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In performance evaluations, data without explicit inputs (such as index data, pure output data) are widely

used. To directly use such data, this paper presents a study on building DEA models without explicit

how to incorporate value judgments of decision makers into these DEA-WEI models. Several such models

are derived. Finally, applications of the DEA-WEI models are presented.

& 2010 Elsevier Ltd. All rights reserved.
1. Introduction

In performance evaluations, index indicators are widely used in
assessment of business (e.g. [1]), human development (e.g. [2,3]),
health service (e.g. [4,5]), competitiveness or wealth of countries
(e.g. [6], World competitiveness yearbook 2006 by International
Institute for Management Development, IMD) and others. Let xi and
yr be the input and output of a decision making unit (DMU), then
the index data have the form eir¼yr/xi, such as GDP per capita (if
manpower is considered to be an input), and citations per article or
profit margin, etc. Furthermore, in the evaluation of efficacy or
effectiveness such as countries’ power and students’ performance,
only outputs are explicitly used. Thus it is sometimes difficult if not
impossible to recover the explicit input–output relationship among
the data as required in the evaluation applications of the standard
DEA models.

In practical applications, some aggregation techniques are often
employed in order to produce a single score of performance from
index data. The most widely used technique is to calculate the
weighted sum of indexes: (

P
wireir) to arrive at an aggregate measure

of performance of a DMU (referred to as Ratio Approach or Compre-
hensive Analysis). However, how to properly select the weights (wir) is
a main source of difficulty in the application of this technique. Popular
methods to determine the weights include peer review through
Delphi or analytic hierarchy process (AHP), statistics methods such as
ll rights reserved.
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regression analysis and principal component analysis (PCA), and
entropy method, see [7–12]. The same weights are used for all the
DMUs in the above methods. However this is often the source of
controversies for the final evaluation results.

Data envelopment analysis (DEA) is a non-parametric method to
identify the best-practice frontier rather than the central-tendency, and
then only the DMUs on the frontier are classified efficient. In this
method, DMUs can freely select their weights to maximize their
performance scores. Since the first DEA paper was published in EJOR in
1978 [13], it has become an attractive tool of performance evaluation in
both non-profit and for-profit sectors. The standard DEA models have
been formulated via input and output data of DMUs. However, as
mentioned above, data sets are sometimes given without inputs, or the
original input–output data cannot be easily recovered. For example, in
an evaluation of research institutes in Chinese Academy of Sciences
(CAS), the index data used are publications per staff, research funding
per staff, citations per publication and others. It is clearly difficult to
recover the original inputs and outputs directly from these indexes as
the publications are used both as numerator and denominator here,
although in this particular case the original inputs and outputs are in
fact available from the CAS database. In some cases, CAS just used the
outputs to evaluate the research institutes without explicating con-
sidering the inputs at all. Furthermore, in practical applications, often
only a part of the indexes is available or meaningful. In DEA literature
DEA models for the index data, such as [5,14,3,15].

The aim of this paper is to present more systematic theoretical
background for these models in the previous studies.

The paper is organized as follows: Section 2 presents a
mathematical derivation of some basic DEA models without
explicit inputs. Section 3 discusses value judgement in these
DEA models. Section 4 presents an empirical study of these DEA
models, and the conclusion is given in Section 5.
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2. Basic DEA models without explicit inputs

Motivated by the above different applications, let us examine
the DEA models without explicit inputs (hereinafter called DEA-
WEI models) by taking an axiom approach in order to cover as wide
applications as possible (see [13,16,17] for the details of axiom
approach for the classic DEA models). It is clear such DEA models
can be used to assess efficiency, as well as efficacy, where inputs are
not taken into account as seen in assessing examination perfor-
mances of students, or overall economic power of countries. To this
end, we first define:

Definition 1. (Attainable set): A attainable set AS is a nonempty
subset in Rn

þ . It is said to be Free-disposal, if an element YAAS,
ZrY, then ZAAS. It is said to be Convex, if Z, YAAS, then
lZ+(1�l)YAAS, for any 0rlr1.

Let {Yj9j¼1,y,n} be a group of data in Rn
þ . Then the smallest

closed convex and free-disposal attainable set that contains the

observations can be further expressed as follows:

AS¼ Y9Yr
Xn

j ¼ 1

ljYj,
Xn

j ¼ 1

lj ¼ 1,ljZ0:

8<
:

9=
;

Then a DEA model for the observation under evaluation (Y0) is to

identify the virtual elements in AS to have the largest residual

performance (with a given measure) over Y0, see [18]. Using the

radial measure and the classic arguments of economics, we obtain

the DEA-WEI model: maxfy9yY0AASg, that is:

y� ¼max y

subject to
Xn

j ¼ 1

ljYjZyY0,

Xn

j ¼ 1

lj ¼ 1,ljZ0,

j¼ 1,. . .,n:

ð1Þ

Notice here we do not explicitly consider the input variables in the

attainable set. Thus we will only consider bounded attainable sets since

otherwise will render infeasibility of the programme—unbounded

solutions. In the following proposition, we list some possible ways of

building an attainable set:

Proposition 1. Let P¼{(X,Y)} be a bounded production possibility set

(PPS), which is a free-disposal and closed convex technology set. Then

its projection of all outputs:

ASI¼ fY : There is an X such thatðX,YÞAPg

defines a bounded closed convex and free-disposal attainable set.

