 0.24 (0.28) 0.28 (0.32) 0.35 (0.32) 0.17 (0.20) 0.35 (0.46) 0.12 (0.14) 0.09 (0.12)
3 1.01 (0.76) 0.28 (0.18) 0.36 (0.26) 0.24 (0.12) 0.15 (0.09) 0.43 (0.32) 0.08 (0.06) 0.08 (0.06)

Mean (sample SD) over 68403 spectra with test sets 1 and 3 and 111630 spectra with test set 2 for three measures of performance
and eight filter conditions.
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Spectral-Reflectance Recovery

Figure 5 shows four examples of spectral-reflectance

recovery for different scene fragments. The examples on

the top row, (a) and (b), are from test set 1 and those on

the bottom row, (c) and (d), are from test set 2. Those on

the left, (a) and (c), have GFC and RMSE values in the

top 5th centile and those on the right, (b) and (d), in the

bottom 5th centile.

Table II shows the mean (and sample standard devia-

tion) of GFC, RMSE, and DE*ab values calculated across

all spectra (68403 for test sets 1 and 3, 111630 for test

set 2). Again, only the best filter combination is shown

for two- and three-filter combinations. As with the analy-

sis of spectral-radiance recovery, the strong effects of

number of filters and of filter type were confirmed by a

nonparametric Friedman’s two-way ANOVA applied to

the three measures, the results of which were very highly

significant (P < 0.001).

This level of performance is compatible with that found

in other studies using the direct-mapping method or other

methods for recovering spectral data from paints and pho-

tographic standards under controlled illumination.10,19,35

Differences Between Rural and Urban Scenes

In the foregoing analyses, spectra from rural and urban

scenes were unseparated. But because the two kinds of

spectra have different physical origins and characteris-

tics36 (Fig. 2), it is possible that the effectiveness of the

recovery might also differ. Accordingly, recovery matri-

ces were estimated afresh for both radiance and reflec-

tance spectra after separating rural and urban scenes from

test sets 1 and 2. Test set 3 was used as a reference test

for both matrices, so that the two recovery matrices could

then be compared for the same set of radiance and reflec-

tance spectra. For test set 1, recovery of radiances was

slightly better with rural scenes with the rural recovery

matrix than for urban scenes with the urban recovery ma-

trix (rural recovery with the G filter yielded a mean GFC

of 99.64%, RMSE of 5.35%, and DE*ab of 0.04, whereas

urban recovery with the same filter yielded a GFC of

99.66%, RMSE of 6.18%, and DE*ab of 0.08). For test set

2, recovery of radiances was somewhat better for urban

FIG. 4. Visualized image of (a) original scene fragment
and (b) fragment recovered with three colored filters.

FIG. 5. Recovery of spectral reflectances for two members (a) and (b) of test set 1 and for two members (c) and (d) of
test set 2, with (a) and (c) having GFC in top 5th centile and (b) and (d) in bottom 5th centile. GFC values for color filter B
were (a) 99.93%, (b) 98.41%, (c) 99.93%, and (d) 93.80%.
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scenes with the urban recovery matrix than for rural

scenes with the rural recovery matrix (for example, urban

recovery with the G filter yielded a mean GFC of

99.37%, RMSE of 6.82%, and DE*ab of 0.15, whereas ru-

ral recovery with the same filter yielded a mean GFC of

96.67%, RMSE of 8.22%, and DE*ab of 0.21). Wilcoxon

matched-pairs signed rank tests showed that recovery of

radiances for rural scenes with the rural recovery matrix

was significantly better (P < 0.001) than with the general

recovery matrix for undifferentiated scenes, and analo-

gously for urban scenes.

When rural and urban recovery matrices were applied

to the same set of radiances from test set 3, recovery was
better with the rural recovery matrix (for example, rural

recovery with the G filter yielded a mean GFC of

98.70%, RMSE of 5.97%, and DE*ab of 0.12, whereas
urban recovery with the same filter yielded a mean GFC

of 97.44%, RMSE of 9.62%, and DE*ab of 0.41). This is

reasonable, since the three close-up scenes could all be
classified as rural. Moreover, results with the general re-

covery matrix applied to test set 3 were worse than with
the rural recovery matrix, but better than with the urban

recovery matrix (Wilcoxon matched-pairs signed rank

tests; P < 0.001).

