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It has long been known that color experiences under con-
trolled conditions may be ordered into a color space based
on three primary attributes. It is also known that the color
of an object depends on its spectral reflectance function,
among other factors. Using dimensionality reduction tech-
niques applied to reflectance measurements (in our case a
published set of 1 nm interval reflectance functions of Mun-
sell color chips) it is possible to construct 3D spaces of
various kinds. In this article we compare color spaces,
perceptual or based on dimensionality reduction using
color matching functions and additional operations (uni-
form color space), to spectral spaces derived with a variety
of dimensionality reduction techniques. Most spectral
spaces put object spectra into the ordinal order of a psy-
chological color space, but so do many random continuous
functions. In terms of interval scales there are large differ-
ences between color and spectral spaces. In spectral spaces
psychophysical metamers are located in different places.
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INTRODUCTION

In recent years interest in spectral spaces representing in a
limited number of dimensions (usually three) the reflec-
tances of color chips defining perceptual color spaces [those
of Munsell or Swedish Natural Color System (NCS)] and

other data has increased.1–6 Different mathematical tech-
niques have been used for the dimensionality reduction with
varying results.

Color spaces are usually defined as geometrical models of
human color experiences. Perceptual color spaces are geo-
metrical arrangements of color chips (or geometrical models
thereof) found under given conditions to differ from each
other in specific ways. In the case of the Munsell system, for
example, the color chips differ in terms of the color at-
tributes hue, chroma (saturation) and value (lightness) by
unit differences that vary by attribute. In the case of NCS
they vary by unique hue component, blackness and white-
ness.

Psychophysical color spaces are based on the weighting
of the spectral return (the products of a normalized spectral
power function defining the light source and the spectral
reflectance function of the objects viewed) entering the eye
that views samples in a given surround by cone response or
color matching functions, and additional manipulation.
These spaces assume the premise that there is a direct and
unique relationship between the spectral return entering the
eye and the resulting color experience. At least since Land’s
experiments it is known that this premise is not generally
valid because a given spectral return can result in widely
differing color experiences depending on the complexity of
the surround. Reasonably good correlation between spectral
return and experience can be obtained when maximally
simplifying the surround to a single, uniform achromatic
field.

There is a fundamental difference between spectral
spaces and color spaces, the former being based on implicit
weighting by functions derived from mathematical analysis
of spectral returns, the latter on the explicit weighting by
functions based on results of color-matching experiments,
i.e., psychological data. The purpose of this article is to
compare the two kinds of spaces and to demonstrate the
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differences that are critical from the point of view of color
vision.

BACKGROUND

Historically, psychological color spaces are geometrical Eu-
clidean three-dimensional (3D) arrangements of color chips
that vary in a given perceptual fashion. A Euclidean ar-
rangement is only possible if the unit differences of the
different attributes used for the arrangement are not of equal
size. In the Munsell system, for example, the scale units of
hue, value and chroma scales are all of different perceptual
size. For the last 100 years the most sought after color space
has been the perceptually uniform one, with no fully satis-
factory solution as yet. Another well-known space is based
on constant change in perceived unique hues, blackness and
whiteness (the so-called Hering natural color space). In
terms of perceptual distance this space varies between and
within attributes.

Psychophysical Color Spaces

Psychophysical color spaces are based on spectral returns
and cone sensitivity or color-matching functions. In human
color vision the spectral returns are subject, among other
things, to lightness and chromatic adaptation effects. These
tend to discount, to a smaller or larger extent, the effect of
the spectral composition of the light source. It is reasonable
to assume that adaptation to a (synthetic) equal energy light
source would lead to color experiences very similar to those
of, say, daylight illuminant D55 and that as a first approx-
imation an average daylight source can be discounted and
spectral returns (on a relative basis) can be considered to be
the spectral reflectance functions.