Let {(Xj,Yj)9j¼1,...,n} be a group of input and output data. Then

ASII¼ Fr
Xn

j ¼ 1

lj

Yj

Xj
,
Xn

j ¼ 1

lj ¼ 1,ljZ0

8<
:

9=
;

defines a bounded closed convex and free-disposal attainable set,

where the divided data

Y

X
¼

y1

x1
,
y2

x1
,. . .,

ys

x1
,
y1

x2
,. . .,

ys

x2
,. . .,

y1

xm
,. . .,

ys

xm

� �� �

are s�m dimension vectors, with X ¼ ðx1,x2,. . .,xmÞ and Y ¼

ðy1,y2,. . .,ysÞ.

Proof. We first show conclusion one:

P is bounded, so is its subset ASI. If Z, YAASI, then there exist X,

W such that (W,Z), (X,Y)AP. Since P is convex, so that l(W,Z)+
(1�l)(X,Y)AP, for any 0rlr1.Thus lZ+(1�l)YAASI according to

its definition. Finally let YAASI and ZrY. It follows from the

definition that there is an X:(X,Y)AP. Since P is free-disposal, thus

(X,Z)AP and therefore ZAASI. &

For ASII, clearly it is bounded and free-disposal. Suppose that
F1,F2AASII. Then

F1r
Xn

j ¼ 1

l1
j

Yj

Xj
,
Xn

j ¼ 1

l1
j ¼ 1,l1

j Z0,

F2r
Xn

j ¼ 1

l2
j

Yj

Xj
,
Xn

j ¼ 1

l2
j ¼ 1,l2

j Z0:

Thus for any 0rlr1

lF1þð1�lÞF2r
Xn

j ¼ 1

ðll1
j þð1�lÞl

2
j Þ

Yj

Xj
,

Xn

j ¼ 1

ðll1
j þð1�lÞl

2
j Þ ¼ 1:

Therefore lF1þð1�lÞF2AASII:

It is clear that using ASI leads to DEA-WEI models that are
used to assess efficacy or effectiveness, while ASII is for the
applications of index data, although they both have the same form.
It can be argued that in ASII constant return to scale (CRS) is
assumed.

Model (1) was used by Lovell and Pastor [19], where the authors
regarded this model as the output-oriented BCC model with the
inputs being assumed equal to the unit. Further improvement was
given by Hollingsworth and Smith [20]. Halkos and Salamouris [1]
proposed the assessment measurement of the Greek commercial
banks by using Model (1) with six financial ratios (index data), such
as profit/loss per employee, return to total assets, net interest
margin and others.

On the other hand we show it is natural and possible to apply the
DEA principle to handle indexes directly. For j¼1,y,n, let

ðxj
1,xj

2,. . .,xj
mÞ be inputs and ðyj

1,yj
2,. . .,yj

sÞbe outputs of DMUj. DEA

models for index data are to directly use some of the indexes:

ej
ir ¼ yj

r=xj
i (as perhaps not all these indexes are relevant) to evaluate

performance of the DMUs. Here we assume that all the inputs and
outputs are desirable so that one wishes to maximize the weighted
sum. Consequently, one would like to estimate the performance
score by solving the following DEA model:

max h¼
P

wire0
ir

subject to
P

wirej
ir r1, j¼ 1,. . .,n,

wir Z0, i¼ 1,. . .,m, r¼ 1,. . .,s:

ð2Þ

Thus the weights wir are decided to give the maximum score for
the DMU0. This model was firstly discussed by Fernandez-Castro
and Smith [21] and has been used in [14]. Model (2) also looks like a
DEA model without inputs; see [2,3].

We then investigate the relationship of the two models. The dual
of Model (2) reads:

min
Xn

j ¼ 1

lj

subject to
Xn

j ¼ 1

ljYjZY0,

ljZ0, j¼ 1,. . .,n

ð3Þ
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If we let t¼
Pn

j ¼ 1 lj,lju¼ lj=t, and y¼1/t, and substitutelj for lju,

then Model (3) can be reformulated as

max y

subject to
Xn

j ¼ 1

ljyrjZyyr0,

Xn

j ¼ 1

lj ¼ 1, ljZ0,

j¼ 1,. . .,n, r ¼ 1,. . .,s:

which is just Model (1). Thus the optimal value of Model (1) is the

reciprocal of that of Model (2) with h� ¼ 1=y�. Therefore the DEA-WEI
models with multiplier form do not have a direct dual relationship
with their envelopment form as the standard DEA models.

Furthermore we will discuss relationship between the above
models and the standard DEA models.