As to the best filter combinations, there were small dif-

ferences for rural and urban scenes with one filter, but the

same trends were found with two- and three-filter combi-

nations. Similar results were obtained for recovery of

reflectances.

Performance with the Macbeth ColorChecker

For comparison, the direct-mapping method was also

applied to a standard set of reflectances, the Macbeth Col-

orChecker Chart (Gretag-Macbeth, X-Rite Inc., Grand

Rapids, MI), widely used in camera characterization10,30

and spectral recovery.35 Five different sets of 240 reflec-

tances from test set 1 were randomly selected, and the

performance of the recovery matrix for this set was com-

pared with that for the set of ColorChecker reflectances.

If the ColorChecker set was representative of natural

reflectances, there should be little difference in perform-

ance with the two matrices.

Table III shows mean and standard deviation of the

quality measures for the two recovery matrices with four

different filter combinations. The natural-reflectance re-

covery matrix always performed better than the Color-

Checker recovery matrix, and the differences were all

statistically highly significant (P < 0.001) according to

Wilcoxon matched-pairs signed rank tests.

An additional comparison was made with 558 randomly

selected reflectances from test set 2. The pattern of per-

formance was maintained for all filter combinations (e.g.,

with the B filter, the ColorChecker recovery matrix

yielded a mean GFC of 96.40%, a mean RMSE of 4.82%,

and mean DE*ab of 2.07; the natural-reflectances recovery

matrix yielded a mean GFC of 98.69%, a mean RMSE of

3.15%, and mean DE*ab of 1.02). These differences

between recovery for the two sets of training spectra may

TABLE II. Quality of recovery of spectral reflectances from natural scenes.

Measure Test set

Color filters

None MG 1 MG 2 B G O G þ O G þ O þ MG2

GFC (%) 1 99.07 (1.65) 99.45 (1.09) 99.49 (1.07) 99.63 (0.70) 99.35 (1.17) 99.59 (0.69) 99.75 (0.42) 99.90 (0.10)
2 96.45 (8.18) 98.00 (4.62) 98.13 (4.28) 98.63 (2.96) 97.64 (5.44) 98.39 (3.17) 98.99 (2.58) 99.31 (1.79)
3 96.26 (6.30) 97.18 (3.87) 97.30 (3.75) 98.02 (3.32) 96.86 (4.21) 97.64 (3.40) 98.68 (2.40) 98.96 (1.97)

RMSE (%) 1 7.24 (5.27) 5.49 (4.15) 5.20 (4.12) 4.51 (3.45) 6.03 (4.27) 4.88 (3.28) 3.75 (2.77) 2.47 (1.32)
2 5.54 (6.11) 3.59 (3.65) 3.47 (3.57) 3.17 (3.34) 3.96 (3.96) 3.41 (3.38) 2.68 (2.88) 2.02 (2.04)
3 2.23 (1.40) 2.25 (1.25) 2.18 (1.23) 1.63 (1.13) 2.46 (1.35) 1.99 (1.13) 1.40 (0.92) 1.25 (0.80)

DE*ab 1 1.03 (0.66) 0.53 (0.42) 0.54 (0.45) 0.50 (0.27) 0.43 (0.39) 0.57 (0.44) 0.24 (0.16) 0.18 (0.14)
2 1.15 (0.94) 0.68 (0.84) 0.73 (0.82) 0.61 (0.55) 0.53 (0.79) 0.73 (0.85) 0.25 (0.33) 0.22 (0.32)
3 1.84 (1.25) 1.07 (0.74) 1.18 (0.82) 0.60 (0.55) 0.84 (0.63) 1.26 (0.96) 0.31 (0.33) 0.27 (0.31)

Mean (sample SD) over 68403 spectra with test sets 1 and 3 and 111630 spectra with test set 2 for three measures of performance
and eight filter conditions. Color differences DE*ab were evaluated for an equienergy illuminant.

TABLE III. Quality of recovery of spectral reflectances with recovery matrices based on natural reflectance
spectra and on spectra from Macbeth ColorChecker chart.