The colorimetric system reduces the many dimensions
(typically 31 at 10 nm intervals) of spectral returns to three
by subjecting them to the filters or weights of the standard-
ized color-matching functions. Color matching bears some
relationship to color appearance since matched lights or
objects have the same appearance. However, matching does
not provide explicit information about the relationship be-
tween reflectance function and appearance (in the highly
relativized condition where a systematic relationship can be
expected). When placing Munsell system reflectance func-
tions into the CIE tristimulus space they form an irregular,
slanted double cone, with the perfect black color at the
origin of the space. Planes of constant value are horizontal
slices through the slanted double cone. In order to make the
lightness axis perpendicular to the constant value planes, the
additional assumption of an operating opponent color sys-
tem is made. This is achieved by normalizing by subtracting
(and application of a weighting factor) the X and Z tristimu-
lus values from Y. A plane chromatic diagram results in
which perfectly horizontal reflectance functions under an
equal energy light source, regardless of their luminous re-
flectance, fall on the origin. Fair agreement with the psy-
chological space is still not obtained because the (relativ-
ized) relationship between reflectance function and color

experience is not linear. Appropriate power functions ap-
plied to the tristimulus values or the opponent color values
improve the agreement considerably. If the filters used are
cone-response functions rather than color-matching func-
tions an additional transformation is required to convert the
former to the latter (or approximations thereof).

The several steps discussed generate points in a 3D space
from reflectance functions, the distribution of which indi-
cates a degree of agreement with the distribution of points
representing, say, Munsell chips in a psychologically de-
rived hue, value, chroma space.

Spectral Spaces

Reflectance functions can be weighted or filtered by
many functions other than cone response or color matching
functions. Of particular interest in recent years have been
functions that represent the information content in reflec-
tance functions more completely than color matching func-
tions. They allow reconstruction of the original reflectance
functions with a good to high degree of accuracy, depending
on the number of functions. In case of three functions they
can be interpreted as axial definitions of a space. Spectral
spaces and color spaces are therefore, alternative methods to
reduce the dimensionality of spectral data.

DIMENSIONALITY REDUCTION TECHNIQUES
(NON-PSYCHOPHYSICAL)

Cohen was the first to make use of dimensionality reduction
techniques as a mathematical tool to analyze reflectance
spectra.1 Many researchers since have sought to find what
may be called the “best” space representation of measured
spectral reflectance functions. Such techniques may be
broadly classified either as having non-negative bases (all-
positive or AP) or as having a mixture of positive and
positive-negative bases (PN).a

Spaces Described by PN Bases

Within PN-type spaces, the most popular technique is
Principal Component Analysis (PCA).7–9 It has basis func-
tions that correspond to directions having maximum vari-
ance, the idea being that the direction(s) in which the
measured data has most variance is accounted for. The use
of PCA inherently implies that we are forcing a Gaussian
form on the distribution of the data. This need not always be
true. Given a set of N reflectance measurements xi �ℜ M

(each of the N reflectance functions has M samples), stacked
into an MxN matrix X, we can construct an MxM matrix E �
XXT. This matrix is non-singular and all non-zero scalars �
and non-zero vectors y� satisfying E � y� � � � y� are called
eigenvalues and eigenvectors respectively, and any such
pair (�, y�) is called an eigenpair. For the purposes of our

a These techniques are only briefly discussed; the reader interested in
more details is referred to the references.
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experiment, we shall deal with the eigenpairs corresponding
to the three largest eigenvalues.

Independent Component Analysis (ICA) is another tech-
nique for dimensionality reduction. It produces basis func-
tions that give rise to maximum statistical independence of
the data.10 ICA represents an attempt at maximizing the
non-Gaussian nature of the projected data, the result need
not be bases that are orthogonal to each other. Laamanen et
al. used ICA for dimensionality reduction of the Munsell
spectral reflectance space.11 These authors however did not
provide a comparison of ICA with other techniques in the
reduced dimensionality space. ICA is a product of research
in signal processing in an effort to perform signal separation
and source localization. A measured spectrum xi � ℜM may
be considered as a signal arising from linear combinations
of signals from three (or more) sources sj � ℜM, j � 1, 2,
3 . . . J. In case of three sources this is given by xi � ai1s1 �
ai2s2 � ai3s3. This set of linear combinations may be rep-
resented in matrix notation by X � AS, where A is called the
mixing matrix and is composed of rows, each representing
the weights used to construct xi from the various indepen-
dent components (ICs)sj, S is a matrix formed by stacking
the various sj values as its columns and X is a matrix whose
columns represent the N different measured reflectances.
The objective of ICA is to find the entries in A and also
solve for such that the sj functions are statistically indepen-
dent of each other. A fuller description of ICA may be found
in references 10 and 11.