Assume now that DMUs have the unit input, and index outputs
yrj. Then standard ratio CCR DEA model reads:

max h0 ¼

Ps

r ¼ 1
ur yr0Pm

i ¼ 1
vi

subject to

Ps

r ¼ 1
ur yrjPm

i ¼ 1
vi

r1, j¼ 1,. . .,n,

vi,ur Z0, i¼ 1,:::,m, r¼ 1,. . .,s:

ð4Þ

Taking the new weights, one has

max h0 ¼
Xs

r ¼ 1

mryr0

subject to
Xs

t ¼ 1

mryrjr1, j¼ 1,. . .,n

vi,mr Z0, i¼ 1,. . .,m, r¼ 1,. . .,s:

This is the exactly same as Model (2).
Let us now examine the multiplier output oriented BCC model:

min h¼
Xm

i ¼ 1

vixi0þu0

subject to
Xs

r ¼ 1

uryrj�
Xm

i ¼ 1

vixij�u0r0, j¼ 1,. . .,n,

Xs

r ¼ 1

uryr0 ¼ 1,

ur ,viZ0, u0free :

Now letting the input be the unit and using a new non-negative
variable

Pm
i ¼ 1 viþu0 ¼ l, then the model reads:

min l

subject to
Xs

r ¼ 1

uryrjrl, j¼ 1,. . .,n,

Xs

r ¼ 1

uryr0 ¼ 1,

ur ,lZ0:

Then taking the new weighs wr ¼ ur=l, one has

max
Xs

r ¼ 1

wryr0

subject to
Xs

r ¼ 1

wryrjr1, j¼ 1,. . .,n,

wr Z0:

This is again exactly model (2). Similarly one can show that
either the output oriented dual CCR or BCC model will reduce to
Model (1) based on the fact that the constraint
Pn

j ¼ 1 lj ¼ 1 in

Model (1) can be equivalently replaced by
Pn

j ¼ 1 ljr1.

In this case the additive DEA-WEI model will have the following
form:

max
Xs

r ¼ 1

sþr

subject to
Xn

j ¼ 1

ljyrj�sþr ¼ yr0,

Xn

j ¼ 1

lj ¼ 1,

sþr Z0, r¼ 1,. . .,s,

ljZ0, j¼ 1,. . .,n:

ð5Þ

Noting that there are no input slacks in above model, one can use
the following SBM formula to replace the objective function in (5)
to have the SBM DEA-WEI model:

min e¼ 1
1þð1=sÞ

Ps

r ¼ 1
ðsþr =yr0Þ

subject to
Xn

j ¼ 1

ljyrj�sþr ¼ yr0,

Xn

j ¼ 1

lj ¼ 1,

sþr Z0, r¼ 1,. . .,s,

ljZ0, j¼ 1,. . .,n:

ð6Þ

Model (5) is the additive DEA-WEI model that was used by Cai
and Wu [22] to evaluate the financial position of eleven IT
companies, where four synthetic financial indexes were used.
The authors used this model by setting the input as the unit, but
without further explanation on why this model can be used to
handle their case. One of the advantages of this model is that it can
handle negative data directly. To handle negative data using Model
(1), one may need to use suitable transformation (shifting) or the
directional distance, see [23] for more details. Similarly we can
discuss the DEA-WEI model using the Russell measurement (see
Model (14) in Section 3).

Let us now not assume that the inputs are unit but assume that
the input variable is single. Then dual output oriented CCR model
reads:

max y

subject to
Xn

j ¼ 1

x1jlju¼ x10,

Xn

j ¼ 1

zrjljuZyzr0,

ljuZ0, r¼ 1,. . .,s, j¼ 1,. . .,n:

Note that the constraint for input now must be binding so it is
replaced by the equation. Let yrj¼zrj/x1j, yr0¼zr0/x10 andlj ¼

x1jlju=x10, then we can see that it is exactly Model (1). However it
does not seem to be possible to carry out similar converting for a
BCC dual model. Thus this shows that the concept of ‘‘Return to
Scale’’ is generally tricky in the DEA models for index data, as they
include the case where inputs are not taken into account. In fact it is
not appropriate to rescale the outputs in such DEA models.

In summary, by applying classical DEA models to data with
unit inputs, we can derive their corresponding DEA-WEI models.
In this case, both CCR and BCC models reduce to the same forms
of DEA-WEI models. If PPS of ASII type is used, then CRS is implicitly
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assumed. In the case of single input, one can directly convert the
CCR model into a DEA-WEI model. However Models (1) and (2) do
cover more applications (e.g., the cases of outputs data only).

Finally we briefly discuss the issue of correlated data. Although
the index data may come from divisions of original data, and thus
may increase correlations among the divided data, it follows from
the equivalence between the CCR and Model (1) with the single
input that the possible effects on the final DEA efficiency results
should be similar to the standard CCR case as discussed in [24], and
thus omission of variables purely on grounds of correlation should
be avoided.
3. Value judgement in DEA models without explicit inputs

As shown above the use of ratios is sometimes unavoidable in
real applications. This introduces some important considerations
that require careful treatment, as first pointed out by Fernandez-
Castro and Smith [21]. One particular point discussed is that the
concept of ‘‘Return to Scale’’ is generally tricky in the DEA-WEI
models. Another important issue is value judgment, which will be
addressed below.

In many DEA applications, the value judgments of decision
makers (DM) need to be incorporated. Mahlberg and Obersteiner
[2] and Despotis [3,15] presented an application in human devel-
opment analysis, where three indexes indicators—longevity,
educational attainment and standard of living, were used as three
outputs to reflect major dimensions of human development.
In these models each indicator is regarded as equally important
and not substitutable, where DMU0 can be efficient if any one
of the three outputs is extremely high. However, the two assump-
tions may not be appropriate in many situations, due to value
judgements of decision makers (DMs) as illustrated in [25,26,18].
We will discuss these issues via the ‘‘Envelopment form’’ of
DEA-WEI models in this section, which can incorporate value
judgement more directly by changing the preferences as seen in
[27–29].