Recovery matrix Measure

Color filters

None B B þ O B þ G þ MG1

Natural reflectances GFC (%) 99.22 (6.62) 99.74 (0.33) 99.86 (0.18) 99.91 (0.13)
RMSE (%) 6.10 (4.79) 4.45 (3.80) 2.79 (1.68) 2.13 (1.23)
DE*ab 1.47 (0.90) 0.75 (0.69) 0.24 (0.19) 0.09 (0.07)

Macbeth ColorChecker GFC (%) 98.74 (1.90) 98.88 (1.55) 99.16 (6.16) 99.39 (0.80)
RMSE (%) 7.96 (5.27) 7.21 (5.44) 6.16 (5.24) 5.24 (3.90)
DE*ab 1.61 (0.92) 1.46 (0.96) 0.62 (0.78) 0.20 (0.17)

Mean (sample SD) over 240 spectra for three measures of performance and four filter conditions.
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be a consequence of the fact that the Macbeth Color-

Checker chart, although covering a much greater area of

color space, has fewer reflectances in the region spanned

by natural spectra.

CONCLUSIONS

Natural scenes with complex variations in spatial structure

and uncontrolled illumination present particular problems

for recovering radiance and reflectance spectra. The pres-

ent work has shown, however, that a combination of the

direct-mapping method and a conventional RGB digital

camera with a limited number of colored filters can pro-

vide acceptably accurate estimates, complementing related

work on recovering illuminant spectra in natural

scenes.3,34,37,38

Of the different combinations of colored filters, best

performance was obtained with three filters. In terms of

the three measures, the recovered signal had a goodness-

of-fit coefficient better than 99.0%, a root-mean-square

error less than 5.0%, and a CIELAB color difference less

than 0.27.

Using a conventional RGB digital camera in combina-

tion with a limited number of colored filters offers a less

time-consuming and more economical approach to the

multispectral capture of natural and artificial scenes than

traditional methods, and the direct-mapping method pro-

vides acceptable performance without requiring more

computationally expensive optimization procedures for

error minimization. This approach allows a larger range

of spectra to be sampled in the construction of the recov-

ery matrix than with more constrained reflectance sets

such as the Macbeth ColorChecker chart. Yet some data

grouping is useful. Although good recovery is possible

with undifferentiated training sets from urban and rural

scenes, recovery was better for rural scenes with just rural

scenes as the training set, and for urban scenes with just

urban scenes as the training set.

This work was computational and responses were cal-

culated for a particular RGB digital camera and set of

colored filters, but its practical application to other cam-

eras and filters, after basic preprocessing operations such

as noise removal and correction of inhomogeneities and

response nonlinearities,39 should be straightforward.
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FORTHCOMING MEETINGS

Fogra Color Management
Symposium

Join the experts and practitioners who are addressing the

most important aspects of color management. On 21st/

22nd February 2008, Fogra is holding their Color Man-

agement Symposium in Munich, Germany. The venue is

Hotel Arabella Sheraton Bogenhausen in Munich, Ger-

many. The intended audience is color management

experts in industry and science, color management users

in the field, and key decision makers for prepress and

press technologies.

What does this symposium offer?

• The leading experts in the field of color imaging.

• The achievements of the ICC color management and its

future.

• Panel discussions ‘‘Future workshop’’ and tutorials.

• Celebration: The birthday party for the 15th anniversary

of ICC.

• Softproof exhibition.

• Simultaneous German/English interpreting.

The program includes: opening and keynote: ICC color

management—yesterday, today, and tomorrow; Session 1:

color management basics; Session 2: color management

proofing; Session 3: exhibition and demos [softproof],

get-together, tutorials, color vision, panel discussion ‘‘Future

Workshop—what will happen the next 15 years?’’;

Session 4: RGB-workflow (capture-rendering-proofing);

Session 5: color management—specialities; Session 6:

color management—outdoor color and requirements.

There also will be a party and social program. Birthday

party 15 years ICC with banquet and surprises will be

held on the evening of the 21st February 2008. Other

activities include the Fogra Institute tour, a guided beer

tour through traditional Munich breweries, and a snow-

board tour.

Further information—if you have any questions about

bookings or participation in the symposium, please do

not hesitate to contact Inge Burian on þ49 89 431 82-

114 or E-mail her on burian@fogra.org. Andreas

Kraushaar is responsible for the symposium. He would

be happy to answer any questions about the event pro-

gram and he may be reached on þ49 89 431 82-335 or

by E-mail: kraushaar@fogra.org. Please also pay regard

to the area ‘‘Events’’ of Fogra’s website: www.fogra.org.
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