Neural networks (NN) have been known to “learn” cer-
tain properties of data presented to it and are able to perform
well with “unseen” data. The network does not make as-
sumptions about the distribution of the data. A popular
version of NN used for dimensionality reduction is an
auto-encoder that has a decreasing number of neurons in
each layer. Usui et al. first used a NN for dimensionality
reduction of the reflectance spectra of Munsell color chips.12

Such a NN is a combination of an auto-encoder and a
decoder.13 Neural networks require a significant amount of
time for learning the structure of the data, but once trained
the network performs with a speed comparable to that of
other methods. The basis functions of neural networks can-
not be “plotted” (they cannot be “tracked” through multiple
layers). The weights of the neurons are representative of the
basis functions and have both positive and negative values.

Space Described by AP Bases

The color imaging industry has a need for non-negative
basis functions.14 Lee and Seung recently developed a ma-
trix factorization technique called Non-negative Matrix Fac-
torization (NMF)15. It extracts bases that have all positive
entries. Buchsbaum and Bloch have used it for finding
non-negative bases of the space containing the reflectance
functions of Munsell color chips.16 In NMF, just like in
PCA and ICA, each measurement xi � ℜM may be consid-
ered to be a weighted sum of three components. But, only

additive combinations are permitted. Using a notation sim-
ilar to that used for describing ICA, consider reconstructions
X̂ � AS of the original non-negative data X (the columns of
which are the N different reflectance functions). Lee and
Seung approach the problem of finding non-negative bases by
assuming that the data is obtained from a Poisson distribution
of mean AS.17 Also assuming that the various data are statis-
tically independent, the posterior distribution of obtaining X is
given by p�XijP�AS�ij� � �i�j exp(�(AS)ij)��AS�ij�

Xij/Xij!,
where i � 1, 2, 3 . . . M and j � 1, 2, 3 . . . N. Since the
logarithm is a monotonic function, maximizing the above
functional is the same as maximizing its logarithm. The objec-
tive function boils down to maximizing �i�j��AS�ij

� Xijln(AS)ij � ln(Xij!). With random initializations for the
matrices A and S the above objective function is maximized
iteratively with all positive constraints on the elements of A and
S. Details of the procedure may be found in the article by Lee
and Seung.15

SPECTRAL DATABASE AND METHODOLOGY

The Munsell spectral database of 1269 samples has been
used for the calculation of spectral dimensionality reduction
functions. This database is available at the University of
Joensuu ftp server located at ftp://ftp.lut.fi/pub/color/spectra/
mspec. It represents spectral measurements at 1-nm inter-
vals from 380 to 800 nm of all available chromatic Munsell
color chips. It does not contain all colors of the Munsell
Renotations.18 In particular; it does not contain measure-
ments of achromatic samples. Value 5 and 7 samples have
been synthesized by using perfectly flat functions at the
appropriate reflectance values.

There is a significant difference between the x, y, Y values
of the Munsell Renotations and those calculated from the
measured 1-nm interval reflectances. There are at least three
reasons for the difference: 1. The samples used in the
measurements of the Joensuu data are not in exact agree-
ment with the aim values of the Munsell Renotations. 2. The
spectral interval of measurement of color chips used in the
definition of the Renotations is 10 nm and 1 nm for the
Joensuu data. 3. The spectral range of the Joensuu data is
extended to 800 nm at the long-wave end while it stops at
720 nm for the Munsell Renotations. To give an indication
of the difference the average CIELAB total color difference
between the Renotations and the Joensuu data, for an equal
energy illuminant, have been calculated for the 58 samples
of the Value 7 “Celtic cross” (see Fig. 6 for example). The
average �E*ab error is found to be 5.65 with a standard
deviation of 1.95. Unlike the Munsell Renotations, the Joen-
suu hue circle samples do not have a smoothly rounded
arrangement in X, Y, Z space and because of differences in
luminous reflectance they do not fall exactly on a constant
Y plane.