Let 3-dimensional vector Yi denote the examination marks of
maths, physics and chemistry of the student-i in a mathematics
department. Assume the department now wishes to evaluate
students’ performance. Traditionally such an assessment will be
carried out without considering inputs, and thus DEA-WEI models
can be employed. If all the subject marks are regarded as equally
important and not substitutable, the basic DEA models discussed in
Section 2 will be adequate. However, this may not always be the
case. For example, the department may think ‘‘the marks of maths
to be more important’’. One possible approach is to use weight
restrictions in Model (2). Here we only examine the most useful
type. Very often this value judgment is reflected by adding the

constraints (m1/m2)Za, (m2/m3)Zb in Model (2), where a, bZ1 are
constants—Assurance Region of type I (ARI), see [25]. In order to
understand the implicit meanings contained in this model, we first
derive its dual as follows:

max y

subject to
Xn

j ¼ 1

ljy1jZyy10þg1,

Xn

j ¼ 1

ljy2jZyy20�ag1þg2,

Xn

j ¼ 1

ljy3jZyy30�bg2,

Xn

j ¼ 1

lj ¼ 1, g1,g2,ljZ0, j¼ 1,. . .,n:
Then we can transform the above model to the following
equivalent one:

max y

subject to
Xn

j ¼ 1

ljy1jZyy10,

Xn

j ¼ 1

ljðay1jþy2jÞZyðay10þy20Þ,

Xn

j ¼ 1

ljðbay1jþby2jþy3jÞZyðbay10þby20þy30Þ,

Xn

j ¼ 1

lj ¼ 1, ljZ0, j¼ 1,. . .,n:

ð7Þ

Then it is clear that three weighted sums of the marks are used
for comparisons in this DEA model, and the precise meaning of
‘‘Maths mark is more important’’ is clearer. For more general ARI,
we can follow the framework of the Cone-Ratio model proposed
by Charnes et al. [30], to formulate the counterpart cone-ratio DEA-
WEI model, which confines weights in a cone U:

max uT y0

subject to uT yjr1, j¼ 1,. . .,n,

uAU � Rþs :

ð8Þ

When U ¼ Rþs , it is back to the DEA Model (2). In practical
applications, value judgments are incorporated into the model by
defining a suitable polyhedral cone U.

We say that a cone U � Rþs is a polyhedral cone, if it has the so-
called half space form: U¼{u9DuZ0}, where D is a l� s matrix, and
u is a s�1 vector. Generally, the constraints of ARI can be regarded
to incorporate value judgement in this way, see [25,26] for details.
One can easily identify the matrix D in the above example.

However it is not always easy to find the dual of Model (8). In the
case where the cone is generated by a finite set of vectors, that is it
can be rewritten: U¼{u9u¼BTg,gZ0}, where BT is a s� l matrix, and
g is a l�1 vector, then by using a data transformation we can
rewrite Model (8) as Model (9), and then find its dual Model (10)
below:
Cone-ratio multiplier
form Model
Cone-ratio envelopment
form Model
max h¼ gTðBY0Þ

subject to gT ðBYÞr1,

gZ0:

(9)
max y
subject to ðBYÞlZyðBY0Þ,

lT e¼ 1, lZ0:

ð10Þ
where the optimal value of Model (9) is the reciprocal of that of
Model (10) with h� ¼ 1=y�.

In our example of students’ performance evaluation, B is
1 0 0

a 1 0

ab b 1

0
B@

1
CA. Unfortunately, it is neither easy nor always possible

to find matrix B to rewrite U in the form of U¼{u9u¼BTg, gZ0}.
Charnes et al. [31] and Brockett et al. [40] discussed relationships
between the matrixes B and D under various conditions. For
example, suppose D is s� s and has an inverse, then we can take

BT ¼D�1.
Below we will find it is possible to express value judgements via

preferences. A preference is a precise relationship to clarify the
meanings for the vague expressions like ‘‘better, worse’’. Clearly
one should have some understandings on these meanings before an
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evaluation is carried out. The most classic example of preferences
is the numerical order (preference) for the real numbers like ‘‘543’’
and ‘‘4o6’’. Such an order can be generalized to a column
or a table of real numbers—like the Pareto preference widely
used in economics, which compares each component of the
vectors. In the above example, the department may think stu-
dent-i is better than student-j if his or her maths mark and total
mark are higher, that is, the preference reads: student-i is better
than student-j if

y1i Z y1j

y1iþy2iþy3i Z y1jþy2jþy3j
ð11Þ

If the department thinks all the subject marks are equally
important and substitutable, then the totals are to be used to
compare so that student-i is better than student-j if

y1iþy2iþy3i Z y1jþy2j þy3j ð12Þ

The above inequalities can be conveniently presented with

matrixes. For (11) we can let B¼
1 0 0

1 1 1

� �
, so performance of

student-i is better than that of student-j in the sense of the matrix
preference if and only if BYiZBYj in Pareto preference. For the
average preference (12), B¼(1 1 1). Finally if we let

B¼ I¼

1 0 0

0 1 0

0 0 1

0
B@

1
CA or B¼

1 0 0

a 1 0

ab b 1

0
B@

1
CA then the matrix prefer-

ence is just the Pareto preference or the preference used in Model
(7) respectively. More precisely in Model (7) implicitly it assumes
the preference adopted as follows: For given inputs level, DMUi is
better than DMUj if and only if

y1i Z y1j

ay1iþy2i Z ay1jþy2j

bay1iþby2iþy3i Z bay1jþby2jþy3j,

There are in fact many more useful preferences, like Lexico-
graphic preference, see [18,28] for more details.

Therefore, value judgements may be expressed via preferences.
We then see another approach to incorporate value judgment:
to use the measures and preferences in the dual DEA models
like Model (1) to incorporate value judgments, see [27] for more
details. For example, replacing the Pareto Preference by the
matrix preference in Model (1), we then have the following DEA
model:

max
y,l

y

subject to
Xn

j ¼ 1

BYjljZy BY0,

Xn

j ¼ 1

lj ¼ 1, ljZ0:

ð13Þ

where B is the matrix in the definition of the matrix preference to
specify compensations between these outputs. Let us note that
Model (13) looks identical to Model (10). However one has to know
U to apply Model (10), while Model (13) can be used directly if one
can express the value judgement in the matrix preference as we did
above. This model will be used in Section 4.

Furthermore, in many applications, it may not be rational to
assume radial contraction or expansion, see [32]. Then one can
adopt the Russell measurement, and have the following model:

max 1
s

Xs

r ¼ 1

yr

subject to
Xn

j ¼ 1

ljyrj ¼ yryr0

Xn

j ¼ 1

lj ¼ 1

yr Z1, r¼ 1,. . .,s

ljZ0, j¼ 1,. . .,n:

ð14Þ

If the constraint yrZ1 is replaced by yrZ0 in this model, then
the average preference is actually used for the outputs. Similarly,
one can use DEA-WEI models of SBM type to deal with such
applications. Let us note that SBM DEA models can be transformed
into Russell DEA models using some variable transformation, see
[33] for details.

Let us mention that the models above can be applied to
effectiveness evaluations where only outputs need to be evaluated.
4. Empirical studies

In this section we present some empirical studies on DEA-WEI
models. We first compare the standard DEA and DEA-WEI models –
this basically means we apply the standard DEA models directly by
using the original input and output data. Then we standardize the
original data and apply the DEA-WEI models. After that, we apply
DEA-WEI models in a case study on performance evaluation of
research institutes at Chinese Academy of Sciences (CAS), where
value judgements have to be incorporated in the assessment.

4.1. Comparisons of the standard DEA and DEA-WEI models

Greenberg and Nunamaker [4] pointed out that incorporation of
conventional performance measures and ratios should promote
practical acceptance of the DEA approach because this method
could overcome some disadvantages of ratio analysis. Greenberg
and Nunamaker [4] and Thanassoulis et al. [5] presented practical
applications to compare DEA with ratio approach, where the
standard DEA models were still used by setting some indexes as
inputs and some were outputs. In [34], some inherent relationship
between DEA frontier DMUs and output–input ratios was discussed
so that one sometimes can find DEA frontiers directly from ratios
analysis. In [35], relationship between DEA efficiency estimates and
financial ratios was discussed.

Zhu [36] presented comparisons between DEA and PCA in
aggregating multiple inputs and multiple outputs in the evaluation
of DMUs. In Zhu’s [36] paper, super-efficiency scores were first
computed via a modified input-oriented CCR model, where the
DMU under evaluation was excluded from the virtual sums. The
purpose of this exclusion is to discriminate those efficient DMUs.
Then indexes were defined by using (three) outputs divided by each
of two inputs separately, and the principle components for the
defined indexes were then determined. Finally, a single score is
obtained by summing the weighted principal components, where
the weights could be decided by their eigenvalues. The results
indicated that the ranking by DEA was consistent with the PCA
ranking, although there should be no surprise had these two
methods produced very different results since they are based on
very different principles anyway. Here we extend the comparison
using the standard DEA models (CCR, BCC, and SBM), Zhu’s model,
the radial DEA-WEI model (Model 1), and the SBM DEA-WEI model
(Model 6) to evaluate these 18 cities again. Both input and output



Table 1
Comparison results.

Cities CCR score BCC score Zhu’s score Model (1) SBM score Model (6)

2 QingHuangDao 1.0000 1 12.6785 1.0000 1 1

10 WenZhou 1.0000 1 2.2848 1.0000 1 1

6 WeiHai 1.0000 1 1.6724 1.0000 1 1

12 ZhangJiang 0.7866 0.9202 0.7866 0.7866 0.4133 0.24049

13 BeiHai 0.7514 1 0.7513 0.7514 0.3888 0.25531

9 NingBo 0.6577 1 0.6577 0.6869 0.4810 0.37556

5 YanTai 0.6311 1 0.6311 0.6485 0.4735 0.35018

4 Qingdao 0.5022 0.9421 0.5022 0.5022 0.3058 0.16268

8 LianYunGang 0.4959 0.5148 0.4959 0.4959 0.3366 0.23701

16 ShanTou 0.4704 1 0.4704 0.4704 0.1392 0.03012

1 Dalian 0.4691 1 0.4691 0.4691 0.2797 0.1429

7 ShangHai 0.3580 1 0.3581 0.3580 0.1823 0.07041

17 XiaMen 0.3059 0.3095 0.3060 0.3059 0.1172 0.01424

11 GuangZhou 0.3010 1 0.3010 0.3010 0.1693 0.07997

3 TianJin 0.2779 0.8656 0.2779 0.2779 0.0918 0.03498

18 HaiNan 0.1953 0.1967 0.1953 0.1953 0.0861 0.03834

15 ZhuHai 0.1867 0.2040 0.1867 0.1867 0.0525 0.00808

14 ShenZHen 0.1366 0.2625 0.1382 0.1366 0.0454 0.01159

Table 2
Inputs and outputs of basic research institutes in CAS.