An equal energy light source was assumed for reasons
given earlier. Calculations were performed on the original
database with a range from 380–800 nm as well as on data
where the spectral range has been reduced to 430–660 nm.
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The latter reduced range better approximates the spectral
sensitivities of the human visual system. A similarly re-
duced spectral range has recently been used by Romney and
Indow.19

To be able to perform a comparison at comparable levels,
we chose to use three bases for each of the dimensional
reduction techniques. For PCA, the three largest eigenvec-
tors were chosen as representative of the database. For ICA
and NMF, the optimization for the choice of bases was
performed for three vectors only. The neural network cho-
sen is similar to that used by Usui et al.12 It has a “wine-
glass” structure, with neurons organized in 5 layers as
210-10-3-10-210 and 115-10-3-10-115 for the 380–800 nm
and 430–660 nm cases, respectively. A gradient descent
minimization was used with 0.01 as the stopping criterion
(the value of the error function, the mean squared sum of the
difference between the input and the estimated output).

RESULTS AND DISCUSSION

Comparison of Basis Functions

The basis functions obtained by applying different di-
mensionality reduction techniques for the spectral range
380–800 nm are shown in Fig. 1. The independent compo-
nents of the ICA analysis are very similar to the eigenvec-
tors of the PCA analysis. The visual difference is caused by
the fact that the functions have not been normalized. In
other words, the resulting 3D spaces are very similar and so
are the basis functions (when normalized to unit vectors).

Figure 2 illustrates the basis function of the 430–660 nm
spectral range for ICA. They are considerably different from
those obtained for the 380–800 nm range, i.e., the two
corresponding spaces differ as a function of the spectral
range. As shown by Laamanen, Jaaskelainen and Parkkinen,

FIG. 1. Basis functions for the Munsell spectral database when using the wavelength range of 380–800nm (A) Eigen
functions corresponding to the top three eigenvalues using PCA, (B) using ICA, (C) ICA bases, normalized to unit vectors; note
similarity to PCA bases, (D) using NMF. Note that the basis vectors span the same space if the sign is reversed. Also note
that with ICA, the sequence of the bases is irrelevant.
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principal spectral functions depend on the spectral data used
to calculate them. Thus, from separate sets of visual metam-
ers or from the Munsell and the NCS spectral data different
functions are obtained.11

Accuracy of Reconstructed Reflectance Functions

The performance of the various dimensionality reduction
techniques in reconstructing the reflectance functions in the
two spectral ranges is listed in Table I. The neural network
has been trained until a very small error was reached.
Comparing the performance of the other systems to NN
based upon these measures alone is, therefore not appropri-
ate. We shall address this issue later. In the table the
reconstruction accuracy is also shown for color matching
functions (identical results are obtained for cone sensitivity
as well as opponent functions linearly derived from the
color matching functions).

It can be seen from the measures in Table I that three-
dimensional PCA, ICA and NMF perform well in their
abilities to reproduce the spectra of the samples. In case of
PCA, ICA and NMF the accuracy can be improved by using
more than three dimensions. The estimation of the reflec-
tance functions from the three-dimensional values was done
using a pseudoinverse algorithm without any constraints on
the matrices involved. In other words, assuming that the M
dimensional samples are encoded into 3D measurements us-

ing a linear model Y � BTX, where the rows of X contain the
M spectral measurements and the various samples are
stacked as columns; B is the transformation matrix and Y is
the resulting 3D representation. The corresponding esti-
mates of the reflectance functions are given by X̂ �
(BBT)�1BY.

The poor performance of the 2 deg color-matching func-
tions does not come as a surprise as the sensitivity functions
are almost zero beyond the 700 nm wavelength, clearly not
being able to reproduce non-zero reflectance functions be-
yond 700 nm. Considerable improvement is obtained for the
narrow spectral range. However, the error is still signifi-
cantly higher than that of the other weights. In addition, it is
evident that the accuracy of all methods depends on the
spectral range.