DMU Staff Res. Expen. SCI Pub. High Pub. Grad. Enroll. Exter. Fund.

Unit 1 380 59,880 201 28 386 35,368

Unit 2 418 79,910 480 196 354 69,763

Unit 3 68 13,150 78 72 57 5747

Unit 4 1105 92,710 153 45 642 49,074

Unit 5 248 18,920 68 18 165 13,801

Unit 6 828 134,240 167 64 229 73,748

Unit 7 481 52,460 38 13 136 32,797

Unit 8 493 40,840 94 6 115 12,743

Unit 9 198 23,110 43 16 79 15,964

Unit 10 243 32,580 42 11 48 20,731

Unit 11 553 62,100 156 34 105 67,927

Unit 12 347 49,510 64 8 190 31,616

Unit 13 445 78,280 440 162 529 62,448

Unit 14 260 27,530 113 23 137 33,952

Unit 15 304 59,450 94 19 263 70,015

Value of Res. Expen. and Exter. Fund. are in RMB thousand.
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orientated models were computed for the standard DEA models
and little difference was found. Thus we just present the results
with output-orientated models. For the standard DEA models, we
just use the original input and output data directly. To apply the
DEA-WEI models, we divided the outputs by each input to form the
index data. The efficiency scores are shown in Table 1.

In Section 2 we have seen that for the case of single input the
standard CCR model is equivalent to a DEA-WEI model, while this is
not true for the BCC model. The above experiment showed a similar
picture although this time the CCR model has two inputs. In Table 1,
the efficiency scores of DEA-WEI Model (1) are almost the same as
the results of CCR model. For inefficient DMUs, the efficiency scores
could be a bit different, but the rankings are the same. Furthermore
if we exclude the DMU under evaluation from virtual sums in the
DEA-WEI model (thus have DEA-WEI super-efficiency scores), we
then obtained the exactly same ranking as Zhu’s. However the
scores of BCC model are quite different from those produced by
Model (1).

We also test the standard SBM model, and Model (6) using the
SBM score formula e. This time although the scores of the two
models are quite different, the ranks produced by the two scores
are very similar: the spearman correlation coefficient between the
two ranks is actually 0.977. Model (14) is found to produce similar
results to Model (6).
4.2. A case study

In this section, we carry out a pilot study on applying DEA
methodology to assess performance of 15 basic research institutes
in Chinese Academy of Sciences (CAS), and also compare CCR, BCC,
and two DEA-WEI models.

Since the late 1990s, CAS has carried out a set of performance
assessments for its research institutes. The assessments used to
consist of quantitative part and qualitative part (mainly peer
reviews). Since 2002, the CAS evaluation system has focused on
not only effectiveness but also efficiency. The quantitative indica-
tors have become more or less stable. However, one of the main
criticisms to this evaluation system is the fairness of the weights
selection, which has been questioned since the assessments
started. Another criticism is that the indexes, which have been
used to measure efficiency of research investment, such as pub-
lications per staff, publications per expenditures, graduates enrol-
ment per staff, etc., seemingly change every year. In this pilot study,
we try to explore the possibility of using DEA-WEI models as a
possible ranking tool in the efficiency evaluation of basic research
institutes of CAS in order to address the issue of weights selection.
Here we select the most important inputs and outputs, and carry
out some comparisons between the original results and the results
by using the DEA-WEI models.

Often the number of full-time research staff (Staff) and total
research expenditures (Res. Expen.) are major research inputs,
while research outputs are quite variable depending on different
stakeholders’ view. The following represents a view from the level
of the Bureau of Basic-research in CAS, where publications include
the international papers indexed by Science Citation Index (SCI
Pub.), high quality papers published in top research journals (High
Pub.), graduate students’ enrolment (Grad. Enroll.), and the exter-
nal research funding obtained (Exter. Fund) are the major indica-
tors to judge performance. These are also the key indicators to
assess the basic institutes in Comprehensive Evaluation System
(CES) of CAS in 2002. Although only index data are needed for the
DEA-WEI models, we wish to carry out some comparisons between
the standard DEA and DEA-WEI models. Thus the original input–
output data are provided in Table 2, which come from CES of CAS
in 2002.

As shown in Table 2, Unit 4 had the largest size and the highest
graduate students’ enrolments. Unit 6 obtained the maximum



Table 3
Standardized indexes.

DMU y1j y2j y3j y4j y5j y6j

Unit 1 46.06 55.88 6.96 8.54 40.41 85.45

Unit 2 100.00 100.00 44.28 44.80 72.46 71.24

Unit 3 99.89 98.75 100.00 100.00 36.70 70.51

Unit 4 12.06 27.47 3.85 8.86 19.28 48.87

Unit 5 23.88 59.83 6.85 17.38 24.16 55.97
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external research funding, while its research expenditure were the
highest as well. Unit 2 would be rank on the top according to its SCI
publications and high quality publications.

In this study, we employ the output-oriented CCR, BCC and DEA-
WEI models to do comparison analysis. To apply the DEA-WEI models
we translate these indicators into indexes by using outputs/inputs
separately, and we have 8 indexes defined as Yj ¼ ðy1j,y2j,::: ,y8jÞ

T ,
where:
Unit 6 17.56 20.71 7.30 8.71 38.67 23.27

Unit 7 6.88 12.06 2.55 4.53 29.61 23.78

Unit 8 16.60 38.32 1.15 2.68 11.22 19.62

Unit 9 18.91 30.98 7.63 12.64 35.01 33.56

Unit 10 15.05 21.46 4.28 6.17 37.04 16.62

Unit 11 24.57 41.82 5.81 10.00 53.33 15.97

Unit 12 16.06 21.52 2.18 2.95 39.56 46.06

Unit 13 86.10 93.57 34.38 37.80 60.93 100.00

Unit 14 37.85 68.33 8.35 15.26 56.70 44.33

Unit 15 26.93 26.32 5.90 5.84 100.00 72.78
y1j¼SCI Pub./staff
y2j¼SCI pub./Res. Expen.
y3j¼High Pub./Staff
y4j¼High Pub./Res. Expen.
y5j¼Exter. Fund./Staff
y6j¼Grad. Enroll./Staff
y7j¼Exter. Fund./Res. Expen.
y8j¼Grad. Enroll./Res. Expen.
Table 4
Efficiency scores based on DEA models.

DMU BCC Model (1) Model (14) Model (15)

Scores Scores Ranks Scores Ranks Scores Ranks

Unit 2 100 100 A 100 A 100 A

Unit 3 100 100 A 100 A 100 A

Unit 15 100 100 A 100 A 100 A

Unit 13 100 100 A 100 A 92.5 A

Unit 14 100 74.87 B 30.82 B 66.85 B

Unit 11 65.12 62.78 B 18.71 B 56.27 B

Unit 1 93.15 85.45 B 25.46 B 56.1 B

Unit 12 65.12 51.68 B 6.7 C 43.18 B

Unit 6 54.6 42.98 C 15.42 B 41.45 B

Unit 5 100 62.40 B 20.72 B 40.88 B

Unit 9 54.57 43.48 B 18.39 B 40.87 B

Unit 10 98.28 41.03 C 10.74 C 38.68 C

Unit 7 42.23 31.85 C 6.8 C 30.56 C

Unit 4 100 48.87 B 11.43 B 27.51 C

Unit 8 66.61 38.32 C 4.29 C 19.37 C

Average scores 82.64 65.58 37.97 56.95
Since the percentage of external funding used for research is
unknown, and the expenditure for graduate education are normally
very small in China, here we exclude y7j and y8j, and these indexes
are also excluded in the CES 2002.

Table 3 presents the standardized indexes. The formula to
standardize these indexes is yrj ¼ ðyrj=Max

j
yrjÞ � 100. The purpose

to standardize indexes is to remove measurement differences in
these weighted sums.

We firstly apply the CCR and BCC model to evaluate perfor-
mance of these institutes. The results of CCR and BCC are quite close
except Unit 4, which is efficient in BCC but drops to 82.37% in CCR.
Therefore, we only present the BCC results in the second column of
Table 4 for further comparison. Next by using the radial measure-
ment and Pareto preference, and the Russell measurement and
Pareto preference [37,38], we apply Model (1) and Model (14) for
the index data. The results are provided in Table 4.

In these models, all the outputs and the six indexes are regarded
as non-substitutable and equally important. However, this
assumption may not be suitable for the current situations in
CAS. For instance, according to the questionnaire analysis in
[39], there still exist two groups of basic research institutes. One
group focuses on publishing papers in high quality journals to
pursue higher research impact, while the other group is still on the
quantity expansion stage by increasing SCI publications. Therefore,
we need to include both the indicators and regard y1j and y3j

directly substitutable in order to give fairer consideration for both
groups. Meanwhile, the external research funding per staff y5j is
regarded to be very important and non-substitutable by the DMs
because it is often used to reflect the competitiveness of the
institutes. Furthermore, the sum of these indexes should indicate
the overall performance. Hence, we combine the six indexes into
three new equally important and non-substitutable indexes, and
have the following model:

Max
y,l

y

Subject to BYlZy BY0,
Xn

j ¼ 1

lj ¼ 1, ljZ0,

B¼

1 0 1 0 0 0

0 0 0 0 1 0

1 1 1 1 1 1

0
B@

1
CA

ð15Þ

The efficiency scores by Model (15) are shown in the fifth
column of Table 4 and followed by the ranking orders.

In Table 4, the 15 DMUs are ranked via the scores of Model (15)
and divided into three groups (A, B, C) for clearer comparisons.
Group A represents the top 25% research institutes, while Group C
indicates the bottom 25%. Hence, DMUs of the top four research
institutes are classified as A, the worst four are in Group C, and the
rest are in Group B. As Table 4 shows, there are 7 efficient DMUs
using the standard BCC model with the average score 82.64%. The
results from the CCR model are almost the same. This implies that
too many indicators have diminished the DEA discrimination,
though this could be dealt with by weighs restrictions.