Spaces of Munsell Data. As an illustration of the structure
of spectral spaces, we have included in Fig. 3, a 3D repre-
sentation of all 1269 Munsell spectra in PCA. The color in
this figure is not accurate and is provided as an orientation
guide only. Animations of this and the NMF and ICA spaces
may be found at http://www.ece.ncsu.edu/imaging/Projects/
SpectralSpaces.

Organization of Spectral and Psychophysical Color
Spaces. Like the cone response or the color matching func-
tions PN and AP bases (with the exception of NN) place a
Munsell hue circle, chroma and value scales in an order that
is in ordinal agreement with the psychological order. (In NN

FIG. 2. Basis functions for the Munsell spectral database
when using the wavelength range 430–660 nm using ICA.

TABLE I. Error measures of the various reconstructions for the two wavelength ranges.

Method used MSE Max Min Variance 95th percentile

PCA 380–800 nm 0.3176 9.0823 0.0056 0.3098 1.0136
430–660 nm 0.1071 2.3795 0.0005 0.0371 0.4324

ICA 380–800 nm 0.3581 9.2461 0.0113 0.3006 0.9324
430–660 nm 0.9854 5.9959 0.0042 1.5119 3.5664

NMF 380–800 nm 0.3932 10.8585 0.0090 0.4442 1.1212
430–660 nm 0.1257 2.5909 0.0002 0.0466 0.5568

CMFs 380–800 nm 25.8634 113.5626 0.4414 778.2233 86.5720
430–660 nm 3.6709 16.6888 0.0507 15.1270 12.4693

FIG. 3. Rendition of the 3D space resulting from a PCA-
based dimensionality reduction.
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certain hue sequences are not in ordinal order.) Many other
arbitrarily selected sets of three continuous looped functions
place the reflectances in ordinal order. PN and AP bases do
not offer an advantage in this respect. In the sense of
interval order these functions result in significantly less
agreement with the psychological order than color-matching
functions. This is shown by using an extract of the Munsell
system previously called by one of the authors Celtic
crosses (CC).20 A CC consisting of all available hue sam-
ples at chroma 8 at value 7/ has been used. In addition,
constant hue colors of varying chroma ranging from 2 (at
two-step intervals) to the maximum existing for the given
hue have been added for those hues that fall nearest to the
diagram axes in a linear CIE tristimulus opponent color
diagram (7.5RP, 5Y, 10G, 5PB). A synthesized value 7/
reflectance function was added to the two crosses. It is
shown using a black square symbol. Notice the placement of
the achromatic sample in each of the reconstructions.

For PCA, the first basis vector may be considered to

roughly describe the “lightness” axis (see Fig. 1A). The 2nd
and 3rd eigenvectors roughly represent “red-green” and
“yellow-blue” axes, respectively. In Fig. 4A the data are
projected onto the plane spanned by the 2nd and 3rd most
dominant eigenvectors. The normalized ICA bases are sim-
ilar to the PCA bases; hence the same ideas are used for
creating the “chromaticity” diagrams in Fig. 4B. Note, ICA
can generate the ICs only up to a multiplicative sign; hence
the sign change for the 2nd and 3rd ICs. Unlike PCA and
ICA, the all-positive NMF bases seem to represent roughly
“green”, “red” and “blue” filters, respectively (see Fig. 1D).
The plot in Fig. 4C is a projection onto the plane spanned by
the “red” and “blue” descriptors. For comparison, in Fig.
5A, B the CCs are also shown in the CIE X, Z diagram,
respectively the CIELAB a*, b* diagram. The superior
reproduction in terms of intervals of the psychological dia-
gram CC in the a*, b* diagram compared to all spectral
diagrams is evident. Calculations have also been made for a
value 5 CC (not illustrated). The results are comparable.

FIG. 4. 2D plots of the projections of samples belonging to the to value 7/ CCs. (A) PCA space, (B) ICA space, (C) NMF
space, (D) neural network encodings. The spectral range is 380–800 nm.
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Lightness

In Figs. 4 and 5 the CCs are shown only in two dimen-
sions. In the spectral spaces they are not located in a
horizontal plane because none of the functions of those
spaces is in agreement with the CIE luminosity function.
This is illustrated in Fig. 6 for PCA. While in the CIE
tristimulus space CCs fall on horizontal planes this is not the
case for the spectral spaces. Romney and Indow who placed
narrow range Joensuu reflectances into a PCA space intro-
duced an average tilt so that constant value colors fall on an
approximately horizontal plane.17

Metamers

A particular aspect of color matching functions is that
they place matching reflectances into the same location in

space. In spectral spaces this is no longer the case. Spectral
spaces, therefore, cannot be in agreement with perceptual
spaces as they imply different appearances for visual
metamers and differences between these appearances where
there are none. There are metamers specific to these func-
tions that are different from perceptual metamers. They are
located in different places in psychophysical color spaces.

Separation of psychophysical metamers in spectral spaces
is demonstrated with the help of a large synthetic metamer
each for the following Munsell colors at value 7/ and
chroma 8: 5R, 5Y, 5G, 5B as well as an achromatic gray.
Figure 7A illustrates the Joensuu reflectances and their
metamers for the EE illuminant in the X, Z plane of the CIE
tristimulus space. While the metamers are not perfect they
are near-matches for the CIE 2° standard observer. Figure
7B-E show the same data in the PCA, ICA, NMF and NN
diagrams. It is evident that the visual metameric pairs are
represented in these diagrams in specific fashion, widely
separated from each other.

INFORMATION EXTRACTION FROM
REFLECTANCES BY THE VISUAL SYSTEM

Exact reconstruction of spectral functions does not appear to
be a goal of the human visual system. More efficient recon-
struction is possible with function shapes other than those of
the cone response or color-matching functions. Evolution
has chosen the particular cone functions (and the transfor-
mations of the opponent color system) perhaps from bio-
logical necessity. As a result the human visual system
suffers from the drawback (or advantage) of a specific form
of metamerism. It cannot distinguish between spectral re-
turns that are metamers for the color matching functions.
Such functions are distinguished with ease in spectral
spaces (or by the visual system when the light source
changes significantly). However, there is a reciprocal situ-
ation for metamers in spectral spaces.

FIG. 5. 2D plots of the projections of samples belonging to the to value 7/ CCs in (A) CIE XYZ space, (B) CIELAB space.

FIG. 6. 3D view of Munsell value 7/ CC, illustrating that
neither do the samples lie in a plane nor are they in an
arrangement parallel to the constituent planes for a PCA
spectral space. The 3D view has been rotated such that this
fact is best illustrated.
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FIG. 7. 2D plots showing four chromatic samples (solid markers) and one achromatic sample and a synthetic metamer for
each (empty markers) pairs in (A) XZ diagram, (B) PCA system, (C) ICA system, (D) NMF system, (E) NN system. Munsell
samples used are 5R7/8 (■), 5Y7/8 (}), 5G7/8 (Œ), 5B7/8 (�) and an achromatic sample (F). Metameric pairs are connected
with lines. The pair associated with the achromatic sample are connected with the dashed line.
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CONCLUSIONS

Psychophysical uniform color spaces place samples repre-
senting (in a specific set of conditions) equal interval color
scales into interval order that is in reasonable to good
agreement with the perceptual interval order. Spectral
spaces differ from interval level color spaces as follows:

1. They depend on the mathematical dimension reduction
model used (see Fig. 1)

2. They vary with the specific set of input data.
3. While they often place (as do many other sets of three

continuous functions) sample spectra into ordinal order
with respect to the perceptual order the interval order is
much inferior to that of a psychophysical uniform color
space (see Fig. 4 A–D and Fig. 5B).

4. None of the axes of the spectral spaces is in agreement
with perceived lightness (see Fig. 6 for an example)

5. They do not represent visual metamers in the same
location. At the same time, samples that are metamers
in a given spectral space are perceived by the average
observer as different.

Spectral spaces are not color spaces. They lack specific
relationship to human color vision and the term color space
should not be used for them.
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