By using the DEA-WEI model with the Radial measurement
(Model 1) and Russell measurement (Model 14), the efficiency
scores of BCC model have been sharply reduced. When Model (15)
is employed, only Units 2, 3 and 15 are efficient. Model (15) allows
that indexes y1j and y3j can compensate each other directly, and
thus focuses on the average level according to the DM’s value
judgments. In addition, index y5j (external research funding per
staff) is emphasized as it is now substitutable. Because value
judgements are incorporated into the model and possible sub-
stitutions are considered among the indexes, the discrimination
power of this DEA-WEI model is much enhanced.

Table 5 provides the original evaluation scores of CES 2002 of
the 15 basic research institutes. The second column presents the
aggregated final scores E, which combine the scores in qualitative
and quantitative evaluations, and produce Rank E. The fourth
column presents the scores E1, which reflect the research institutes’
quantitative output evaluation without consideration of inputs,
and produce Rank 1. The sixth column presents the scores E2 for



Table 5
Original evaluation scores of CES 2002.

DMU Aggregated

final scores (E)

Rank E Research

outputs (E1)

Rank 1 Research

sustainability (E2)

Rank 2 Innovative

culture (E3)

Unit 3 66.53 A 51.19 B 79.09 A 93

Unit 2 83.63 A 85.91 A 78.44 A 93

Unit 13 82.75 A 91.77 A 68.4 A 95

Unit 15 60.79 B 48.81 B 68.21 A 91

Unit 1 57.21 B 42.41 B 66.49 B 94

Unit 6 67.44 A 67.32 A 61.94 B 90

Unit 12 50.08 C 37.48 C 56.6 B 87

Unit 11 51.34 C 39.13 C 56.44 B 92

Unit 10 51.63 B 40.84 B 56.26 B 87

Unit 9 47.71 C 33.86 C 54.19 B 91

Unit 14 58.3 B 56 B 53.75 B 88

Unit 7 58.77 B 58.12 B 51.78 C 90

Unit 5 47.56 C 35.78 C 50.94 C 93

Unit 4 55.04 B 53.82 B 48.09 C 89

Unit 8 52.89 B 50.89 B 45.87 C 91

E¼ 0:5E1þ0:4E2þ0:1E3
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their research sustainability evaluation, which actually are more or
less the CES efficiency evaluation, and produce Rank 2. In Table 5,
the 15 basic research institutes are ranked according to the
research efficiency Rank 2 for easy comparisons with Table 4.
Table 5 and 2 have clearly shown several institutes have higher
total scores due to their big sizes. For instance, Unit 6 was ranked A
mainly due to its higher research outputs score. Units 4–5, 7–8
were all ranked C in efficiency but three of them were ranked
overall B again due to their output scores.

Next we compare the DEA results with the CES research
sustainability evaluation results (Rank 2), where the weighted
sum of the six indexes in Table 3 is used as the score. Firstly we
compare the group ranking based on Model (14) (Ranks of Model
14) in Table 4 and Rank 2 based on the research institutes’ research
sustainability in Table 5. The top 4 DMUs have the same ranking
results. For the worst performed DMUs, Unit 4 and Unit 5 are
ranked B in Ranks of Model (14) but C in Rank 2, while Units 10 and
12 are also ranked differently. Thus there are substantial differ-
ences (four out of eight—50%) in the classification of Group C via
the two approaches. Such results are understandable as the two
approaches are based on very different principles,

Then we compare the Ranks of Model (15) in Table 4 (Rank of
Model (1) is very similar) with Rank 2 in Table 5. Model (15) has
taken some value judgements of the DMs into account. The
research institutes in Group A of Model (15) are still the same as
those of Rank 2. The classifications of Group C under the two
approaches are much closer—now only 25% difference. For exam-
ple, Unit 12 is in Group C by using Model (14), but has relatively
strong performance in obtaining external research funding per staff
(7th out of 15). Thus it is ranked B by using Model (15). In terms of
the group ranking, the two ranks above are more consistent.
Therefore, we believe this DEA model is applicable to the efficiency
evaluation of CAS. The ranks of the research institutes in the same
group are quite different. Nevertheless, similar ranks are not
expected since two every different approaches are employed. In
summary, we think it is feasible to apply DEA-WEI in future CAS
performance evaluation, and it is necessary to apply the DEA-WEI
models incorporating value judgements of the DMs.
5. Conclusion

Motivated by the different applications of the DEA models
without explicit inputs, in this paper we take an axiom approach to
examine these DEA models in order to cover as wide applications as
possible. This approach leads to a uniform presentation of the
DEA-WEI models, some of which are derived explicitly in this
paper. One advantage is that it is much easier to use these models
when only index indicators are available. Furthermore these DEA
models are applicable to efficacy evaluations where inputs are not
directly taken into account. The multiplier form DEA-WEI models
look similar to ratio approach, but allow flexibility of weights
selection for the assessed DMUs.

Furthermore, we discuss how to incorporate the DMs’ value
judgment in these DEA models using weight restrictions and
preferences, and further present a practical application of research
evaluation in CAS. We find that the DEA models without explicit
inputs have some unique advantages and should be applied to
more real-life applications. The empirical results show that
it is feasible to apply DEA-WEI in future CAS evaluation, and
it is necessary to incorporate value judgements of the DMs into
DEA-WEI models. Thus these DEA-WEI models provide a possible
approach to deal with the main controversies of the existing CAS
research evaluations.
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